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Background
One of the most frequent malignant head and neck tumors is 
nasopharyngeal carcinoma (NPC), particularly in Southeast 
Asia and China.1 Radiotherapy is the main treatment for stage 
I-II NPC, and concurrent chemoradiotherapy is used for stage 
III-IV NPC. The 5-year survival rate is about 80%.2 
Nevertheless, the latest revised AJCC 8th edition staging for 
NPC is far from optimal, because clinical outcomes from the 
same treatment vary widely even among patients with tumor of 
identical TNM stage and treatment strategies. Therefore, pre-
dictors other than the TNM stage are needed to predict the 

prognosis. Some quantitative parameters derived from PET/
CT imaging such as maximum standard uptake value 
(SUVmax), peak SUV (SUVpeak), metabolic tumor volume 
(MTV), and total lesion glycolysis (TLG), showed prognostic 
potential. For example, SUVmax of primary tumors is an effec-
tive biomarker for predicting overall survival (OS) and event-
free survival (EFS) in patients of NPC. However, Chang et al3 
showed different results. They argue that SUVmax is a limited 
parameter and does not represent the whole tumor. Many stud-
ies have shown that a higher MTV or TLG is associated with 
a higher risk of adverse events or survival. However, Shi et al4 
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ABSTRACT

BACkGRouND: Previous studies have shown that the 5-year survival rates of patients with nasopharyngeal carcinoma (NPC) were still not 
ideal despite great improvement in NPC treatments. To achieve individualized treatment of NPC, we have been looking for novel models to 
predict the prognosis of patients with NPC. The objective of this study was to use a novel deep learning network structural model to predict 
the prognosis of patients with NPC and to compare it with the traditional PET-CT model combining metabolic parameters and clinical 
factors.

METhoDS: A total of 173 patients were admitted to 2 institutions between July 2014 and April 2020 for the retrospective study; each 
received a PET-CT scan before treatment. The least absolute shrinkage and selection operator (LASSO) was employed to select some fea-
tures, including SUVpeak-P, T3, age, stage II, MTV-P, N1, stage III and pathological type, which were associated with overall survival (OS) 
of patients. We constructed 2 survival prediction models: an improved optimized adaptive multimodal task (a 3D Coordinate Attention Con-
volutional Autoencoder and an uncertainty-based jointly Optimizing Cox Model, CACA-UOCM for short) and a clinical model. The predictive 
power of these models was assessed using the Harrell Consistency Index (C index). Overall survival of patients with NPC was compared by 
Kaplan–Meier and Log-rank tests.

RESuLTS: The results showed that CACA-UOCM model could estimate OS (C index, 0.779 for training, 0.774 for validation, and 0.819 for 
testing) and divide patients into low and high mortality risk groups, which were significantly associated with OS (P < .001). However, the 
C-index of the model based only on clinical variables was only 0.42.

CoNCLuSioNS: The deep learning network model based on 18F-FDG PET/CT can serve as a reliable and powerful predictive tool for NPC 
and provide therapeutic strategies for individual treatment.
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proved that MTV or TLG could not predict EFS or OS, sug-
gesting that traditional 18F-FDG PET-CT metabolic param-
eters are controversial for predicting the prognosis of patients 
with NPC. The reasons of the variation in findings were due to 
different quantitative characteristics of patients, the threshold 
of traditional 18F-FDG PET-CT metabolic parameters, and 
the failure of traditional metabolic parameters to fully describe 
the heterogeneity of tumors. As can be seen, a survival predic-
tion model for NPC patients can be created using the meta-
bolic parameters of conventional 18F-FDG PET-CT, but its 
predictive power is constrained. As a result, we require a new 
indicator or model to more accurately predict the prognosis of 
patients with NPC.

Deep learning is used to discover the internal structures and 
levels of representation of sample data. Its ultimate goal is for 
machines to have the analytical learning capabilities of humans 
and to recognize data such as text, images, and sound. New 
evidence suggests that deep learning-based information 
extracted from medical images has made commensurate pro-
gress in predicting survival outcomes.5-8 Particularly, convolu-
tional neural networks (CNNs) have been applied to many 
survivals prediction studies and have achieved good perfor-
mance.9-12 Zhu et al13 developed CNN to predict the OS of 
lung cancer patients and conducted model training on patho-
logical images of lung cancer, with a consistency index of 0.63. 
Byun et al14 constructed the random survival forest model 
(RSF), DeepSurv model, and Cox proportional hazards model 
(CPH) to predict RFS and tumor-specific survival (CSS) in 
patients with nonmetastatic clear cell RCC. Harrel’s C-indices 
of RFS and CSS in the test dataset were 0.794, 0.789, 0.802 
and 0.831, 0.790, and 0.834 for CPH, RSF, and DeepSurv, 
respectively. Therefore, DeepSurv is superior in predicting RFS 
and CSS in non-metastatic clear cell RCC patients compare 
with CPH and RSF. Noteworthy, deep learning technology has 
been maturely implemented in the automated identification of 
structures and lesions on CT or magnetic resonance (MR) 
images in many cancers including NPC.15 Recent develop-
ments in machine learning and artificial intelligence have 
shown the potential of 18FDG-PET/CT to improve the accu-
racy of reading anatomical and metabolic characterization of 
malignancies.16,17 However, the majority of existing studies 
about 18FDG-PET/CT have focused on diagnosis and staging, 
even though some research studies aimed at prognostication 
have mostly relied on manual image segmentation rather than 
deep learning.18,19

To overcome the error of manual image segmentation and 
the difference of threshold defined by traditional metabolic 
parameters, the objective of the study was to establish a prog-
nostic model of the deep learning (CACA-UOCM) network 
structure to predict the prognosis of patients with NPC. 
Furthermore, its predictive value was compared with a tradi-
tional prognostic model of clinical parameters.

Methods
Patients

A total of 173 patients with NPC admitted to Shandong 
Cancer Hospital and Weifang People’s Hospital from July 
2014 to April 2020 were collected. Inclusion criteria: histologi-
cally confirmed NPC, pretreatment PET/CT data, and cervi-
cal lymph node metastasis. Exclusion criteria: distant metastasis 
before treatment; have other tumors; incomplete clinical data 
are not available. The protocol of this retrospective study was 
approved by the Ethics Committee of Shandong Institute of 
Cancer Prevention and Treatment (2019GGX101057) and 
Weifang People’s Hospital (2019034).

PET/CT acquisition

All patients fasted for at least 8 hours before receiving an 18F-
FDG PET-CT scan and checking blood glucose levels. The 
scans were performed using 2 sets of advanced PET/CT scan-
ners. Shandong Cancer Hospital was equipped with a Discovery 
Lightspeed PET-CT and a Minitrace cyclotron. Its spiral CT 
component has a peak voltage of 140 kV, 80 mA, a pitch of 2:1, 
a thickness of 4.25 mm, and a speed of 0.8s/r. 18F-FDG MBq 
(5.55-7.40/kg) was injected intravenously with a purity of >95%, 
and radioactive drugs were used. Two-dimensional pattern 
images were collected on PET/CT on Discovery LS 1 hour later. 
The other one is the introduction of BioGRAPH-64-True Point 
PET/CT produced by SIEMENS in Germany for the PET-CT 
Center of Weifang People’s Hospital. This device combines 
excellent PET and 64 spiral CT, 2 mature medical imaging tech-
nologies. This design, which is equipped with a unique Siemens 
high-resolution design, doubles the detection signal-to-noise 
ratio, significantly reducing image blur and distortion, giving it a 
consistent view spatial resolution of 2 mm, and pushing the lim-
its of its ability to detect small lesions.

PET/CT Analysis
Gross tumor volume (GTV-P) and lymph node (GTV-N) of 
the primary tumor were manually segmented on each PET/
CT by the same experienced investigator (radiation oncolo-
gist), referring to 2 nuclear radiologists’ reports. Region of inter-
est (ROI) was drawn on the primary tumor and metastatic 
cervical lymph nodes. All patients’ PET and CT images were 
imported into the MEDEX workstation (Philips Health Care), 
and the ROI of the lesions was calculated manually using the 
40% SUVmax threshold. The metabolic and volume parame-
ters SUVmax, SUVpeak, MTV, and TLG were measured by 
3-dimensional measurement software.

Treatment and Follow-up Method
All patients were treated with 1.8 to 2.0 Gy per fraction with 5 
daily fractions per week for 6 to 7 weeks. The cumulative 
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radiation dose of the primary tumor was 50 to 76 Gy, and the 
cumulative dose of bilateral lymph node irradiation was 50 to 
70 Gy. The chemotherapy regimen was mainly platinum ther-
apy. Follow-up included head and neck examination, naso-
pharyngeal endoscopy, chest X-ray examination, abdominal 
B-ultrasound examination, and whole-body bone scan. When 
recurrence or metastasis is found, re-staging and treatment 
plans should be made. Regular follow-up was performed every 
3 months for the first 3 years, every 6 months for the next 3 
years, and then annually thereafter.

Model Based on Clinical Factor and Conventional 
PET-CT Metabolic Parameters

A training set of patients and a test set of patients were sepa-
rated. Adasyn algorithm was used to over-sample the training 
data so that the ratio of surviving patients and dead patients 
was 1:1, and the test data was the original data. Preliminary 

model construction included 6 clinical characteristics (gender, 
age, T stage, N stage, AJCC stage, pathological type) and 8 
conventional PET-CT metabolic parameters (SUVmax-P, 
SUVpeak-P, MTV-P, TLG-P, SUVmax-N, SUVpeak-N, 
VMTV N, TLG-N). Figure 1A shows the coefficient estimates 
for various hyperparameters alpha in the training queue. With 
C-index as the evaluation standard, the optimal hyperparame-
ter alpha was selected after 5 times of cross verification, as 
shown in Figure 1B. The orange line segment was the hyperpa-
rameter corresponding to the optimal consistency score, and 
the Lasso coefficient corresponding to the selected variable was 
as shown in Figure 2. Figure 3 shows the estimated results for 
the horizontal risk coefficients for each parameter, and Table 1 
shows the coefficients and P values for each parameter. Cox 
regression fitting was performed again for the selected varia-
bles. Variables were removed from the model if P > .1, and 
multivariate Cox analysis was used to identify the significant 
prognostic model parameters and standardized coefficients.

Model Based on Deep Learning Network

Patients were enrolled and randomly assigned to test, valida-
tion, and training groups. CACA-UOCM takes CT clip-out 
according to the ROI area as the input. First, input the down-
sample layer in the network for 2 consecutive 3D convolutions 
and normalized activation, and then enter the convolution layer 
for maximum pooling and repeat the operation of the down-
sample layer. After the 3D coordinate attention is input by the 
autoencoder, the size of the features in the input directions of 
the other 2 dimensions is first 1 by the 3 average attention 
autoencoders, and its size remains unchanged. Then the out-
puts of the 3 directions of X, Y, and Z are concatenated and 
entered into the 1D convolutional layer. It is divided into dis-
tinct features in 3 directions for convolution and activation 
after the activation function. The 3D coordinate attention 
encoder and output features from the original input are multi-
plied by the output features to complete the process. The data 
output from the encoder is fed into a decoder where the feature 
graph is up-sampled using 2×2×2 trilinear interpolation to 
match the size of the previous block. With the addition of the 

Figure 1. In the training cohort, given different hyperparameter alpha, the coefficient estimates are shown in A. With C index as the evaluation standard, 

the optimal hyperparameter alpha is selected after 5 times of cross-validation, as shown in B.

Figure 2. The orange line segment was the hyperparameter 

corresponding to the optimal consistency score and the Lasso coefficient 

corresponding to the selected variable.
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coordinate attention mechanism, the decoder is down-sampled 
using convolution, just like the down-sampling layer. The final 
output of the decoder is a reconstructed image of the same size 
as the input image. Extract the data output from the encoder, 
perform the adaptive average pooling operation, and aggregate 
the input information into the 1-dimensional feature vector 
marked as the intermediate feature as the input of the survival 
prediction task (the network structure and flow chart are shown 
in Figure 4).

Statistical Analysis

OS is defined as the time between patient’s pathological diag-
nosis and the patient’s death from any cause. Kaplan–Meier 
was used for the statistical description of survival data, and dif-
ferent groups were plotted separately, and a log-rank nonpara-
metric test was performed to compare whether survival curves 
of different groups were the same. Cox proportional risk regres-
sion model was used to estimate survival function, establish a 
direct relationship model between influencing factors and sur-
vival time, and calculate the risk ratio of influencing factors. 
The degree of conformity between model prediction results 
and actual observation results is measured using the C index, 
which assesses the accuracy of the model prediction. Built on 
the Torchtuples package used to train the PyTorch model. The 
optimizer uses Adam + Warm Restart, and batchSize is 32.

Missing values were first filled in during the preprocessing 
of the data, followed by the mean value filling in for continuous 
variables, the mode filling in for classified variables, and the 
classified variables being set as dummy variables. After remov-
ing outliers, the mean values of normalized continuous varia-
bles were divided by their variance. Variables that had 
correlation coefficients of more than 0.9 were eliminated after 
calculating the correlation coefficients between them. The 
results use averages and ranges to represent quantitative varia-
bles, while numbers are used to classify the results. Python is 
used to implement the model’s predictive values, and code is 
used to calculate the conformance index. The critical level of 
5% considered the results to be statistically significant (P < .05).

Results
Patient characteristic

In the study, patients comprised 124 males (71.7%) and 49 
females (28.3%); 37 patients were ⩾60 years old, and 136 
patients were <60 years old. The median follow-up time was 
31.4 months (range 0.5-115.2 months). A total of 18 deaths 
(10.4%) occurred in the follow-up period. The mean OS was 
38.8 months (95% CI: 35.0, 42.9; Figure 5). Table 2 lists the 
patient’s characteristics. The mean value of SUV max-P was 
14.18 cm3 (2.01, 48.14), and SUVmax-N was 15.82 cm3 (1.65, 
94.51). The patient’s baseline characteristics and PET-CT tra-
ditional metabolic parameters of the primary site and cervical 
lymph node range are summarized in Tables 2 and 3.

Prediction of OS using models based on clinical 
factors and conventional 18F-FDG PET-CT 
metabolic parameters

One hundred and seventy-three patients with standard accord-
ing to the proportion of 4:1 was divided into a training set (138 
people) and a test set,20 in the training set, a total of 125 patients 
survived, with 13 cases of death.

The significant parameters retained after re-fitting in COX 
analysis are shown in Figure 6. The coefficients of SUVpeak-P, 
T-3, Staging-1, age, MTV-P, N-1, Staging-2, and pathology 
were −0.44, 1.04, −1.91, −1.15, 0.48, 0.91, −2.11, and −0.78, 
respectively, with P ⩽ .05 (Staging -1 represents stage II and 
staging-2 represents stage III). Table 4 shows the specific 

Figure 3. The estimation results of the level risk coefficient of traditional 

PET-CT metabolic parameters.

Table 1. Coefficient estimates.

COvARIATE COEFFICIENT P vALUE COvARIATE COEFFICIENT P vALUE

SUvpeak-p −0.44 .01 MTv-p 0.48 <.005

T_3 1.04 <.005 N_1 0.91 <.005

Staging_1 −1.91 <.005 Staging_2 −2.11 <.005

Age −1.15 <.005 Pathological −0.78 .02

The value and P value of risk coefficient of each parameter level are shown in Table 3.
Abbreviations: Staging_1 = Clinical stage II, Staging_2 = Clinical stage III.
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values. The C index of the test is 0.42. In addition, the mean 
risk coefficient predicted by the training cohort model (0.5) 
was divided into a survival group (low-risk group) and a death 

group (high-risk group). Death (high risk, risk score > 0.5) and 
survival (low risk, risk score ⩽ 0.5) were represented by the 
above and below means, respectively. Kaplan–Meier curves 

Figure 4. The network structure and flow chart.

Figure 5. Function curve of overall survival.
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showed no statistical difference between high-risk and low-
risk groups (Figure 7A, P = .098). The survival model based on 
clinical factors and conventional 18F-FDG PET-CT meta-
bolic parameters has no significant clinical value in predicting 
the survival status of NPC patients.

Prediction of OS using models based on deep 
learning network model

A total of 173 patients with cervical lymph node metastasis were 
enrolled and randomly divided into 35 test sets, 35 validation 
sets, and 103 training sets. CACA-UOCM takes CT clip-out 
according to the ROI area as the input.

Based on CACA-UOCM, we changed the input from 
1-channel 3D CT image to 3-channel 3D input, with each 
channel being CT, PET, and graphing Mask respectively. The 
final output of the decoder was a 3-channel reconstructed 
image consistent with the number of input channels so that the 
3D coordinate attention convolution encoder could adapt 
multi-mode image data. In OS, the C index of training cohort 
(n = 103) was 0.779 (0.669, 0.859), 0.819 (0.425, 0.978), and 
0.774 (0.550, 0.956). The CACA-UOCM network structure 
in Table 5 has obtained the test queue (n = 35) and verification 
queue (n = 35) respectively. Additionally, based on the mean 
value of the risk coefficient predicted by the model, the test 
cohort and training cohort was split into high-risk and low-
risk groups (0.5). The mean value of the high-risk group was 
greater than (risk score > 0.5), and the mean value of the low-
risk group was less than (risk score ⩽ 0.5). The log-rank test 
yielded p values of 0.0041 and 0.0024 (P < .05), respectively. It 
can be seen that the difference in survival risk between the 
high-risk and low-risk groups of NPC patients is statistically 
significant (Figure 7B and C).

Table 2. Patient characteristics.

CLASSIFICATION NUMBER OF PATIENTS (%)

N 173

Age  

 ⩾60 years 37 (21.4)

 <60 years 136 (78.6)

Gender  

 Male 124 (71.7)

 Female 49 (28.3)

Clinical T stage  

 T1 50 (28.9)

 T2 57 (32.9)

 T3 51 (29.5)

 T4 15 (8.7)

Clinical N stage  

 N1 61 (35.3)

 N2 88 (50.9)

 N3 24 (13.9)

Clinical stage  

 II 61 (35.3)

 III 97 (56.1)

 Iv 37 (21.4)

Pathologic types  

 Nonkeratinizing carcinoma 148 (85.5)

 Keratinizing carcinoma 2 (1.2)

 Unknown 23 (13.3)

Patient cohort after follow-up  

 Alive 155 (89.6)

 Dead 18 (10.4)

Table 3. Characteristics of metabolic parameters in the primary 
tumors and cervical lymph nodes (Means ± SD).

METABOLIC PARAMETERS MEAN ± SD

SUvmax-p 6.25 ± 22.11

SUvpeak-p 10.21 ± 15.82

MTv-p (cm3) 2.56 ± 18.54

TLG-p (g) 3.03 ± 187.31

SUvmax-n 2.08 ± 29.56

SUvpeak-n 1.90 ± 20.58

MTv-n (cm3) 0.81 ± 15.87

TLG-n (g) 17.96 ± 132.96

Figure 6. The important parameters retained after re-fitting in COX 

analysis.
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Discussion
Instead of using the image segmentation method, we used 
GTV reconstruction to train our model, which retains the orig-
inal high-quality intensity values and facilitates better image 
information acquisition.

Accurate prediction of prognosis is key to risk stratification 
and management of NPC patients. To develop and validate the 
prognostic value of deep learning network structure for NPC, 
we carried out this study. Our results show that the CACA-
UOCM network structure has better predictive value than the 
current TNM staging system, traditional 18F-FDG PET-CT 
metabolic parameters, and age. The study outcomes suggest 
that it may someday serve as a novel and practical tool for the 
diagnosis and treatment of NPC.

Medical images can be used to characterize tumor heteroge-
neity, characterize a large amount of noninvasive information, 
and assess the prognosis of cancer patients.21-23 In particular, 
the field of “radiomics,” which extracts texture features from 
medical images, has been widely used in the prognosis assess-
ment of cancer patients.22,24-30 However, due to the lack of uni-
fied image acquisition and imaging algorithm standards in 
medical imaging equipment, features based on gray values such 
as histogram and texture analysis are affected. At the same 
time, the premise of feature extraction is the accurate delinea-
tion of the target volume. For tumors with fuzzy boundaries, 
subjective influence is greater, which reduces the stability of 
features based on size, shape, and boundary.25 In-depth research 
and analysis-based artificial intelligence are currently being 

Table 4. Coefficient estimates.

COvARIATE COEFFICIENT P vALUE COvARIATE COEFFICIENT P vALUE

SUvmax-p −0.34 .49 SUvpeak-p 0.87 .03

MTv-p 0.57 <.005 MTv-N 0.16 .25

T_3 1.10 <.005 N_1 0.81 .05

N_2 −0.20 .59 Staging_1 −1.68 <.005

Staging_2 −1.97 <.005 Sex −0.11 .69

Age −1.15 <.005 Pathological −0.87 .01

The selected variables were fitted by Cox regression again. If P > .1, the variables were deleted from the model, and multivariate Cox analysis was used to determine the 
significant parameters and standardized coefficients of the prognostic model. The significant coefficients and P values retained after re-fitting in COX analysis are shown 
in Table 3.
Abbreviations: Staging_1 = Clinical stage II, Staging_2 = Clinical stage III.

Figure 7. The Kaplan–Meier curves of the high-low risk group grouped by clinical model were not statistically significant (A, P = .098). Kaplan–Meier 

curves of the test cohort and validation cohort grouped by the deep network model showed statistical significance (B, P = .0041; C, P = .0024).

Table 5. Five-fold cross-validation performance prediction model.

C-INDEX ONE TWO THREE FOUR FIvE MEAN

Training 0.859 0.669 0.824 0.694 0.851 0.779

validation 0.550 0.757 0.739 0.956 0.870 0.774

Test 0.913 0.913 0.978 0.870 0.425 0.819
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actively investigated as a prognostic tool in tumor radiotherapy 
to predict clinical outcomes.7,15,20,31-37

The survival of esophageal cancer has been successfully pre-
dicted using this network.15 First, CACA is built upon an 
autoencoder structure with 3D coordinate attention layers, 
capturing deep and potential information from medical images. 
The advantages of down-sampling and up-sampling make our 
model focus on the target region and improve its expressive-
ness. Second, a joint optimization Cox model based on uncer-
tainty was designed, which carried out the joint optimization 
survival prediction task for CACA. Cox proportional hazard 
regression will oversee the task of predicting survival to model 
the interaction between patient characteristics and clinical out-
comes and to predict a patient’s credible hazard ratio. In 
UOCM, we design a specific loss function based on the relative 
weight of uncertainty in the data to improve the performance 
of the survival prediction network structure. Experimental 
results show that the consistency index of this method is high, 
and the network structure is conducive to the construction of a 
model to predict the survival of NPC patients. In addition, the 
test set data were divided into a death group (high-risk group) 
and a survival group (low-risk group) according to the mean 
risk coefficient predicted by the model. The P values of the 
survival curves of the test cohort and training cohort were all 
less than .05. It can be seen that the CACA-UOCM network 
structure is conducive to the classification of NPC patients into 
high-risk and low-risk groups and the formulation of treat-
ment plans.

We found that the prognostic factors of age, stage, patho-
logical type, SUV peak-P, and MTV-P were significant, 
whereas the traditional 18F-FDG PET-CT metabolic param-
eters of cervical metastatic lymph nodes were not significant 
for predicting the survival of NPC patients. Ab Hamid Siti-
Azrin et al38 found that the vital factors that changed survival 
rate and time were age (P = .041) and stage (P = .002), which 
was consistent with our research results. However, compared 
with SUV peak, SUVmax, TLG, and MTV survival prediction 
are more valuable in patients with NPC.39 Our study also con-
firmed the important value of MTV-P (P < .005) in the sur-
vival of NPC patients. Huang Yecai et al40 suggested that 
SUVmax, MTV, and TLG (SUV fixed value 2.5) before pri-
mary tumor treatment may be independent factors affecting 
the prognosis of patients with NPC. Metastatic lymph nodes’ 
SUVmax, MTV, and TLG did not change significantly. This is 
consistent with our conclusion that the metabolic parameters 
of traditional 18F-FDG PET-CT cervical metastatic lymph 
nodes are not significant for predicting survival in patients with 
NPC. Our study suggests that clinical data and routine 18F-
FDG PET-CT metabolic parameters alone are insufficient to 
predict survival model conformance indicators in patients with 
NPC. Models that can predict survival are still limited. 
Recently, Zhao et al41 studied 420 patients with rNPC who 

underwent PET/CT imaging and followed up overall survival 
(OS). They constructed multi-modality deep learning signa-
tures from PET and CT images with a light-weighted deep 
convolutional neural network EfficienetNet-lite0 and survival 
loss DeepSurvLoss. It is concluded that PET-CT-based deep 
learning features show satisfactory prognostic performance in 
rNPC patients. Therefore, the CACA-UOCM network struc-
ture established has more predictive value than the clinical data 
model for survival prediction of patients with NPC.

Our study has limitations. First, it was a retrospective study 
with small sample size, requiring prospective, multicenter vali-
dation. Second, data from 2 different hospitals as well as data 
from various scanners at various facilities may differ. Third, we 
only used PET-CT before treatment for imaging. In the future, 
OS predictions can be further updated by combining treatment 
and posttreatment information.

Conclusion
Based on the above studies, we established 2 prognostic sur-
vival models, one based on clinical factor and conventional 18F-
FDG PET-CT metabolic parameters model, and the other 
based on deep learning network structure model. The C-index 
of clinical combined with traditional 18F-FDG PET-CT met-
abolic parameters was 0.42, and the C-index of the deep net-
work model training group was 0.779, demonstrating that the 
structure of the deep learning network based on 18F-FDG 
PET-CT is a reliable and powerful prognostic tool, and can be 
used as an indicator to guide the personalized treatment of 
NPC.
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