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Abstract: Tissue regeneration is a hot topic in health sciences, particularly because effective therapies
promoting the healing of several cell types are lacking, specifically those of the musculoskeletal
system. Mesenchymal Stem/Stromal Cells (MSCs) have been identified as crucial players in bone
homeostasis, and are considered a promising therapy for diseases such as osteoarthritis (OA) and
Rheumatoid Arthritis (RA). However, some known drawbacks limit their use, particularly ethical
issues and immunological rejections. Thus, MSCs byproducts, namely Extracellular Vesicles (EVs),
are emerging as potential solutions to overcome some of the issues of the original cells. EVs can be
modulated by either cellular preconditioning or vesicle engineering, and thus represent a plastic tool
to be implemented in regenerative medicine. Further, the use of biomaterials is important to improve
EV delivery and indirectly to modulate their content and secretion. This review aims to connect the
dots among MSCs, EVs, and biomaterials, in the context of musculoskeletal diseases.

Keywords: regenerative medicine; mesenchymal stem/stromal cells; extracellular vesicles; biomaterials

1. Clinical Background

Musculoskeletal disorders (MSDs) are conditions that can limit bodily movement
through injury or pain in tissues of the musculoskeletal system, such as muscles, bones,
and joints. The most common diseases are osteoarthritis (OA), rheumatoid arthritis (RA),
neck and low back pain, tendinitis, carpal tunnel syndrome, fibromyalgia, and bone
fractures [1–3]. Risk factors include occupation, lifestyle, and family history. However,
since the risk of developing MSDs greatly increases with age, their prevalence increases
with the rising average life expectancy [1]. The severity of MSDs ranges from mild pain and
discomfort, which interferes with everyday activities, to total impairment of movement. For
this reason, early diagnosis and treatment may help ease symptoms and improve long-term
quality of life [4,5]. In particular, OA is defined as a chronic joint inflammatory disease that
affects all joint tissues of the musculoskeletal system, impacting mainly the hip, hand and
knee articulations [6], involving tissues such as the infrapatellar fat pad and meniscus [7,8].
Patients bearing OA usually show synovial inflammation, calcified ligaments, subchondral
bone sclerosis, osteophyte formation, and cartilage deterioration [9]. It is estimated that
around 250 million people worldwide are suffering from OA [6]. Conversely, RA is an
autoimmune inflammatory disorder characterized by synovial joint inflammation and
swelling, estimated to affect up to 1% of the population worldwide [10]. Both these MSDs
are common causes of permanent disability among the elderly population [11].

There is no cure for MSDs OA and RA; the only available clinical options aim to
reduce the impact of the most common symptoms caused by inflammation, especially
pain [5,12,13]. These conditions typically progress towards permanent joint damage,
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and treatments are intended to slow disease evolution. Currently, non-steroidal anti-
inflammatory drugs (NSAIDs) are frequently administered to manage the overall disabil-
ities caused OA [5]. This strategy can in some severe cases be coupled with surgery to
replace severely damaged joints. However, considering the multiple complications for
the patient associated with this approach, as well as its ineffectiveness in restoring tissue
function and movement, the need for novel and effective therapies is clear [5].

New approaches to regenerating musculoskeletal tissues are now emerging. One
rapidly-growing strategy to treat damaged tissue, and diseases such as OA and RA, is re-
generative therapy; this has the advantage of being a multifactorial approach that combines
biomaterial design mimicking the natural extracellular matrix (ECM) of the tissues, these
materials being loaded with autologous cells, bioactive molecules and growth factors to
stimulate and improve the function of the target tissue [14].

Immunoengineering is a branch of regenerative medicine that focuses on the immune
system and that aims to modify the cellular response in order to facilitate tissue recon-
struction [15]. In particular, joint diseases such as OA and RA have been targeted with
biomaterials and anti-cytokine treatments as a potential innovative therapy [16]. Consid-
ering the lack of effectiveness of the currently administered anti-inflammatory drugs in
both OA and RA, the current task for researchers and clinicians in the musculoskeletal
regeneration field, is to develop and implement more effective therapies. This may occur
through the use of biomaterials and the employment of genetic engineering in order to
modulate cell behavior.

Within this scenario, the review explores the current research trends regarding tissue
regeneration in MSDs, focusing on Extracellular Vesicles (EVs) as future strategies for
musculoskeletal system repair through cell therapy, biomaterial science, and immunoengi-
neering. It focuses on the byproducts of Mesenchymal Stem/Stromal Cells (MSCs), more
specifically EVs.

2. MSCs: Function and Mechanism of Action upon Tissue Damage

MSCs or multipotent mesenchymal stromal cells, as recommended by the Interna-
tional Society for Cellular Therapy (ISCT) [17], are fibroblast-like adult multipotent pro-
genitor cells that possess the ability to self-renew and differentiate in vitro into several
cell types [18], mainly into osteoblasts, adipocytes and chondrocytes. MSCs can be har-
vested from numerous tissues, including bone marrow (BM-MSCs) and other parts of the
bone (periosteum and endosteum), adipose tissue (AT-MSCs) such as the infrapatellar fat
pad (IFP-MSCs), umbilical cord (UC-MSCs), peripheral blood, and oral tissues [19–23]
(Figure 1A).

Oryan et al. have reviewed and grouped the advantages and disadvantages of each
type of MSCs, and report that although AT-MSCs achieve higher cell viability, BM-MSCs
are more stable in culture and more prone to differentiate into osteoblasts, thus being
preferable for transplantation in cases of bone fractures [20]. The therapeutic delivery
of BM-MSCs at bone fracture sites is a strategy worthy of consideration, owing to their
osteogenic and chondrogenic capabilities [19].

In physiological conditions, MSCs naturally migrate to the site of bone injury/damage,
where osteogenesis—i.e., differentiation into osteoblasts (cells capable of forming bone)—
occurs [24]. This transition from MSCs into osteoblasts begins with the commitment to-
wards the osteogenic/chondrogenic lineages through the Wingless-int (Wnt) pathway [25].
During this process, there is a natural upregulation of several transcription factors in-
cluding Distal-less homeobox 5 (DLX5), Osterix (OSX), and Runt-related transcription
factor 2 (RUNX2) [25–27] aimed at triggering the differentiation cascade. In turn, this
leads to the overexpression of typical osteoblast-related proteins, namely alkaline phos-
phatase (ALP) that promotes collagen type I (COL1A1) deposition, essential for proper
bone formation [28].
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the surrounding environment. EVs can be formed either through plasma membrane budding (mi-

crovesicles) or through an endosomal route (exosomes). (C) They express surface markers that in-

teract with the membrane receptors of the target cells (chondrocytes, myocytes, osteoclasts, osteo-

blasts, immune cells, tenocytes, among others) impacting the vesicle uptake and cargo delivery or 

directly stimulating and/or reprogramming the target cell. Created with BioRender.com. 
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Figure 1. Cell-to-cell Communication via EVs in the Musculoskeletal System. (A) MSCs can be found
in the bone marrow, adipose tissue, dental pulp, peripheral blood, umbilical cord, and among other
tissues. (B) MSCs release EVs containing proteins, lipids, and nucleic acids (DNA and miRNA) to
the surrounding environment. EVs can be formed either through plasma membrane budding
(microvesicles) or through an endosomal route (exosomes). (C) They express surface markers
that interact with the membrane receptors of the target cells (chondrocytes, myocytes, osteoclasts,
osteoblasts, immune cells, tenocytes, among others) impacting the vesicle uptake and cargo delivery
or directly stimulating and/or reprogramming the target cell. Created with BioRender.com.

After bone damage/fracture, the inflammation process starts [29], with an increased
secretion of chemotactic factors and cytokines that mediate bone regeneration. Both innate
(macrophages) and adaptive (lymphocytes) immunity act upon injury by phagocyting
necrotic tissues and secreting growth factors and cytokines, which collectively contribute
to bone repair [20].

In this phase, the MSCs’ secretome can promote polarization of macrophages into
the M2 anti-inflammatory and the M1 pro-regenerative phenotypes, through the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the signal transducer
and activator of transcription 3 (STAT3) pathways [30–32]. In addition, the expression of
tumor necrosis factor-alpha (TNF-α) can be reduced through MSCs transplantation; since
high levels of TNF-α have a proapoptotic effect in osteoblasts, this should improve bone
formation [33]. TNF-α also inhibits the expression of RUNX2 and Osterix, suggesting MSCs
could facilitate the host osteoblast formation by restoring normal levels of the two essential
transcription factors in osteogenesis [34]. Further, MSCs have been reported to contribute
to blood vessel formation, known to be crucial in bone formation and repair [20]. In
summary, MSCs are promising for therapeutic applications due to their immunomodulatory,
angiogenic, cell recruitment, antiapoptotic, and differentiation effects [20,24].

In MSDs, such as OA disease, MSCs play a pivotal role in immunomodulation, mod-
ifying their phenotype in response to molecules produced by damaged tissues, both in
acute and chronic phases of the disease [35]. Zhao et al. reported that MSCs are able to
regulate macrophages polarization, promoting the healing process. This process brings
an overall improvement of inflammation with an increase in interleukin -10 (IL-10) levels
and a decrease of IL-12 and IL-1β and a contemporaneous augmentation of the phagocytes’
activity [35]. Clinically, MSCs demonstrated to be effective in reducing pain for 5 years
after joint injection of MSCs in OA patients [5].
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Various bone injuries and anomalies reduce the natural healing process, pointing
up the importance of developing new strategies for bone regeneration [36]. MSCs have
thus emerged as a promising candidate therapy for MSDs [36]. MSCs can be delivered
by systemic injection, as used to treat osteoporosis [37], by local/direct injection, as in the
case of nonunion fractures [38–40] or administered with hydrogels or scaffolds, such as
decellularized ECM, as in the case of large bone defects [20].

Much research has studied how MSCs resolve impaired bone regeneration conditions,
mainly resorting to in vivo animal models [41]. A first study attempted to inject allogeneic
BM-MSCs into rats, locally or systemically, to promote fracture healing [37]. Although both
treatments showed significant improvement in tissue healing, without triggering an adverse
immune response, the authors point out that, in cases of deeper multiple fractures, as
expected in osteoporotic patients, the systemic injection might be more beneficial [37]. Other
researchers have focused on this approach, paying special attention to MSCs’ migration and
homing for effective correction of bone lesions, with promising results [42–44]. Regarding
nonunion fractures, various studies have resorted to MSCs to stimulate bone regeneration,
all with fairly positive results, healing times ranging from 4 weeks to 10 months (reviewed
by Fayaz et al. [45]).

Lastly, in an attempt to increase treatment efficacy, MSCs have been combined with
biomaterials. These scaffolds ideally promote MSCs’ local delivery and viability, while
stimulating osteogenesis [24]. Freitas et al. reviewed the properties, advantages, and
disadvantages of current materials in this field: ceramic biomaterials—commonly consisting
of calcium phosphate (CaP) in the form of hydroxyapatite (HA), β-tricalcium phosphate
(β-TCP), or a combination of both, known as biphasic calcium phosphate (BCP); polymers,
both natural and synthetic; composites, i.e., a mix of polymeric biomaterials and ceramics;
and nanoparticles (NP) [24]. Additionally, graphene and metals, such as titanium and
tantalum, are also valid options thanks to their biocompatibility, and their stimulation of
proliferation and differentiation [46]. MSCs are already being implemented in clinical trials,
in oral and maxillofacial surgery [47–49] and in large bone defects [20,50].

Currently, nearly 400 clinical trials focused on using MSCs to treat pathologies related
to multiple organs and cell lineages have been completed, and many more are listed as
ongoing (http://www.clinicaltrials.gov/ (accessed on 21 December 2021)). These studies
focus on a wide range of diseases, including autoimmune diseases such as RA [51], type 1
and 2 diabetes mellitus [52], multiple sclerosis [53] and systemic lupus erythematosus [54],
as well as OA [55], graft versus host disease [56], chronic kidney disease [57], idiopathic
pulmonary fibrosis [58], cirrhosis [59], acute myocardial infarction [60] and COVID-19 [61].

Some clinical trials report improvements in OA treatment through the use of MSCs [55].
Centeno et al. combined BM-MSCs with bone marrow aspirates and platelet lysates,
improving chondral and meniscus volume while also greatly reducing pain in 60% of
patients, and reducing to one-tenth the need for replacement surgery [62]. There are
also several active and competed clinical studies regarding RA. For example, Wang et al.
administered UC-MSCs intravenously to patients affected by RA (4 × 104 cells/injection),
together with the common disease-modifying anti-rheumatic drugs (DMARDs) treatment,
at intervals of 3, 6 or 8 months. They report an improvement in quality of life and reduced
joint swelling and pain, compared with control groups (treated with DMARDs alone),
assessed via the disease activity score 28 (DAS28) parameter and the Health Assessment
Questionnaire (HAQ) [63]. Using a different approach, Park et al. opted for altering the
dosage of UC-MSCs in a single intravenous injection. In this study, patients who received
the higher concentration of cells (1 × 108 cells) showed lower DAS28 and visual analog
scale (VAS) scores, indicative of therapy efficacy [64]. Of note, clinical trials using MSCs
as a potential treatment for RA have been considered safe, no toxicity or severe adverse
effects being reported thus far [51].

However, drawbacks including ethical issues, immunological rejection, costs, and low
quantity of cells harvested, still need to be overcome in order to apply MSCs’ transplantation
as a therapy [20,65]. It is also reported that MSCs can cause serious secondary effects. In one

http://www.clinicaltrials.gov/
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such case unwanted differentiation after transplantation into the brain of a child with Ataxia
Telangiectasia caused tumors [66]. In order to counteract some of the above problems, the
use of MSCs secretome, and more specifically of MSC-derived EVs, has increasingly been
employed over recent years [67].

Interestingly, MSCs’ secretome can mimic most of the effects of the cells themselves [67]:
it contains paracrine products of MSCs’ metabolism that promote wound healing by in-
creasing proliferation and differentiation [68] and exerts immunomodulation [69], cell
recruitment [70], pro-angiogenic [69] and pro-survival [71] functions, indicating that this
cell-free approach may represent an alternative therapy [67]. This thanks to its composition,
essentially comprising growth factors (GF) (Epidermal-GF (EGF), Fibroblast- GF(FGF),
Hepatocyte-GF (HGF), Insulin-like-GF (IGF), Platelet-Derived-GF (PDGF), interleukins
(IL-6, -8, -10), matrix metallopeptidases (MMP )-1, -2, -3, -7) and MMP inhibitors (TIMP-1,
-2), angiogenic factors (Vascular-Endothelial-GF(VEGF), Angiogenic Factors Angiopoi-
etin (ANG), chemoattracting proteins (Chemokine (C-C motif) ligand 5 CCL5/RANTES,
monocyte chemoattractant protein 1 (MCP-1), adhesion molecules (intercellular adhesion
molecule(ICAM), vascular cell adhesion molecule (VCAM), and immunoregulators (Trans-
forming Growth Factor-β (TGF-β), Indoleamine 2,3-dioxygenase (IDO) [14,54]. These
molecules are either free, outside cell boundaries, or encapsulated in EVs [67].

3. EVs: Biogenesis and Function

Studies focusing on cell-to-cell communication have employed body fluids, for ex-
ample saliva, urine, blood, and breast milk, to show that all cell types can release lipidic
bilayer vesicles, now generically labeled as EVs [72,73]. It is known that EVs naturally carry
proteins, lipids, and nucleic acids, also possessing the potential to be bioengineered as drug
delivery systems [74,75] (Figure 1B). Depending on both EVs cargo and the target cell type,
EVs can influence various cellular processes, more specifically proliferation, differentiation,
senescence, and apoptosis, while also impacting immunomodulation, blood coagulation,
and angiogenesis [76,77].

Currently, the International Society of Extracellular Vesicles (ISEV) recommends mak-
ing a distinction among three main types of EVs, based on size and release mechanism:
apoptotic bodies, microvesicles, and exosomes [73]. Apoptotic bodies are the largest of
these, ranging from 50 nm to 5 µm. They form by blebbing of the plasma membrane in cases
of programmed cell death [78]. Microvesicles (MVs) are shed from budding of the plasma
membrane, and their size is between 50 nm and 1 µm. Lastly, exosomes are typically less
than 150 nm in diameter, and are the result of the fusion of multivesicular bodies (MVBs)
with the plasma membrane, releasing intraluminal vesicles (ILVs) into the surrounding
microenvironment, hence the term exosomes [73].

Exosome biogenesis starts with the formation of early endosomes, through endocytosis
of extracellular components [75]. Budding of the membrane to capture proteins, lipids, and
other molecules causes the formation of ILVs, small bodies the size of exosomes, that collect
inside endosomes, leading to their maturation into MVBs [75]. ILVs are mainly created
by action of the endosomal sorting complex required for transport (ESCRT), a family of
four protein complexes, ESCRT-0, -I, -II and -III. MVBs can be degraded by fusing with
lysosomes, or may in turn join the plasma membrane, so that their content is released
outside the cellular compartment [75]. Some other proteins, specifically those frequently
used as exosome markers, also contribute to exosome biogenesis, including CD63, MHC
class II, tumor Susceptibility 101 (TSG101), ALG-2-interacting protein X (ALIX), syndecan,
syntenin and Heat Shock Protein 70 (HSP70) [75].

Cells under various stimuli can increase or decrease EVs secretion in vitro [72,75].
In particular cases, irradiation [79], hypoxia [80] and other chemical stresses [81,82] may
cause cells to boost EVs production and release. Whether this is a way to expel unwanted
molecules produced under these stress conditions, or whether it is a signal to neighboring
or distant cells, is still a matter of debate [73].
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After release, EVs can be incorporated by target cells by direct fusion with the plasma
membrane or by endocytosis, either through pinocytosis or by phagocytosis, dependently
or independently of clathrin or caveolin, or lipid-raft mediated [75,83]. In general, it is
thought that this mechanism is dependent on the recognition of specific surface markers
on the vesicle membrane by the cellular membrane [75,84]: tetraspanins present on the
EVs surface, such as CD9 and CD81, have a known positive effect in cell adhesion and
in viral/parasitic internalization, which may explain their role as vesicle membrane pro-
teins [83,85]. Other protein families have been associated with the EV uptake mechanisms,
including integrins (αv, β3 and Lymphocyte function-associated antigen 1(LFA-1 [85]),
proteoglycans (HSPGs [86]) and lectins (Dendritic Cell-Specific Intercellular adhesion
molecule-3-Grabbing Non-integrin(DC-SIGN) [87] and DEC-205 [88]), since using antibod-
ies against these molecules heavily impacts vesicle internalization in vitro [83]. It is also
considered that the preferential EV uptake method may be associated with the cell type
and its physiological state [89]. While some cases of specific/preferential uptake of EVs by
a certain cell type have been described [87,90], there is still no consensus as to whether the
internalization process is indeed cell-type specific [83].

On their surface, EVs can also display several molecules that directly affect a target
cell without the need for uptake. Immunoglobulins, complement proteins, coagulation
factors, cytokines, enzymes, and DNA have been detected in association with the vesicle
membrane [91]. In the context of RA, Cloutier et al. demonstrated that synovial fluid
contains platelet-derived EVs displaying immunoglobulins, antigens, and complement
proteins as immune complexes capable of exerting a pro-inflammatory signal, in the
presence of neutrophils [92]. Lastly, EVs can also function as antigen-presenting vehicles,
as shown by Raposo et al., who reported that murine and human B lymphocytes release
vesicles containing MHC class II molecules that can activate a specific T cell response [93].
Antigen-presenting EVs can also stimulate both T cells and macrophages phenotype shift
towards Tregs and M2, respectively, which diminishes the length of the inflammatory phase
in musculoskeletal regeneration [94].

Immune cells were shown to be able to transfer membrane receptors to other cells.
For example, leukocyte-derived EVs can transfer monocyte/macrophage tissue factor
to platelets [95]. Conversely, platelet-specific adhesion molecules can be relocated to
hematopoietic cells through the action of EVs [96]. Other functions of EVs include epigenetic
reprogramming of the target cells by altering the DNA methylation patterns, histone
modifications and non-coding RNA post-transcriptional editing [97] (Figure 1C).

4. MSC-Derived EVs as Novel Therapies: Advantages and Disadvantages

Recent studies have also compared the ability of MSC-derived EVs to mimic the ef-
fect of their parent cells [98], and have concluded that MSC-EVs can exert similar effects
to MSCs, in terms of injury repair and tissue regeneration [99–102], anti-inflammatory
profile [103], cell proliferation and migration [102,104], and promoting collagen synthe-
sis [105] and angiogenesis [102,104,105]. This indicates that MSC-EVs can replace the
original cells as a therapeutic tool, eliminating some of the adverse effects of MSCs [98,106].
Indeed, the low immunogenicity and the low toxicity of EVs compared with MSCs are
an important advantage of using these vehicles, together with their offering more stable
storage, high stability in circulation, easier large-scale production, and superior biocompat-
ibility [107,108]. Additionally, in contrast with MSCs, EVs can penetrate the blood-brain
barrier, thus overcoming the first pass effect typical of some drug treatments [108].

MSCs produce EVs that express chemokines receptors able to facilitate targeting with
several cell types also in damaged tissues [98]. Furthermore, new technologies, such as
decorating EVs surface with binding proteins, are being developed, in order to increase the
delivery efficiency of EVs to the target cells, improving cell-to-cell communication [98,109].
These strategies could be very useful to modulate the cellular communication in the
musculoskeletal field.
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For example, regarding musculoskeletal regeneration, Qin et al. evaluated the impact
of MSC-EVs in osteoblasts’ biological processes: in this study, culturing human osteoblasts
(hFOB 1.19 cell line) with MSC-EVs led to a similar degree of differentiation as exposing the
cells to fresh osteoblast culture medium [110]. In addition, the expression of osteogenesis-
related genes such as ALP, osteocalcin (OCN), osteopontin (OPN) and RUNX2 in the EVs-
treated condition was similar to the hFOBs culture in a commercially available complete
osteogenesis media [110]. Conversely, MSC-EVs also impair osteoclast formation in vivo,
as reported by Hu et al., in an osteoporotic mouse model [111]. The authors injected human
UC-MSC-derived EVs through the tail vein of the osteoporotic mice and noted a decrease
in osteoclast number on the trabecular bone surface, coupled with increased number of
osteoblasts, compared to the control group [111].

Furthermore, it has been reported in a rat osteochondral defect model that MSC-EVs
promote cellular proliferation and migration in both cartilage and synovium, while also
stimulating ECM deposition [112]. Additionally, rats treated with MSC-EVs exhibited
an increase in M2 macrophage infiltration in cartilage and synovium, accompanied by a
reduction of pro-inflammatory cytokines’ expression and M1 polarization, which leads to
a regenerative immune profile [112]. On another study, muscle tissue regeneration was
achieved by Nakamura et al.: the authors reported that in vitro culture of C2C12 cells
(mouse myoblast cell line) with MSC-EVs promotes cell proliferation and differentiation,
through the increase of nuclei number, fusion index and myogenic markers expression [113].
Moreover, the same authors show that in a mouse model of cardiotoxin-induced muscle
injury, MSC-EVs locally administered at the injury site reduce fibrosis and increase angio-
genesis, hence improving muscle regeneration [113]. Lastly, Chen et al. tested the ability of
EVs to repair tendon damage. In a study performed in rabbits that underwent Achilles ten-
don repair surgery, the group administered with AT-MSC-EVs evidenced greater tenocyte
proliferation and migration, together with mechanical stress resistance improvement of the
tendon, compared to the control group [114] (Figure 1C).

However, therapies with EVs must be approached with caution, since their effects have
yet to be fully characterized. Information currently available has led researchers to disagree
about the tumor induction capacity of MSC-EVs. Some data indicates that MSC-EVs can
inhibit tumor cell proliferation and induce dormancy and apoptosis [115–117]; conversely,
MSC-EVs are also reported to confer drug resistance and support cancer cell growth and
metastatization [118,119] (reviewed by Zhang et al. [120]).

Further, there is no protocol standardization regarding MSC culture and EV isolation
in the clinical field. The commonly employed use of fetal bovine serum (FBS) in MSC ex-
pansion may cause the unwanted co-isolation of bovine EVs together with MSC-EVs [121],
whereas completely removing the serum can impact EV quantity and cargo [122]. Using
different EV isolation techniques—ultracentrifugation, differential centrifugation, com-
mercial isolation kits, size-exclusion chromatography, iodixanol density gradient [123],
among others—with differing yields and purification efficiencies may also contribute to the
disparity of results reported in the literature [98]. Indeed, these different approaches may
lead to false conclusions, since bovine-EVs from FBS (and other contaminants) may mask
the effects of the target EVs. As an example, FBS-EVs have been associated with increased
migration of A549 epithelial adenocarcinoma cell line, compared with EVs that are FBS
“depleted” by extended centrifugation, with an estimated removal of 95% of FBS-EVs [121].

5. Impact of Biomaterials in MSC-Derived Extracellular Vesicles

As mentioned above concerning MSCs, the delivery of EVs is also an important
factor to be taken into consideration. The so-called ‘Naked EVs’ administration, i.e.,
without any coating, can lead to unspecific binding to non-target organs, which in turn
causes side effects and reduces the concentration at the injury site, hampering treatment
efficacy [124]. Conjugation with biomaterials is thus considered a viable strategy to ensure
correct targeting, preservation, and controlled release of the treatment [125]. Currently,
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the most widely studied coadjutants in EV delivery are hydrogels and scaffolds through
vesicle encapsulation [125].

Hydrogels are cross-linked polymer chain networks with hydrophilic properties, con-
taining up to 90% water [126]. These materials have the capability to expand by absorbing
biological fluids, enabling EVs to be entrapped and providing controlled delivery [125].
Promising results have been reported using encapsulated MSC-EVs in hydrogels to promote
regeneration. Mardpour et al. achieved constant EV release and resistance to degradation
by using polyethylene glycol (PEG) hydrogels, in a rat hepatic regeneration model. The
study showed both the feasibility of the delivery method and the pro-regenerative effect of
MSC-EVs on injured liver [127]. A study by Qin et al. opted for a commercial hydrogel—
HyStem-HP—to deliver EVs to promote osteogenesis in a critical size bone defect rat model,
and reported that the system was responsible for bone formation enhancement [110]. This
technique has also been shown efficient in cartilage regeneration, by combining EVs with a
3D device made of cartilage ECM and gelatin methacrylate hydrogel [128], and with the
vesicles incorporated into a Photoinduced Imine Crosslinking (PIC) hydrogel glue [129].

Conversely, 3D polylactide (PLA) scaffolds have been investigated as potential en-
hancers of bone regeneration, combined with MSCs and MSC-EVs in an in vivo rat model.
The study took human gingival MSCs (hGMSCs) and established several combinations to
test the effects of the PLA scaffold, hGMSC-EVs and polyethyleneimine (PEI)-engineered
EVs [130]. The results showed that all combinations improved bone healing, particularly
the treatments with hGMSCs + 3D PLA with either hGMSC-EVs or PEI-EVs; these showed
upregulation of the osteogenesis-related genes RUNX2 and Bone Morphogenic Protein
(BMP) 2/4 and higher staining for Alizarin Red, a marker for calcium deposition and
ECM mineralization, commonly used to evaluate osteogenesis [130]. In another study,
MSC-EVs were loaded into collagen I/III sponges and employed in a rat periodontal defect
model. The approach was found to promote periodontal tissue regeneration and formation
of alveolar bone in vivo, with no evidence of adverse effects [131]. Further, when com-
bined with poly (lactic-co-glycolic acid) supplemented with poly-dopamine (PLGA/pDA),
adipose-derived stem cell-EVs can modulate the migration and homing of BM-MSCs to
injury sites, thus increasing tissue healing [132]. A number of studies also evidence the
advantages of using MSC-EVs coupled with hydrogels or scaffolds as potential therapeutic
tools for skeletal regeneration [125].

Lastly, used in combination with EVs ceramics have also shown interesting results
regarding bone regeneration. In general, these biomaterials possess similar compositions
to the inorganic portion of bones, specifically in terms of calcium and phosphate content.
Ceramics thus represent useful options for bone replacement, considering their biocom-
patibility, osteoconduction, and bone-cell pro-survival enhancement ability [133]. For
example, β-TCP has been extensively studied in the musculoskeletal regeneration field for
its elevated resorption rate and promotion of MSCs and osteoblasts’ proliferation [134].
However, the addition of EVs derived from human induced pluripotent stem cells (iPSC)
differentiated into MSCs, actively improved the biomaterial’s osteoinductive activity. This
combination strongly promoted MSCs’ migration, proliferation and osteogenic proper-
ties [135], revealing the important role of EVs in regenerative medicine. On that basis,
EVs can also be modulated to carry specific molecules, either natural or synthetic, by cell
preconditioning or engineering [136] (Figure 2).
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Figure 2. Engineering EVs and Their Applications. Cell preconditioning/engineering may increase
the production and secretion of EVs, while also modulating its content in a controlled manner.
These vesicles can then be delivered in combination with scaffold/biomaterials to ensure correct
targeting, by conferring protection to the EVs and allowing a controlled release of their content.
Thus, this strategy can lead to an improvement in tissue regeneration, through stimulation of several
cell processes including proliferation, calcification and differentiation. The images depicting EVs
production and release were obtained by Transmission Electron Microscopy (TEM); PLA and tissue
regeneration images were obtained by the ground sections method in brightfield imaging; hydrogel,
collagen and ceramics images were obtained by Scanning Electron Microscopy (SEM); the image
representing proliferation was captured by confocal microscopy; the Alizarin Red staining used to
detect calcification was captured in brightfield microscopy. All images belong to the authors.

6. MSC-Derived EVs Modulation through Cell Preconditioning

Preconditioning consists of exposing parent cells to specific stimuli, to enforce the
expression and release of different molecules [67,125]. The focus of this review is on
enhancing MSCs’ regeneration potential by modulating the EV cargo through in vitro
cell culturing in a 3D environment, under hypoxia, supplemented with pharmacological
agents or inflammatory cytokines (reviewed in [67]). For instance, MSCs cultured in
hypoxia (1% O2) or anoxia (0% O2) have produced EVs more suited for acute myocardial
infarction treatment, in in vivo rat [102] and mouse [137] models, respectively. The former
study cultured BM-MSCs in hypoxia for 72 h and, after EVs injection in rats, reported
increased blood flow recovery and cardiac performance, together with a reduction in infarct
size, compared with controls [102]. In the latter study, MSCs were cultured overnight in
glucose deprivation and then preconditioned with two cycles of anoxia and reoxygenation.
Microarray analysis revealed that miR-22 was upregulated in preconditioned-MSC-EVs
that, upon injection, reduced apoptosis and enhanced cardiac function after infarction [137].

Regarding the musculoskeletal system, MSCs’ preconditioning with dimethyloxaloyl-
glycine (DMOG) was assessed in a critical-sized calvaria-defect rat model [138], a preclinical
model frequently used to experimentally evaluate bone regeneration [139]. BM-MSCs were
cultured with supplementation of 1000 µM DMOG for 48 h, after which the authors isolated
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exosomes from the culture supernatants. Then, exosomes from non-preconditioned and
preconditioned MSCs were injected in the rat model, in conjugation with hydroxyapatite
(HA) scaffolds. Bone regeneration in vivo was increased when rats were treated with
scaffolds embedded with EVs from MSCs preconditioned with low doses of DMOG [138].
The authors demonstrated that the mechanism of action might be related to the ability of
EVs released by DMOG-pretreated MSCs to enhance angiogenesis of human umbilical
vein endothelial cells (HUVECs), through the downregulation of Phosphatase and tensin
homolog (PTEN), which in turn activates the Akt and mammalian target of rapamycin
(mTOR) (AKT/mTOR) pathway [138]. A different study used TNF-α as preconditioning—
referred to as priming in the study—for AT-MSCs [140]. Lu et al. cultured the cells for
72 h with 1 ng/mL of TNF-α and evaluated the effects of the isolated EVs in human pri-
mary osteoblast-like cells (HOBs). This specific preconditioning was found to increase the
pro-osteogenic and proliferative induction by EVs in HOBs, thus representing a potential
alternate therapy for bone regeneration [140].

7. MSC-Derived EVs Modulation through Engineering

Being natural carriers, capable of avoiding immune responses, and having good
stability and integrity in the blood, EVs represent an interesting approach as delivery
systems. Engineered EVs can offer a combined effect between their natural cargo and
externally incorporated drugs or biological material, while also directing the therapy to
the intended target, thanks to the specific recognition of surface proteins by receptor
cells. Current techniques focus on modifying specific portions of EVs, before and/or after
their isolation: cargo editing can enhance or transform the biological function of EVs;
surface and membrane editing aims to alter the expression of markers to make the vesicles
traceable and/or to change their target cells, while also affecting physical and chemical
properties such as solubility [141]. Loading methods with high efficiency include extrusion,
sonication, and saponin-assisted loading [141]. In this case, miRNA-loaded EVs were
shown to promote cartilage preservation. In OA cartilage, miR-320 expression is decreased
and in concomitance an increase of MMP-13 expression was observed. Moreover, the
encapsulation of miR-320 seems to regulate MMP-13, and it could be a promising strategy
for cartilage protection [142]. However, some protocols can cause membrane deformation
or aggregation of particles or molecules [141]. An extensive view of advantages and
disadvantages is provided in the review by Man et al. [141].

Further, this semi-synthetic system is flanked by the fully synthetic approach. Nanovesi-
cles mimicking EVs may be developed either from cultured cells (cell-derived nanovesicles—
CDNs) or from individual molecules (EV-inspired liposomes—EVLs) [141,143]. The most
common technique for obtaining CDNs consists of sonicating whole cells to create particles
similar to vesicles, ranging in size from 50 to 200 nm; this technique affords higher quanti-
ties of particles compared to conventional EV isolation protocols [143,144]. Depending on
their origin, CDNs possess the membrane composition of the parent cells, which eliminates
future steps of functionalization necessary for artificial vehicles. In addition, CDNs are
more stable and less toxic than synthetic, non-cell-based vehicles [143,145]. Jo et al. found
that CDNs derived from embryonic stem cells can stimulate the proliferation of mouse
MSCs [146]. CDNs are also reported to be effective in pathogenic situations, when injected
in mice with sepsis: they inhibit common symptoms such as hypothermia and eye exudates,
by upregulating IL-10. CDNs were detected throughout the whole body, namely in the
lungs, kidneys, and liver [147].

EVLs are synthetic particles created to provide the minimal required element for
functional delivery systems. Thus, this technology allows the controlled production of pure
and specific nanoparticles, without any biological contaminants [143,148]. This “bottom-
up” technology is a valid alternative to other commercial agents used for drug delivery
and transfection, since it presents better storage stability, an anti-aggregation effect, and
reduced toxicity [143,149]. In fact, dendritic cell (DC) derived-EV-based EVLs, containing
major histocompatibility complex (MHC) Class I molecules to mimic the antigen display
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role to cytotoxic T cells, have been developed. These vesicles were traceable in both in vitro
and in vivo settings, and contributed to adhesion and cell activation [150]. EVLs have also
been used to deliver an anti-VEGF small interfering-RNA to target the A549 cell line. These
EV-mimics enter A549 cells through direct fusion, and show similar uptake and efficiency
compared to commercial Lipofectamine 2000 and 1,2-dioleoyl-3-trimethylammonium-
propane (DOTAP) [149]. Functionalized liposomes can also be used to create scaffolds for
bone regeneration, considering their features such as thermo-responsiveness, adhesiveness,
bone targeting and osteoconductivity [151].

8. EVs Derived from MSC Differentiation

Although the multi-lineage differentiation capacity of MSCs has long been established,
the biological functions of the secretome of osteoblasts, adipocytes, and chondrocytes,
derived from MSC differentiation, have received little attention. However, some reported
properties of the vesicles released by these cells may show potential for their establishment
as therapeutic agents, particularly in the bone regeneration field.

Little is known about the direct role of adipocyte-derived EVs (Adi-EVs) in mus-
culoskeletal processes. However, a potential role of these vesicles in bone regeneration
may be inferred, considering their impact on inflammation, a key part of the healing
process. Kranendonk et al. have demonstrated that Adi-EVs exert immunomodulatory
effects on monocytes, aiding their differentiation into macrophages with both pro- and
anti-inflammatory phenotypes [152]. Indeed, characterization of Adi-EVs reveals the pres-
ence of several cytokines, including adiponectin, TNF-α, retinol binding protein 4 (RBP4),
macrophage colony-stimulating factor (M-CSF) and in particular macrophage migration
inhibitory factor (MIF). This, in turn, when in contact with monocytes, induces their differ-
entiation into adipose tissue macrophages (ATM) with their typical mixed profile, secreting
both pro-inflammatory—IL-6, TNF-α and macrophage inflammatory protein-1-alpha (MIP-
1α)—and anti-inflammatory proteins—IL-10 [152].

Obesity has been reported to severely impact Adi-EVs’ properties. Zhang et al. showed
that Adi-EVs favor macrophage polarization into the M1 pro-inflammatory profile, us-
ing an obesity rat model. They cultured bone-marrow-derived macrophages with Adi-
microvesicles from obese and standard diet mice. The results showed an increase in the M1
phenotype vs. controls, as assessed by both quantitative real-time polymerase chain reac-
tion (qRT-PCR)—through upregulation of M1 markers TNF-α, inducible nitric oxide syn-
thase (iNOS), and IL-12—and flow cytometry—by increased number of CD11+ cells [153].
Conversely, M2 macrophage polarization is suppressed by Adi-EVs of high-fat-diet mice,
likely due to the exosomal transfer of miR-34a, which represses macrophage expression of
Krüppel-like factor 4 (Klf4) [154], a transcription factor essential in the macrophage shift to
the anti-inflammatory phenotype [155].

With regard to chondrocytes, there are some evidences pointing to their potential use
in musculoskeletal regeneration. Chen et al. injected alginate/cartilage progenitor cell
(CPC) constructs into mice, along with either chondrocyte-EVs (CD-EVs) or BM-MSC-EVs,
and found that treatment with CD-EVs improved CPC migration, proliferation, and matrix
formation, by upregulating SRY-Box Transcription Factor 9 (SOX-9) and collagen type II
levels, while inhibiting angiogenesis. Animals treated with CD-EVs showed more favorable
results than those receiving BM-MSC-EVs in terms of chondrogenesis [156]. Another study
corroborated these findings by combining CD-EVs with UC-MSCs for articular cartilage
repair. The study verified that CD-EVs also increased expression of the aforementioned
proteins in UC-MSCs in vitro, among other proteins related to chondrocyte maturation, and
enhanced knee defect healing in a rabbit model by activating autophagy [157]. However,
in an OA setting, OA-derived CD-EVs may lead to IL-1β production by macrophages
and negatively impact cartilage degradation and synovitis, which means that the use of
autologous CD-EVs may not be suited for OA treatment [158].

Lastly, osteoblast-derived EVs (OB-EVs) have been tested with the goal of bone regen-
eration. Using osteogenic differentiated pre-osteoblast MC3T3-E1 cell line-derived EVs,
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Cui et al. induced MSC osteogenesis in vitro by modulating their microRNA profile. The
authors expect these changes to impact several pathways connected with osteoblast differ-
entiation and function, namely the Wnt, insulin, TGF-β, and calcium signaling pathways.
The results also showed an increase in β-catenin, an important transcription coactivator of
the Wnt pathway, through the upregulation of Ctnnb1, its encoding gene, and the inhibition
of Axin1, a negative regulator [159]. The involvement of different microRNAs in osteogene-
sis has indeed been reported [160,161], although their delivery by OB-EVs remains largely
unexplored. However, osteoblast activity can be impaired through miR-214-3p transfer
from osteoclasts (bone-resorption cells) through EVs, which inhibit the bone formation
process [162]. This osteoblast/osteoclast interaction by EVs also involves other players:
RANKL (Receptor activator of nuclear factor kappa-B ligand) is a TNF family member
that binds to RANK receptors (Receptor Activator of Nuclear Factor kappa-B) in osteoclast
precursor cells to stimulate their differentiation into mature osteoclasts [163]. Cappariello
et al. have shown that OB-EVs possess RANKL on their surface, and when in culture
with osteoclasts, cell function, size, number of nuclei, and metabolic activity all increase.
In RANKL−/− mice, which are also commonly without expression of osteoclast marker
Tartrate-resistant acid phosphatase (TRAcP), injection of OB-EVs leads to the emergence of
TRAcP-positive cells, in a directly proportionate manner [164]. Osteoclast activity was also
successfully inhibited in vivo, by loading OB-EVs with zolendronate and dasatinib [164].
In the light of current information, it is considered that the use of OB-EVs, either naïve or
with drug incorporation, may be a promising treatment for bone related diseases—such as
osteoporosis—and cancer [165].

9. Conclusions and Future Perspectives

MSCs have been widely studied as therapeutic tools for their ability to stimulate re-
newal and differentiation into specialized connective tissues (bone, cartilage, adipose tissue,
muscles), as well as their capability in immunomodulation, and inducing angiogenesis, cell
recruitment, differentiation, and apoptosis inhibition [18–23]. However, due to some ethical,
economic, and biological disadvantages, the use of MSC-derived EVs is being increasingly
studied as a replacement for the use of MSCs in regenerative medicine. These particles
maintain the properties of the parent cells while avoiding some of the known drawbacks
associated with cell usage. Therefore, EVs are involved in numerous physiological and
pathophysiological processes: in MSDs, EVs foster tissue regeneration through the delivery
of factors capable of exerting mitogenic, angiogenic and immunomodulatory effects. As
explored in this review, MSCs-EVs can interact with several cell types involved in MSDs,
namely osteoblasts, osteoclasts, chondrocytes, myocytes, tenocytes, immune cells, and
vascular endothelial cells, being able to modulate their cellular processes towards a pro-
regenerative phenotype. Despite this, in order to consider EVs as clinical options, isolation
methods must be standardized, and functional knowledge regarding different cellular
origin must be enhanced. EVs modulation, either by cell preconditioning or engineering, is
becoming a hot topic in molecular biology that allows for more control in terms of content,
mechanism of action, and yield, although standardization is lacking. The strategies to
couple biomaterials and EVs can also have a big impact as a future therapy, for the two
technologies can enhance each other’s properties and together represent an ideal approach
for tissue healing. Lastly, using EVs derived from cell lineages that differentiate from MSCs
may offer a more specific approach as targeted/personalized medicine, although focus on
this field is still in its early days.

This review has explored the potential of MSC-EVs—and EVs originated from MSC-
derived cell types—in several MSDs. In conclusion, the promising in vitro and in vivo
studies indicate that the development of new therapies using MSC-EVs and EV modula-
tion/engineering techniques, most notably in conjugation with biomaterials, will in the
future erupt into the field of musculoskeletal regenerative medicine.
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Z. Isolation of High-Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient Ultracentrifugation and
Bind-Elute Chromatography From Blood Plasma. Front. Physiol. 2018, 9, 1479. [CrossRef]

124. Yan, H.-C.; Yu, T.-T.; Li, J.; Qiao, Y.-Q.; Wang, L.-C.; Zhang, T.; Li, Q.; Zhou, Y.-H.; Liu, D.-W. The Delivery of Extracellular Vesicles
Loaded in Biomaterial Scaffolds for Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 1–12. [CrossRef] [PubMed]

125. Zhao, A.G.; Shah, K.; Cromer, B.; Sumer, H. Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic
Potential. Stem Cells Int. 2020, 2020, 8825771. [CrossRef]

126. Warren, D.S.; Sutherland, S.P.H.; Kao, J.Y.; Weal, G.; Mackay, S.M. The Preparation and Simple Analysis of a Clay Nanoparticle
Composite Hydrogel. J. Chem. Educ. 2017, 94, 1772–1779. [CrossRef]

127. Mardpour, S.; Ghanian, M.H.; Sadeghi-Abandansari, H.; Mardpour, S.; Nazari, A.; Shekari, F.; Baharvand, H. Hydrogel-Mediated
Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic
Liver Failure. ACS Appl. Mater. Interfaces 2019, 11, 37421–37433. [CrossRef]

128. Chen, P.; Zheng, L.; Wang, Y.; Tao, M.; Xie, Z.; Xia, C.; Gu, C.; Chen, J.; Qiu, P.; Mei, S.; et al. Desktop-stereolithography 3D
printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration.
Theranostics 2019, 9, 2439–2459. [CrossRef]

129. Liu, X.; Yang, Y.; Li, Y.; Niu, X.; Zhao, B.; Wang, Y.; Bao, C.; Xie, Z.; Lin, Q.; Zhu, L. Integration of stem cell-derived exosomes with
in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale 2017, 9, 4430–4438. [CrossRef]

130. Diomede, F.; Gugliandolo, A.; Cardelli, P.; Merciaro, I.; Ettorre, V.; Traini, T.; Bedini, R.; Scionti, D.; Bramanti, A.; Nanci, A.; et al.
Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect
repair. Stem Cell Res. Ther. 2018, 9, 104. [CrossRef]

131. Chew, J.R.J.; Chuah, S.J.; Teo, K.Y.W.; Zhang, S.; Lai, R.C.; Fu, J.H.; Lim, L.P.; Lim, S.K.; Toh, W.S. Mesenchymal stem cell exosomes
enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019, 89, 252–264. [CrossRef]
[PubMed]

132. Li, W.; Liu, Y.; Zhang, P.; Tang, Y.; Zhou, M.; Jiang, W.; Zhang, X.; Wu, G.; Zhou, Y. Tissue-Engineered Bone Immobilized with
Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 5240–5254.
[CrossRef]

133. Ribas, R.G.; Schatkoski, V.M.; Montanheiro, T.L.D.A.; Menezes, B.; Stegemann, C.; Leite, D.; Thim, G.P. Current advances in bone
tissue engineering concerning ceramic and bioglass scaffolds: A review. Ceram. Int. 2019, 45, 21051–21061. [CrossRef]

134. Jiwoon, J.; Jun, H.K.; Jung, H.S.; Nathaniel, S.H.; Chan, Y.H. Bioactive calcium phosphate materials and applications in bone
regeneration. Biomater. Res. 2019, 23, 4. [CrossRef]

135. Zhang, J.; Liu, X.; Li, H.; Chen, C.; Hu, B.; Niu, X.; Li, Q.; Zhao, B.; Xie, Z.; Wang, Y. Exosomes/tricalcium phosphate combination
scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res. Ther. 2016, 7, 136.
[CrossRef]

136. Ramasubramanian, L.; Kumar, P.; Wang, A. Engineering Extracellular Vesicles as Nanotherapeutics for Regenerative Medicine.
Biomolecules 2019, 10, 48. [CrossRef]

137. Feng, Y.; Huang, W.; Wani, M.; Yu, X.; Ashraf, M. Ischemic Preconditioning Potentiates the Protective Effect of Stem Cells through
Secretion of Exosomes by Targeting Mecp2 via miR-22. PLoS ONE 2014, 9, e88685. [CrossRef]

138. Liang, B.; Liang, J.-M.; Ding, J.-N.; Xu, J.; Xu, J.-G.; Chai, Y.-M. Dimethyloxaloylglycine-stimulated human bone marrow
mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR
pathway. Stem Cell Res. Ther. 2019, 10, 335. [CrossRef] [PubMed]

139. Vajgel, A.; Mardas, N.; Farias, B.C.; Petrie, A.; Cimões, R.; Donos, N. A systematic review on the critical size defect model. Clin.
Oral Implant. Res. 2013, 25, 879–893. [CrossRef]

140. Lu, Z.; Chen, Y.; Dunstan, C.; Roohani-Esfahani, S.; Zreiqat, H. Priming Adipose Stem Cells with Tumor Necrosis Factor-Alpha
Preconditioning Potentiates Their Exosome Efficacy for Bone Regeneration. Tissue Eng. Part A 2017, 23, 1212–1220. [CrossRef]
[PubMed]

141. García-Manrique, P.; Matos, M.; Gutiérrez, G.; Pazos, C.; Blanco-López, M.C. Therapeutic biomaterials based on extracellular
vesicles: Classification of bio-engineering and mimetic preparation routes. J. Extracell. Vesicles 2018, 7, 1422676. [CrossRef]
[PubMed]

142. Meng, F.; Zhang, Z.; Chen, W.; Huang, G.; He, A.; Hou, C.; Long, Y.; Yang, Z.; Liao, W. MicroRNA-320 regulates matrix
metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthr. Cartil. 2016,
24, 932–941. [CrossRef] [PubMed]

143. Man, K.; Brunet, M.Y.; Jones, M.-C.; Cox, S.C. Engineered Extracellular Vesicles: Tailored-Made Nanomaterials for Medical
Applications. Nanomaterials 2020, 10, 1838. [CrossRef] [PubMed]

144. Ilahibaks, N.; Lei, Z.; Mol, E.A.; Deshantri, A.K.; Jiang, L.; Schiffelers, R.M.; Vader, P.; Sluijter, J.P. Biofabrication of Cell-Derived
Nanovesicles: A Potential Alternative to Extracellular Vesicles for Regenerative Medicine. Cells 2019, 8, 1509. [CrossRef]

145. Antimisiaris, S.G.; Mourtas, S.; Marazioti, A. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics
2018, 10, 218. [CrossRef]

146. Jo, W.; Jeong, D.; Kim, J.; Park, J. Self-Renewal of Bone Marrow Stem Cells by Nanovesicles Engineered from Embryonic Stem
Cells. Adv. Healthc. Mater. 2016, 5, 3148–3156. [CrossRef]

http://doi.org/10.3389/fphys.2018.01479
http://doi.org/10.3389/fbioe.2020.01015
http://www.ncbi.nlm.nih.gov/pubmed/32974327
http://doi.org/10.1155/2020/8825771
http://doi.org/10.1021/acs.jchemed.6b00389
http://doi.org/10.1021/acsami.9b10126
http://doi.org/10.7150/thno.31017
http://doi.org/10.1039/C7NR00352H
http://doi.org/10.1186/s13287-018-0850-0
http://doi.org/10.1016/j.actbio.2019.03.021
http://www.ncbi.nlm.nih.gov/pubmed/30878447
http://doi.org/10.1021/acsami.7b17620
http://doi.org/10.1016/j.ceramint.2019.07.096
http://doi.org/10.1186/s40824-018-0149-3
http://doi.org/10.1186/s13287-016-0391-3
http://doi.org/10.3390/biom10010048
http://doi.org/10.1371/journal.pone.0088685
http://doi.org/10.1186/s13287-019-1410-y
http://www.ncbi.nlm.nih.gov/pubmed/31747933
http://doi.org/10.1111/clr.12194
http://doi.org/10.1089/ten.tea.2016.0548
http://www.ncbi.nlm.nih.gov/pubmed/28346798
http://doi.org/10.1080/20013078.2017.1422676
http://www.ncbi.nlm.nih.gov/pubmed/29372017
http://doi.org/10.1016/j.joca.2015.12.012
http://www.ncbi.nlm.nih.gov/pubmed/26774733
http://doi.org/10.3390/nano10091838
http://www.ncbi.nlm.nih.gov/pubmed/32942556
http://doi.org/10.3390/cells8121509
http://doi.org/10.3390/pharmaceutics10040218
http://doi.org/10.1002/adhm.201600810


Cells 2022, 11, 43 19 of 19

147. Park, K.-S.; Svennerholm, K.; Shelke, G.; Bandeira, E.; Lässer, C.; Jang, S.C.; Chandode, R.; Gribonika, I.; Lötvall, J. Mesenchymal
stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res. Ther. 2019,
10, 231. [CrossRef]

148. Wagner, A.; Vorauer-Uhl, K. Liposome Technology for Industrial Purposes. J. Drug Deliv. 2011, 2011, 591325. [CrossRef]
149. Lu, M.; Zhao, X.; Xing, H.; Xun, Z.; Zhu, S.; Lang, L.; Yang, T.; Cai, C.; Wang, D.; Ding, P. Comparison of exosome-mimicking

liposomes with conventional liposomes for intracellular delivery of siRNA. Int. J. Pharm. 2018, 550, 100–113. [CrossRef]
150. De La Peña, H.; Madrigal, A.; Rusakiewicz, S.; Bencsik, M.; Cave, G.W.; Selman, A.; Rees, R.C.; Travers, P.J.; Dodi, I.A. Artificial

exosomes as tools for basic and clinical immunology. J. Immunol. Methods 2009, 344, 121–132. [CrossRef]
151. Kang, M.; Lee, C.-S.; Lee, M. Bioactive Scaffolds Integrated with Liposomal or Extracellular Vesicles for Bone Regeneration.

Bioengineering 2021, 8, 137. [CrossRef]
152. Kranendonk, M.E.; Visseren, F.L.; Van Balkom, B.W.; Nolte-’t Hoen, E.N.M.; Van Herwaarden, J.A.; De Jager, W.; Schipper, H.S.;

Brenkman, A.B.; Verhaar, M.C.; Wauben, M.H.; et al. Human adipocyte extracellular vesicles in reciprocal signaling between
adipocytes and macrophages. Obesity 2014, 22, 1296–1308. [CrossRef] [PubMed]

153. Zhang, Y.; Mei, H.; Chang, X.; Chen, F.; Zhu, Y.; Han, X. Adipocyte-derived microvesicles from obese mice induce M1 macrophage
phenotype through secreted miR-155. J. Mol. Cell Biol. 2016, 8, 505–517. [CrossRef] [PubMed]

154. Pan, Y.; Hui, X.; Hoo, R.L.C.; Ye, D.; Chan, C.Y.C.; Feng, T.; Wang, Y.; Lam, K.S.L.; Xu, A. Adipocyte-secreted exosomal microRNA-
34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J. Clin. Investig. 2019, 129, 834–849.
[CrossRef] [PubMed]

155. Liao, X.; Sharma, N.; Kapadia, F.; Zhou, G.; Lu, Y.; Hong, H.; Paruchuri, K.; Mahabeleshwar, G.H.; Dalmas, E.; Venteclef, N.; et al.
Krüppel-like factor 4 regulates macrophage polarization. J. Clin. Investig. 2011, 121, 2736–2749. [CrossRef]

156. Chen, Y.; Xue, K.; Zhang, X.; Zheng, Z.; Liu, K. Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic
chondrogenesis of cartilage progenitor cells. Stem Cell Res. Ther. 2018, 9, 318. [CrossRef]

157. Ma, K.; Zhu, B.; Wang, Z.; Cai, P.; He, M.; Ye, D.; Yan, G.; Zheng, L.; Yang, L.; Zhao, J. Articular chondrocyte-derived extracellular
vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy. J.
Nanobiotechnology 2020, 18, 163. [CrossRef]

158. Ni, Z.; Kuang, L.; Chen, H.; Xie, Y.; Zhang, B.; Ouyang, J.; Wu, J.; Zhou, S.; Chen, L.; Su, N.; et al. The exosome-like vesicles from
osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell
Death Dis. 2019, 10, 522. [CrossRef]

159. Cui, Y.; Luan, J.; Li, H.; Zhou, X.; Han, J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic
differentiation by alteration of microRNA expression. FEBS Lett. 2016, 590, 185–192. [CrossRef]

160. Wei, J.; Li, H.; Wang, S.; Li, T.; Fan, J.; Liang, X.; Li, J.; Han, Q.; Zhu, L.; Fan, L.; et al. let-7 Enhances Osteogenesis and Bone
Formation While Repressing Adipogenesis of Human Stromal/Mesenchymal Stem Cells by Regulating HMGA2. Stem Cells Dev.
2014, 23, 1452–1463. [CrossRef]

161. Zhang, Y.; Xie, R.-L.; Croce, C.M.; Stein, J.L.; Lian, J.B.; van Wijnen, A.J.; Stein, G.S. A program of microRNAs controls osteogenic
lineage progression by targeting transcription factor Runx2. Proc. Natl. Acad. Sci. USA 2011, 108, 9863–9868. [CrossRef]

162. Li, D.; Liu, J.; Guo, B.; Liang, C.; Dang, L.; Lu, C.; He, X.; Cheung, H.Y.-S.; Xu, L.; Lu, C.; et al. Osteoclast-derived exosomal
miR-214-3p inhibits osteoblastic bone formation. Nat. Commun. 2016, 7, 10872. [CrossRef] [PubMed]

163. Kong, Y.-Y.; Yoshida, H.; Sarosi, I.; Tan, H.-L.; Timms, E.; Capparelli, C.; Morony, S.; Oliveira-Dos-Santos, A.J.; Van, G.; Itie, A.;
et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nat. Cell Biol.
1999, 397, 315–323. [CrossRef] [PubMed]

164. Cappariello, A.; Loftus, A.; Muraca, M.; Maurizi, A.; Rucci, N.; Teti, A. Osteoblast-Derived Extracellular Vesicles Are Biological
Tools for the Delivery of Active Molecules to Bone. J. Bone Miner. Res. 2018, 33, 517–533. [CrossRef] [PubMed]

165. Liu, M.; Sun, Y.; Zhang, Q. Emerging Role of Extracellular Vesicles in Bone Remodeling. J. Dent. Res. 2018, 97, 859–868. [CrossRef]

http://doi.org/10.1186/s13287-019-1352-4
http://doi.org/10.1155/2011/591325
http://doi.org/10.1016/j.ijpharm.2018.08.040
http://doi.org/10.1016/j.jim.2009.03.011
http://doi.org/10.3390/bioengineering8100137
http://doi.org/10.1002/oby.20679
http://www.ncbi.nlm.nih.gov/pubmed/24339422
http://doi.org/10.1093/jmcb/mjw040
http://www.ncbi.nlm.nih.gov/pubmed/27671445
http://doi.org/10.1172/JCI123069
http://www.ncbi.nlm.nih.gov/pubmed/30667374
http://doi.org/10.1172/JCI45444
http://doi.org/10.1186/s13287-018-1047-2
http://doi.org/10.1186/s12951-020-00708-0
http://doi.org/10.1038/s41419-019-1739-2
http://doi.org/10.1002/1873-3468.12024
http://doi.org/10.1089/scd.2013.0600
http://doi.org/10.1073/pnas.1018493108
http://doi.org/10.1038/ncomms10872
http://www.ncbi.nlm.nih.gov/pubmed/26947250
http://doi.org/10.1038/16852
http://www.ncbi.nlm.nih.gov/pubmed/9950424
http://doi.org/10.1002/jbmr.3332
http://www.ncbi.nlm.nih.gov/pubmed/29091316
http://doi.org/10.1177/0022034518764411

	Clinical Background 
	MSCs: Function and Mechanism of Action upon Tissue Damage 
	EVs: Biogenesis and Function 
	MSC-Derived EVs as Novel Therapies: Advantages and Disadvantages 
	Impact of Biomaterials in MSC-Derived Extracellular Vesicles 
	MSC-Derived EVs Modulation through Cell Preconditioning 
	MSC-Derived EVs Modulation through Engineering 
	EVs Derived from MSC Differentiation 
	Conclusions and Future Perspectives 
	References

