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Patients with inflammatory bowel diseases are at increased risk
for colorectal cancer, but the molecular mechanisms linking in-
flammation and cancer are not well defined. We earlier showed
that carboxylated N-glycans expressed on receptor for advanced
glycation end products (RAGE) and other glycoproteins mediate
colitis through activation of nuclear factor kappa B (NF-kB).
Because NF-kB signaling plays a critical role in the molecular
pathogenesis of colitis-associated cancer (CAC), we reasoned that
carboxylated glycans, RAGE and its ligands might promote CAC.
Carboxylated glycans are expressed on a subpopulation of RAGE
on colon cancer cells and mediate S100A8/A9 binding to RAGE.
Colon tumor cells express binding sites for S100A8/A9 and bind-
ing leads to activation of NF-kB and tumor cell proliferation.
Binding, downstream signaling and tumor cell proliferation are
blocked by mAbGB3.1, an anti-carboxylate glycan antibody, and
by anti-RAGE. In human colon tumor tissues and in a mouse
model of CAC, we found that myeloid progenitors expressing
S100A8 and S100A9 infiltrate regions of dysplasia and adenoma.
mAbGB3.1 administration markedly reduces chronic inflamma-
tion and tumorigenesis in the mouse model of CAC and RAGE-
deficient mice are resistant to the onset of CAC. These findings
show that RAGE, carboxylated glycans and S100A8/A9 play es-
sential roles in tumor–stromal interactions, leading to inflammation-
associated colon carcinogenesis.

Introduction

Colorectal cancer remains one of the most diagnosed and leading
causes of cancer-related deaths worldwide. Patients with inflamma-
tory bowel disease are at a higher risk for developing colorectal cancer

than the general population. Several lines of evidence point to chronic
inflammation of the colon as an important factor in the progression to
colorectal cancer in inflammatory bowel disease (reviewed in ref. 1).
However, the molecular basis of the association between inflamma-
tion and cancer remains poorly understood. Prolonged proinflamma-
tory signaling and defective anti-inflammatory responses lead to
a state of persistent inflammation. Inflammatory cells, particularly
macrophages, produce soluble factors including cytokines, growth
and angiogenic factors and matrix metalloproteinases, creating a mi-
croenvironment that supports proliferation, invasion and metastasis of
transformed cells (2,3). Specific inactivation of the classical nuclear
factor kappa B (NF-jB) activation pathway in colonic epithelial cells
and macrophages reduces the formation of inflammation-associated
colonic tumors in mice, suggesting that sustained NF-jB activation in
either or both of these cells may provide a critical link between in-
flammation and cancer (4,5). Identifying molecular interactions lead-
ing to activation of NF-jB in colon tumors could therefore provide
further understanding of tumor–stromal cell cross talk and the mech-
anisms underlying inflammation-based colon carcinogenesis.

The receptor for advanced glycation end products (RAGE) is a mul-
tiligand signaling receptor of the immunoglobulin superfamily impli-
cated in inflammation and cancer among other pathologies (6–8).
RAGE interaction with proinflammatory mediators such as S100 pro-
teins and high-mobility group box 1 (HMGB1) leads to intracellular
activation of NF-jB. RAGE promoter has NF-jB-binding sites (9),
and pathological accumulation of RAGE ligands enhances expression
of the receptor thus ensuing a cycle of sustained NF-jB activation and
prolonged cellular response (10). RAGE binds multiple structurally
diverse ligands and is considered a pattern recognition receptor, but
the structural basis for RAGE binding to multiple ligands is not well
understood. We identified a group of anionic N-glycans that contain
an immunogenic carboxylate group unrelated to sialic or uronic acids
(11,12). These carboxylated glycans appear to contain glutamic or
aspartic acids probably linked to glucosamine of the sugar chain
(13). In normal tissues, carboxylated glycans show restricted expres-
sion on cells of myeloid lineage, especially macrophages and den-
dritic cells, and on endothelial cells and are recognized by HMGB1,
S100A8/S100A9, S100A12 and annexin-1 (11,14,15). RAGE is mod-
ified by carboxylated glycans and the glycans mediate binding of
HMGB1 and S100A12 to RAGE (14) and (G.Srikrishna and
H.H.Freeze, unpublished results). In a mouse model of T cell-mediated
colitis, we found upregulation of expression of RAGE and carbox-
ylated glycan-binding lectins S100A8/A9 in secondary lymphoid
organs and in colonic lamina propria early in inflammation. In this
model, mAbGB3.1, an anti-carboxylated glycan antibody, blocked
onset of colitis and reversed colitis in the early stage of disease by
blocking NF-jB signaling (16).

S100A8/A9 proteins, members of the EF-hand calcium-binding
proteins secreted by neutrophils and activated monocytes (17), func-
tion as heterodimers and induce activation of NF-jB (18–20). They
are elevated in numerous conditions associated with inflammation,
such as rheumatoid arthritis, cystic fibrosis and in inflammatory bowel
disease (reviewed in refs 21–23). In addition, strong upregulation of
these proteins has also been found in many tumors (reviewed in ref.
21). Elevated expression of S100A8/A9 both in inflammation and in
cancer suggests that they may play important roles in inflammation-
induced cancers. RAGE and S100A8/A9 are coexpressed in tumors
(18,24,25) and are linked to downstream signaling in tumor cells and
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endothelial cells (18,25,26). RAGE binds many S100 proteins, but
whether it directly binds S100A8/A9 remains unanswered. More re-
cent studies provide evidence that such interactions are likely (25,27).

In the present study, we tested the hypothesis that carboxylated
glycans, RAGE and carboxylated glycan-binding proteins S100A8/
A9 exert tumorigenic functions in the setting of inflammation. A re-
cent report, published when this manuscript was in preparation, illus-
trates the importance of RAGE signaling in inflammation-mediated
skin carcinogenesis (28). We extend these findings and show that
RAGE signaling also promotes the development of colitis-associated
cancer (CAC). In addition, we demonstrate that carboxylated glycans
mediate S100A8/A9 and RAGE binding and that these glycans pro-
mote receptor-mediated signaling, leading to the pathogenesis of
CAC.

Materials and methods

Human tissues

Paired tumor and normal adjacent colon tissue samples (n 5 9) snap frozen in
liquid nitrogen after surgery were provided by the Cooperative Human Tissue
Network (National Cancer Institute). Samples were from both male and female
patients in the age range from 52 to 80 years. Pathology reports were provided
by Cooperative Human Tissue Network for each tissue sample and included
well-differentiated, moderately differentiated and poorly differentiated adeno-
carcinomas (American Joint Committee on Cancer staging: two cases of stage
I, one case of stage IIA, one case of stage IIB, one case of stage IIIB, three
cases of stage IIIC and one case of stage IV). Five micrometer cryosections
were made and stored frozen until analysis.

Mice

RAGE�/� mice were generated as described (29). They were backcrossed to
C57BL/6 mice for .10 generations. Six- to 8-week-old RAGE�/� mice,
RAGEþ/þ littermates or age-matched wild-type mice were used for experi-
ments. All animal protocols were approved by the Burnham Institute for Med-
ical Research Institutional Animal Care and Use Committee and were in
compliance with National Institutes of Health policies.

Tumor induction

CAC was induced in mice using azoxymethane (AOM) and single cycle of
dextran sulfate sodium (DSS) as described (30). Animals were constantly
monitored for clinical signs of illness and were sacrificed at the end of 2, 6,
12 or 20 weeks after DSS. Blood samples were collected by retro-orbital
bleeding prior to induction of disease and at time points as above. In the
preventive protocol of antibody treatment, mAbGB3.1 (10 lg/g) was admin-
istered intravenously in 100 ll phosphate-buffered saline (PBS) once a week,
until 6 or 12 weeks of disease initiation. For every time point, separate groups
of control mice were either left untreated or administered an equivalent amount
of a non-specific isotype control antibody. In the therapeutic protocol, mice
received the antibodies weekly starting 6 weeks after initiation of disease and
killed at 12 weeks. Separate groups of RAGE�/� mice or age-matched control
mice were subjected to the same AOM–DSS protocol and sacrificed at 2, 6 or
20 weeks after disease initiation. At each time point, colons were excised, fixed
as ‘Swiss-rolls’ in 4% buffered formalin and embedded in paraffin or fixed in
optimal cutting temperature. Stepwise sections were cut and stained with he-
matoxylin and eosin. Colonic inflammation, dysplasia and neoplasms were
graded based on described criteria (30) by a pathologist blinded to the con-
ditions. Immunochemical analysis was done as described below.

Immunochemical analysis

Immunochemical analysis of frozen human tissue sections was done as de-
scribed earlier (11) except for the following modifications: before fixing in
formalin, sections were immersed in 0.03% H2O2 for 30 min at room temper-
ature, blocked with 1% bovine serum albumin (BSA)/PBS for 20 min followed
by 0.1% avidin and 0.01% biotin in succession for 15 min at room temperature
in a humid chamber with PBS washes in between. The following antibodies
were used for staining: mAbGB3.1, anti-human RAGE (11F2, kind gift of
Novartis Foundation, Tokyo, Japan) or anti-human S100A9 (Novus Biologi-
cals, Littleton, CO). After counterstaining, the slides were scanned into Aperio
Imaging system and were also observed under a bright-field microscope and
images acquired as given below.

Fixed mouse colon sections (6 lm) were deparafinized and rehydrated in
PBS; endogenous peroxidases were neutralized with 1% hydrogen peroxide
and blocked with avidin/biotin (Vector Laboratories, Burlingame, CA). Sam-
ples were then incubated with anti-mouse S100A8 or anti-mouse S100A9 (goat
polyclonal, R&D Systems, Minneapolis, MN), followed by biotin-conjugated

secondary antibody. Binding was detected using streptavidin–peroxidase com-
plex (Vector Laboratories) and diaminobenzidine (DAKO, Carpinteria, CA).
Sections were then counterstained with hematoxylin. To characterize leukocyte
populations, sections were stained with anti-mouse CD11b, anti-mouse Gr-1
(BDPharmingen, San Diego, CA) or both followed by Alexa 594 or Alexa 488-
conjugated secondary antibodies (Invitrogen, Carlsbad, CA) and cover slipped
with VectaShield DAPI Mounting Medium (Vector Laboratories). Slides were
examined using an Inverted TE300 Nikon Wide Field and Fluorescence Mi-
croscope and images were acquired with a CCD SPOT RT Camera (Diagnostic
Instruments, Sterling Heights, MI) using SPOT advanced software.

Cells

HT-29, Caco-2 and CT-26 tumor cell lines were obtained from American Type
Culture Collection (Manassas, VA) and maintained in Dulbecco’s modified
Eagle’s medium containing glutamine, penicillin and streptomycin and 10%
fetal bovine serum. Cells were harvested using PBS with 5 mM ethylenedia-
minetetraacetic acid. Cell membranes were generated by homogenization in
PBS with protease inhibitors (Roche Diagnostics, Indianapolis, IN). Nuclei
and cell debris were removed by centrifugation at 300g for 10 min at 4�C.
Resulting supernatants were ultracentrifuged at 110 000g for 30 min at 4�C,
pellets were resuspended in 200 ll of PBS, protease inhibitors and 1% Nonidet
P-40 and membrane proteins were extracted by slow stirring overnight at 4�C.
Proteins were subjected to deglycosylation using peptide N-glycanase F
(PNGase F). For mAbGB3.1 immunoprecipitation, membrane proteins were
incubated with mAbGB3.1-coupled Affigel beads in PBS. After overnight
incubation at 4�C, the individual pellets were washed to remove unbound
label, and bound proteins were eluted with 0.2% sodium dodecyl sulfate/1%
2-mercaptoethanol.

Purification of bovine RAGE and mAbGB3.1 enrichment

Fresh frozen bovine lung was homogenized in 20 mM Tris–HCl, pH 7.4,
containing protease inhibitors, 10 mM dithiothreitol, 1 mM CaCl2 and 1%
Nonidet P-40. The suspension was centrifuged at 650g for 15 min and then
at 10 000g for 30 min and the supernatant was enriched for RAGE using
sequential ammonium sulfate precipitation (33% followed by 50%). Precipi-
tate obtained from 50% ammonium sulfate was collected by centrifugation at
10 000g for 30 min, dissolved in PBS with 1% Nonidet P-40 and dialyzed
extensively against the same buffer to remove ammonium sulfate. RAGE was
further purified by first preclearing over rat IgG-immobilized Protein G Se-
pharose followed by affinity purification over rat monoclonal anti-RAGE
(11F2)-immobilized Protein G Sepharose. Bound RAGE was eluted with 0.1
M triethanolamine, pH 11.5, and neutralized using 1 M Tris–HCl, pH 7.5.
Contaminant bovine IgG was removed by passing through Protein G Sephar-
ose. Homogeneity was assessed on sodium dodecyl sulfate–polyacrylamide gel
electrophoresis gels as described below. For mAbGB3.1 enrichment, the puri-
fied protein was incubated with mAbGB3.1-immobilized Affigel-10 beads
twice, and bound protein was released using base as above.

Electrophoresis and western blots

Twenty micrograms of membrane proteins from tumor cells before and after
deglycosylation or membrane proteins immunoprecipitated by mAbGB3.1
from 1 mg starting material were electrophoresed on denaturing and reduc-
ing 12% polyacrylamide gels and transferred to nitrocellulose membranes.
The blots were blocked with 10% dry skimmed milk, washed and incubated
with a rabbit polyclonal anti-RAGE followed by alkaline phosphatase-
conjugated secondary antibody. Staining was visualized using BCIP/NBT
(Sigma, St Louis, MO). One microgram purified RAGE or 5 lg purified
S100A8/A9 was analyzed on 12 or 17% sodium dodecyl sulfate–polyacrylamide
gel electrophoresis gels, respectively, and stained by Coomassie brilliant
blue. Purified RAGE was examined by western blot using anti-RAGE
before and after EndoH and PNGase F deglycosylation and before and
after mAbGB3.1 immunoprecipitation.

Ligand binding assay

S100A8/A9 proteins were purified as described earlier (31) and purity assessed
by gels. The complex was added at increasing concentrations to the wells
of a 96-well enzyme-linked immunosorbent assay plate containing immobi-
lized total bovine RAGE, RAGE deglycosylated under non-denaturing con-
ditions using PNGase F or mAbGB3.1-enriched RAGE. Incubations were
done in Hanks’ balanced salt solution (HBSS) containing 1 mM CaCl2 and
1% BSA overnight at 4�C. Bound S100A8/A9 was quantified using goat anti-
S100A8, followed by anti-rabbit IgG alkaline phosphatase conjugate and
p-nitrophenyl phosphate substrate, against standard S100A8/A9. RAGE bound
to the plates was quantified independently using anti-RAGE. Non-specific
binding was determined by incubation of S100A8/A9 in wells blocked with
BSA alone or in wells coated with mock immunoprecipitates of mAbGB3.1
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and blocked with BSA. Non-linear regression analysis was done using
GraphPad Prism.

For radiolabeled protein-binding assay, purified mouse S100A8/A9 hetero-
dimeric complex was labeled with Na125I using Iodobeads (Pierce, Rockford,
IL), as per the manufacturer’s protocol. CT-26 colon carcinoma cells were
harvested using PBS containing 10 mM ethylenediaminetetraacetic acid and
were stripped of surface-bound endogenous S100A8/A9 by brief incubation in
50 mM glycine and 100 mM NaCl, pH 3.0, for 3 min at 4�C followed by
neutralization with cold HBSS. Cells were incubated with increasing concen-
trations of radiolabeled S100A8/A9 for 1 h at 4�C in HBSS. They were then
washed twice with 1 ml of HBSS, solubilized in 0.2 ml of 0.5 M NaOH and cell-
bound radioactivity was counted. Non-specific binding was determined by
binding in the presence of 50-fold molar excess of cold ligand. Where indi-
cated, binding was carried out in the presence of 10-fold molar excess of
mAbGB3.1, isotype control antibody, anti-RAGE or anti-S100A8. Saturation
binding kinetic analyses were performed using GraphPad Prism. Values were
normalized for number of cells.

NF-jB reporter assay

CT-26 cells were cultured overnight in 24-well plates (2 � 105 cells per well).
Cells were transiently transfected with 1 lg of plasmid DNA comprising 0.1 lg
of pNF-jB-Luc, containing a luciferase complementary DNA under a regular
TATA box and an enhancer element with five NF-jB-binding sites (Stratagene,
La Jolla, CA), 0.1 lg of pRL-TK construct [containing Renilla reniformis lucif-
erase gene under the thymidine kinase promoter (Promega, Madison, WI)] and
inert filler plasmid, using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions. Six hours after transfection, cells were placed in
low-serum medium for 18 h and stimulated with endotoxin-free S100A8/A9 (0.5
lg/ml, �20 nM) in the presence or absence of inhibitors. Twenty-four hours
after activation, cells were harvested and enzymes were measured in lysates. The
luciferase activities were determined using the Dual-Luciferase Reporter Assay
System (Promega) according to the manufacturer’s protocol. Transfected unac-
tivated cells accounted for endogenous activity.

Cell proliferation assay

CT-26 cells were plated in 96-well culture plates in 100 ll of 1% serum me-
dium and grown with and without mouse S100A8/A9 in the presence or
absence of mAbGB3.1, anti-RAGE or control antibody. Proliferation was
measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium) (MTS) assay (CellTiter96 Aqueous One Cell
Proliferation, Promega) as per the manufacturer’s instructions.

Serum cytokines

Serum tumor necrosis factor alpha (TNFa) and interleukin (IL)-6 were mea-
sured using ELISA Kits (Biosource, Invitrogen, Carlsbad, CA) as per the
manufacturer’s protocol.

Statistical analysis

Statistical comparisons were performed using one-way analysis of variance or
Student’s t-test. Differences were considered statistically significant when
P , 0.05.

Results and discussion

Expression of carboxylated glycans, RAGE and S100A8/A9 in
colorectal tumors

We earlier showed that carboxylated glycans are expressed on en-
dothelial cells and macrophages in normal human colon and on in-
flammatory infiltrates in colon tissues from patients with colitis (16).
To determine whether carboxylated glycans, RAGE and S100A8/A9
are also expressed in colon tumors, we performed immunohisto-
chemistry of human colorectal tumor tissues. Carboxylated glycans,
as seen by staining with mAbGB3.1, and RAGE were expressed on
endothelial cells and macrophages in almost all the colon tumor
tissues and paired adjacent normal tissues (Figure 1). Staining of
tumor vasculature by mAbGB3.1 was more intense in a few tumor
samples. In addition, in one moderately differentiated colon carci-
noma (stage IIIB) there was staining of tumor epithelial cells by both
mAbGB3.1 and anti-RAGE, whereas adjacent normal epithelial
cells were negative. Few S100A9-positive macrophages were present
in normal colon. However, positive cells were found within tumor
stroma in all tumor tissues examined (Figure 1). Cells were also
positive for S100A8 (data not shown). Increased expression of RAGE
on colon tumor epithelial cells and of S100A8/A9 in tumor stroma has
also been reported earlier (32–34).

To examine whether RAGE expressed on tumor cells is modified
by carboxylated glycans, we analyzed membrane preparations from
cultured colon tumor cells. RAGE is expressed on mouse and human
colon tumor cells and is glycosylated as evident from a band shift
upon PNGase F deglycosylation (Figure 2A). Cell surface

Fig. 1. Expression of mAbGB3.1 glycans, RAGE and S100A9 in human colorectal tumors. Representative immunostained tumor sections and paired normal
adjacent tissue (NAT) for tumor 1 are shown. (tumor 1, stage IIIB; tumor 2, stage IIIC; arrowhead, macrophages; asterisk, endothelial cells; arrow, tumor
cells). Tumor cells are characterized by hyperchromatic nuclei (intense hematoxylin staining). Bar 5 100 lm for all images except for mAbGB3.1 staining of
tumor 2 that is enlarged to show staining of tumor vasculature and for the inset for tumor 1 to show distinct mAbGB3.1 staining of tumor cells and macrophages
(bar 5 50 lm).
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expression of RAGE and carboxylated glycans on tumor cells was
confirmed by flow cytometry (data not shown). Less than 2% of
RAGE from colon tumor cells was immunoprecipitated by
mAbGB3.1, suggesting that RAGE from tumor cells could be mod-
ified by carboxylated glycans (Figure 2A). Since yields of RAGE
from tumor cells were low, to further confirm whether only a sub-
population of RAGE molecules is modified by carboxylated glycans,
we purified RAGE to .98% homogeneity from bovine lung, a rich
source of the protein. Homogeneity was confirmed by Coomassie
and silver staining (Figure 2B). Treatment with EndoH and PNGase F
showed that both N-glycosylation sites on RAGE were occupied by
EndoH-sensitive glycan chains and by EndoH-resistant, PNGase F-
sensitive chains (Figure 2B). When purified RAGE was incubated
with mAbGB3.1, a majority of RAGE remained unbound, even after
two rounds of incubation with mAbGB3.1-immobilized beads. Only
5% of total RAGE bound to mAbGB3.1 and could be eluted by high
pH or by carboxylated glycopeptides (Figure 2B). This enriched frac-
tion of RAGE showed .10-fold increase in mAbGB3.1 reactivity
compared with total RAGE. Most of the binding was lost upon de-
glycosylation, suggesting that it was glycan dependent (supplemen-
tary Figure 1 is available at Carcinogenesis Online). We also
expressed soluble human RAGE in HeLa cells and found that 1–2%
of RAGE express carboxylated glycans (data not shown). These find-
ings confirmed that carboxylated glycans are expressed on a subpop-
ulation of RAGE molecules.

S100A8/A9 complex binds to a subpopulation of RAGE expressing
carboxylated glycans

RAGE binds many S100 family proteins including S100A12, S100A1,
S100B and S100P and the interactions lead to intracellular signaling
(35–37). However, direct binding of S100A8/A9 to RAGE has not
been demonstrated. We found that S100A8/A9 complex binds to car-
boxylated N-glycans (15). Recent studies have used coimmunopreci-
pitation, RAGE knockdown and protease protection assays to provide
more direct evidence for interaction of S100A8/A9 to RAGE (25,27).
These studies suggest that S100A8/A9 may directly bind to RAGE on
the cell surface or that RAGE may be an integral part of an S100A8/
A9 binding complex. To determine if S100A8/A9 directly bound
RAGE and to examine the role of carboxylated glycans in binding,
we incubated increasing amounts of purified mouse S100A8/A9 (Fig-
ure 2C) with (i) immobilized total RAGE; (ii) RAGE deglycosylated
with PNGase F under non-denaturing conditions that removed both
N-glycans and (iii) mAbGB3.1-enriched RAGE. Purified total RAGE
binds S100A8/A9 with a Kd of �34.4 ± 13 nM and a Bmax (maxi-
mum binding sites) of 11.4 ± 2.2 mmol/mol RAGE [binding potential
(Bmax/Kd) of 0.36 ± 0.07]. Deglycosylation almost completely abol-
ished binding (Figure 2D). This shows that only a very small fraction
(�1%) of the RAGE molecules carry S100A8/A9-binding sites and
that N-glycans contribute significantly to binding. In support of this,
the subpopulation of RAGE enriched for carboxylated glycans by

Fig. 2. (A) Colon tumor cells express RAGE and mAbGB3.1 glycans. Cell membrane proteins from CT-26 cells (lanes 1, 4 and 7), HT-29 cells (lanes 2, 5 and 8)
and Caco-2 cells (lanes 3, 6 and 9) were examined for RAGE expression by western blot using anti-RAGE before deglycosylation (lanes 1–3, 20 lg protein per
lane) and after deglycosylation (lanes 4–6, 20 lg protein per lane) and after mAbGB3.1 immunoprecipitation (lanes 7–9, immunoprecipitated from 1 mg of
membrane proteins). (B) Purification of bovine lung RAGE and mAbGB3.1 enrichment. Left panel: protein stain by Coomassie brilliant blue of a representative
RAGE preparation from bovine lung shows .98% purity. Middle panel: western blot using anti-RAGE shows that purified RAGE carries EndoH-sensitive and
PNGase F-sensitive N-glycan chains. Right panel: western blot using anti-RAGE shows that mAbGB3.1 immunoprecipitates a minor subpopulation of RAGE. (C)
Purified mouse S100A8/A9. S100A8/A9 complex was purified as described before, and 5 lg protein analyzed on 17% gels and purity confirmed by Coomassie
brilliant blue. Arrow marks the position of covalently linked 26 kDa dimer of S100A8/A9. (D) S100A8/A9 complex binds purified RAGE. To determine saturation
kinetics of binding of mouse S100A8/A9 to purified RAGE, increasing amounts of S100A8/A9 were added to total RAGE, mAbGB3.1-enriched RAGE or RAGE
deglycosylated using PNGase F under non-denaturing conditions that removed both N-glycans. RAGE on plate was quantified using anti-RAGE. Bound S100A8/
A9 was quantified using anti-S100A8 against standard S100A8/A9. Data were fitted to non-linear regression analysis using GraphPad Prism. Each point is the
mean ± SD of two determinations.
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mAbGB3.1 showed higher affinity interaction with a Kd of 7.62 ±
1.83 nM and a Bmax of 402.1 ± 30.5 mmol/mol RAGE (Figure
2D). This is a 35-fold increase in the molar binding and .100-fold
increase in binding potential (Bmax/Kd of 55 ± 9.2), suggesting that
carboxylated glycans form critical binding sites for S100A8/A9 on
RAGE.

S100A8/A9 binds to colonic tumor cells in a carboxylated glycan-
dependent manner promoting intracellular activation of NF-jB and
cell proliferation

S100A8/A9 proteins are secreted in response to stimuli and have
extracellular effects. To examine if S100A8/A9-binding sites are pres-
ent on colon tumor cells, we performed a radioligand-binding assay
using 125I-labeled purified mouse S100A8/A9. CT-26 tumor cells
showed specific saturable binding sites with a Kd of 35.09 ± 7.45 nM
and a Bmax of 0.920 ± 0.077 pmol/million cells (Figure 3A).
125I S100A8/A9 binding was displaced by 50-fold molar excess of
cold ligand or 10-fold molar excess of anti-S100A8 (Figure 3B). To
examine if the binding involves interaction with glycans on RAGE, we
incubated cells with 125I S100A8/A9 in the presence of mAbGB3.1 or
anti-mouse RAGE. Binding was significantly reduced in the presence
of mAbGB3.1 and anti-RAGE showing that RAGE and carboxylated
glycans contribute to S100A8/A9 binding on tumor cells (Figure 3B).

Ligand binding to RAGE mediates downstream signaling events in
cells leading to NF-jB activation. We therefore studied S100A8/A9-
induced NF-jB activation in colon tumor cells using transient trans-

fection with a luciferase expression plasmid containing four tandem
repeats of NF-jB-binding site and R.reniformis luciferase expression
construct as an internal control. The transfected cells were treated
with endotoxin-free S100A8/A9. At low concentrations (0.5lg/ml,
�20 nM), S100A8/A9 stimulated NF-jB-dependent transcription of
luciferase within the cells. Preincubation with mAbGB3.1 or anti-
RAGE prior to stimulation decreased NF-jB expression (Figure 3C),
whereas an isotype control antibody had no or minimal effect (data
not shown).

Since NF-jB activation plays an important role in intestinal cell
survival and homeostasis (38), we next investigated whether S100A8/
A9 promote colon tumor cell proliferation. Cells were untreated or
treated with S100A8/A9 in low-serum medium in the presence or ab-
sence of inhibitors and cell proliferation was assayed using MTS
reagent. At lower concentrations (1 lg/ml, �40 nM), S100A8/A9
induced significant cell growth (Figure 3D). Cell proliferation, how-
ever, did not increase with increasing concentrations of S100A8/A9
and only moderately with increasing time, similar to the effects of
S100A8/A9 on human tumor cells (25). This suggests that S100A8/A9
may be rapidly internalized or degraded. mAbGB3.1 and anti-RAGE
reduced S100A8/A9-induced early cellular proliferation (Figure 3D).
Anti-RAGE also reduced cell proliferation in untreated cells, whereas
mAbGB3.1 had no effect, suggesting that RAGE is important for
tumor cell growth even in the absence of S100A8/A9, and S100A8/
A9-induced cell proliferation may depend on carboxylated glycans
expressed on RAGE and/or other proteins.

Fig. 3. (A) Binding of 125I S100A8/A9 to CT-26 cells. Cells were incubated with increasing concentrations of 125I S100A8/A9 for 1 h at 4�C followed by washing
and cell lysis, and cell-bound radioactivity was measured using a gamma counter. Saturation binding kinetic analysis was performed using GraphPad Prism. Values
represent mean ± SD of two determinations. (B) Inhibition of binding of 125I S100A8/A9 to CT-26 cells. Cells were incubated with 125I S100A8/A9 (20nM) in the
presence or absence of mAbGB3.1, anti-RAGE or anti-S100A8 (10-fold molar excess) or cold ligand (50-fold molar excess). Cell-bound radioactivity was
determined as above. Data represent mean ± SD of two determinations (�P � 0.05 and ��P � 0.01). (C) S100A8/A9 induces NF-jB-dependent transcription.
CT-26 cells were transiently transfected with plasmids containing firefly luciferase reporter gene under a promoter containing NF-jB-binding site and Renilla
luciferase construct as an internal control. Transfected cells were stimulated with S100A8/A9 in presence or absence of inhibitors. Cell lysates were assayed for
luciferase activity. Values are represented as ratio of firefly luciferase activity over Renilla luciferase (fold induction relative to unstimulated cells). Each value is
the mean ± SD of two determinations (�P � 0.05 and ��P � 0.01). (D) S100A8/A9 proteins stimulate colon cancer cell proliferation. CT-26 cells were incubated
with increasing concentrations of S100A8/A9 in the presence or absence of mAbGB3.1, control antibody or anti-RAGE. At low concentrations, S100A8/A9
stimulated cell proliferation that was blocked by mAbGB3.1 and anti-RAGE. S100A8/A9-induced growth was not dependent on time or concentration as seen
earlier with other tumor cells.
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Myeloid progenitor cells expressing S100A8/A9 infiltrate colon
tumors

To further understand the role of S100A8/A9, RAGE and carboxyl-
ated glycans in inflammation-induced tumorigenesis, we tested the
effects of anti-carboxylated glycan antibody administration in a mouse
model of CAC. Inflammation-induced colon carcinogenesis can be
modeled in mice by injection of the procarcinogen AOM followed
by a single or multiple exposures to DSS. DSS causes epithelial
damage and activates macrophages inducing an acute colonic inflam-
mation. This initial response progresses to chronic inflammation over
time when adaptive immune system responses are triggered. Animals
develop chronic inflammation, colonic dysplasia and adenoma within
12–20 weeks of combined administration of AOM and single or mul-
tiple cycles of DSS (4,39–41).

We induced CAC in mice using a single low dose of AOM followed
by a single week of treatment with DSS (30,39). The animals ex-
hibited weight loss and diarrhea during the acute phase that resolved
within 1–2 weeks after DSS treatment. Six weeks after DSS, there
were no clinical symptoms except for occasional soft stools. By 12–20
weeks, a few mice developed mild rectal prolapse and bloody stools.
Histologically, there was significant colonic inflammation 2 weeks
after DSS (Figure 4A, panel c, and Figure 5A). Colonic inflammation
was appreciable at 6 weeks even though it was less severe than at
2 weeks (Figure 4A, panel d, and Figure 5A). In addition, low-grade
dysplasia was evident at 6 weeks after initiation of disease, and by
12 weeks, all the mice developed high-grade dysplasias and adenomas
(two to three tumors per mouse, 100% penetrance, Figure 4A, panels
d–f). By 20 weeks, tumors were macroscopically visible (Figure 4A,
panel g). Serum levels of NF-jB-dependent gene products TNFa and

IL-6 were elevated 2 weeks after DSS and remained higher than
normal 6 weeks after DSS (Figure 5B).

We observed diffuse staining for S100A8 and S100A9 in the colons
2 weeks after initiation (supplementary Figure 2 is available at
Carcinogenesis Online). Expression of these proteins is restricted to
neutrophils and immature macrophages or monocytes in early stage
differentiation (42) and they are absent on mature macrophages (43). In
addition, by 12–20 weeks of disease initiation, we found infiltrating
cells positive for S100A8/A9 in all regions of dysplasia and adenoma
(Figure 4B, panel a), similar to infiltration seen in human colon tu-
mors (Figure 1), but they were absent in adjacent regions of no disease
activity from the same colons (Figure 4B, panel b). The cells positive
for S100A8/A9 were F4/80 negative, suggesting that they were not
resident macrophages (data not shown).

To further understand the phenotypic nature of S100A8/A9-positive
cells in tumors, we examined colons for CD11bþ (monocyte),
Gr1þ (neutrophil) and CD11bþ/Gr1þ (myeloid progenitor) cells.
We found a few CD11bþ cells in normal lamina propria, but Gr1þ

cells and double-positive cells were absent (data not shown). How-
ever, CD11bþ, Gr1þ single-positive and CD11bþ/Gr1þ double-
positive cells were present in larger numbers in regions of dysplasia
and tumors (Figure 4C). Immature myeloid progenitor cells are fre-
quently found in tumors in mice and in many cancer patients (44–46).
These cells identified phenotypically in mice as Gr1þCD11bþ cells
and known as myeloid-derived suppressor cells (MDSCs) induce pro-
found immune suppression against tumor antigens. MDSCs are also
found in inflammation-induced skin tumors of wild-type mice but not
in RAGE�/� tumors, suggesting that RAGE signaling may be re-
quired for recruitment MDSC (28). We found that MDSCs from mice

Fig. 4. (A) Representative hematoxylin and eosin-stained colon sections indicating progress of CAC in untreated wild-type mice subjected to the AOM–DSS
protocol. (a) Normal colon Swiss-roll �10 magnification. (b) Normal colon. (c) Colonic inflammation, 2 weeks after DSS. (d) Colonic inflammation, 6 weeks after
DSS. Arrow indicates early dysplasia in a region of inflammation. (e) High-grade dysplasia (flat polypoid) 12 weeks after DSS. (f) Adenoma 12 weeks after DSS.
(g) Adenoma 20 weeks after DSS. (B) (a) A representative tumor shows S100A9-positive infiltrating cells. Cells were also positive for S100A8 (data not shown).
(b) A region adjacent to the tumor from the same colon is negative for S100A8/A9-positive cells. (C) Two representative sections of tumors with infiltrating cells
stained for CD11b (myeloid) or Gr-1 (granulocyte). There was evidence for CD11bþ, Gr-1þ single-positive and CD11bþ/Gr-1þ double-positive cells within
tumors representing infiltrating myeloid progenitors. Magnification scale bar is indicated for each panel.
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with mammary tumors show upregulation of intracellular S100A8/A9
and secrete them in response to stimuli (51). It is therefore probably
that the S100A8/A9-positive cells in regions of colonic dysplasia and
adenoma are immature myeloid progenitor cells adding to the hetero-
geneity of leukocyte populations within the tumor microenvironment.

Administration of anti-carboxylated glycan antibody reduces chronic
inflammation and tumorigenesis

To investigate a functional role of the glycans in this model, we
treated separate groups of AOM–DSS mice with mAbGB3.1 or iso-

type control antibody. mAbGB3.1 did not block the initial DSS-
induced injury (2 weeks after DSS, Figure 5A), and treated mice did
not show any difference in weight loss, clinical signs of inflammation
or levels of proinflammatory cytokines in serum (Figure 5B), suggest-
ing that the glycans may not play a role in the initial innate immune
responses to DSS. However, administration of mAbGB3.1 reduced
inflammation at 6 weeks and the incidence of tumors by �75% at
12 weeks after initiation (Figure 5A). In contrast, the control antibody-
treated mice showed only a minimal decrease (20%) in incidence
of inflammation and dysplasia. Levels of TNFa and IL-6 in

Fig. 5. (A) mAbGB3.1 administration reduces colonic inflammation (6 weeks) and incidence of tumors (12 weeks in preventive and therapeutic protocols) in mice
treated with AOM–DSS. Mice were administered with mAbGB3.1 or a control antibody as described in Materials and Methods. Colonic inflammation, dysplasia
and adenomas were evaluated using established criteria (n 5 4 per group per time point, ��P � 0.01). (B) TNFa and IL-6 were measured in sera of mice at
different time points (n 5 4 per group per time point, ��P � 0.01). (C) Colonic inflammation in RAGEþ/þ and RAGE�/� mice 2 weeks after AOM–DSS
evaluated using established criteria. (D) Colonic tumor incidence in RAGEþ/þ and RAGE�/� mice 20 weeks after AOM–DSS.

RAGE, glycans and S100A8/A9 in colitis-associated cancer

2041



serum were also reduced in mAbGB3.1-treated mice at 6 and 12
weeks after initiation of disease (Figure 5B). These results suggest
that reduction in tumor incidence in mAbGB3.1-treated mice is not
due to block in initial acute colitis but due to block in transition to
chronic inflammation and subsequent tumorigenesis. To establish
whether the glycans independently promoted inflammation-mediated
tumorigenesis, we examined the effect of antibody administration
after establishment of chronic colitis. In fact, mAbGB3.1 treatment
started 6 weeks after initiation of disease significantly reduced the
incidence of dysplasia and adenoma (Figure 5A), suggesting that the
glycans play dual roles in CAC, both in adaptive immune responses
leading to chronic inflammation and in inflammation-mediated
tumorigenesis.

RAGE-deficient mice are resistant to the onset of CAC

To evaluate the role of RAGE in S100A8/A9 and glycan-mediated
signaling events leading to CAC, we applied the AOM–DSS protocol
in RAGE�/� mice and wild-type mice. Both RAGE�/� and age-
matched C57BL/6 wild-type mice lost up to 10% of body weight after
DSS treatment before recovery (data not shown). Proximal and distal
colons showed evidence of inflammation in both RAGE�/� mice and
wild-type mice (Figure 5C) and serum TNFa and IL-6 levels were
elevated in both groups (Figure 5B), demonstrating that RAGE does
not play a role in the initial acute inflammatory events triggered by
DSS. However, serum levels of the proinflammatory cytokines were
reduced in the RAGE�/� mice at 6 weeks after disease initiation
compared with wild-type mice (Figure 5B) and colonic inflammation
was moderately reduced (supplementary Figure 3 is available at
Carcinogenesis Online). In addition, there was a dramatic reduction
in tumor incidence in RAGE�/� mice 20 weeks after AOM–DSS. Few
dysplatic lesions found in RAGE�/� mice were small and low grade
(data not shown). In contrast, all the wild-type mice developed ade-
nomas (one to three tumors per mouse), with a few early invasive
adenocarcinomas by 20 weeks. These findings show that RAGE is
essential for the pathogenesis of CAC, complementing a recently
published study on RAGE signaling in skin carcinogenesis (28) and
highlighting the importance of RAGE in inflammation-mediated
cancers.

Recent studies provide evidence for two different facets of
inflammation-based cancers: persistent inflammation leading to cancer
and a tumor-supporting role of inflammatory cells within the tumor mi-
croenvironment in the absence of inflammation. Both facets reflect the
functional plasticity of macrophages (47). RAGE expressed on mac-
rophages, endothelial cells and tumor cells and S100A8/A9 expressed
on infiltrating leukocytes are implicated both in inflammation and
cancer. Here, we provide direct evidence that carboxylated glycans
expressed on a subpopulation of RAGE on tumor cells provide critical
binding sites for S100A8/A9. The glycans and RAGE also mediate
S100A8/A9-induced downstream signaling in tumor cells and cell
proliferation. Using a colitis-induced cancer model that involves an
acute inflammation phase, a chronic inflammation phase and a tumor-
igenesis phase, we also show that the glycans and RAGE are impor-
tant both in the chronic inflammation and tumorigenesis phases.
S100A8/A9-positive cells are found both in inflamed tissues and
within tumor stroma. These findings, along with our earlier studies on
T cell-mediated colitis, suggest that the glycans, RAGE and S100A8/
A9 are important in both facets of inflammation-based cancers. How-
ever, in vivo, the importance of other RAGE ligands such as HMGB1,
which bind carboxylated glycans, cannot be ruled out since HMGB1
induces IL-6 in macrophages via NF-jB activation, and administra-
tion of anti-HMGB1 decreases CAC in Apc/Minþ mice (48).

The signals and stage of disease that trigger the expression of car-
boxylated glycans and RAGE on colon tumor cells and of the stimuli
that promote infiltration of S100A8/A9-positive myeloid progenitors
within the tumors are not known. Mediators such as vascular endo-
thelial growth factor, TNFa and transforming growth factor-b se-
creted in response to inflammation or tumor hypoxia mobilize
S100A8/A9-positive cells that promotes premetastatic niches in lung

facilitating homing of tumor cells to metastatic sites (49). We also
found that S100A8/A9 could serve as autocrine mediators that sustain
a feedback loop and accumulation of MDSCs within tumors (51).
S100A8/A9 is also expressed by infiltrating macrophages in early
acute colitis (supplementary Figure 2 is available at Carcinogenesis
Online). Since S100A8/A9 also bind Toll-like receptor 4 (TLR4) (20),
S100A8/A9 secreted from activated leukocytes could play a role in
amplifying initial DSS-mediated responses induced by bacterial lipo-
polysaccharide through interaction with TLR4 on macrophages. This
T cell-independent initial innate response may not involve RAGE or
the glycans since mAbGB3.1 does not block it, and RAGE�/� mice are
as susceptible to DSS-induced injury as RAGEþ/þ mice (Figure 5).
The importance of TLR4 in the development of CAC is evident from
the finding that TLR4-deficient mice are protected from CAC (50).
S100A8/A9 could therefore participate in distinct events in disease
progression through different receptors: an acute inflammation phase
involving TLR4 and a tumorigenesis and progression phase involving
the glycans and RAGE expressed on tumor cells.

In summary, our findings show that RAGE, S100A8/A9 and car-
boxylated glycans form important components of epithelial and stromal
cells promoting molecular interactions leading to CAC. This complex
signaling pathway could be a potential target for pharmacological
interventions.

Supplementary material

Supplementary Figures 1–3 can be found at http://carcin.
oxfordjournals.org/
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