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Abstract: The emergence of unintentional poisoning and uncontrolled vector diseases have
contributed to sensor technologies development, leading to the more effective detection of diseases.
In this study, we present the combination of graphene-based material with surface plasmon resonance
technique. Two different graphene-based material sensor chips were prepared for rapid and
quantitative detection of dengue virus (DENV) and cobalt ion (Co2+) as an example of typical metal
ions. As the fundamental concept of surface plasmon resonance (SPR) sensor that relies on the
refractive index of the sensor chip surface, this research focused on the SPR signal when the DENV
and Co2+ interact with the graphene-based material sensor chip. The results demonstrated that
the proposed sensor-based graphene layer was able to detect DENV and Co2+ as low as 0.1 pM
and 0.1 ppm respectively. Further details in the detection and quantification of analyte were also
discussed in terms of sensitivity, affinity, and selectivity of the sensor.
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1. Introduction

In this era of ever-increasing populations, the demand for the improvement of living standards
may cause some serious environmental issues, e.g., chemical exposure, electromagnetic radiation,
and air and water pollutions [1,2], and, thus, may lead to some high-risk health problems such as
chronic disease and metal poisoning [3–5]. Therefore, a lot of clean earth campaigns, and occupational
health and safety programs have been initiated by the government to control diseases, food production,
atmospheric pollution, and water safety [6–10]. One of the most common deadliest diseases that
can be found throughout the world is the mosquito-borne disease known as the dengue virus
(DENV), which is transmitted by female Aedes mosquito, Aedes aegypti. Although recent laboratory
techniques have contributed to treating the disease, the efficient and rapid detection for DENV is
still of great significance to detect the dengue virus within the viremia and early febrile phase of
infection [11–17]. The above-mentioned laboratory techniques, such as enzyme-linked immunosorbent
assay (ELISA), reverse transcriptase-polymerase chain reaction (RT-PCR), and real-time polymerase
chain reaction (qPCR), have some issues in terms of time-consuming, trained workers, complex
preparation, and high-cost reagents [18–24].
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The next important health problem to address is metal toxicity, which can be found in canned drinks
and foods [25,26], vehicle emissions [27], cosmetics [28,29] and industrial waste [30,31]. The excessive
heavy metal ions released by industries into the environment causes pollution in aquatic and terrestrial
systems, such as forests, rivers, lakes, seas, and soils that consequently bring an effect to natural
cycles [32]. Despite their overall scarcity, some heavy metal ions, such as iron, copper, zinc, and cobalt,
are known to be nutritionally essential to the human being. However, the excessive level of essential free
metal ions can cause poisoning and potentially lead to serious health problems. Other heavy metal ions,
such as mercury, lead, and cadmium, are no exception and are dangerous and poisonous even in low
consumptions [33,34]. Due to that, many conventional techniques, such as electrochemical microfluidics,
fluorescence sensor, colorimeter sensor, and enzyme-based biosensor, for metal ions detection have
successfully reduced the detection limit for cadmium, mercury, and cobalt to very low concentrations
of 11 ppb, 3 ppb, and 2 ppm, respectively [35–39]. Although these methods have adequate sensitivity,
they involve long-time measurement, complex preparation, and expensive instrumentation.

A rising surface-sensitive technique, surface plasmon resonance (SPR)-based biosensors, has drawn
much attention from many researchers due to its ease of preparation, real-time detection, high sensitivity,
fast measurements, and label-free method [40–44]. This technique is especially suitable for in situ
studies of molecular interactions and binding specificity. Owing to that, SPR-based biosensors have
come out as a high-potential sensor in medical diagnostics and environmental monitoring [45–50].
A key parameter in producing the most sensitive SPR-based biosensor is by coupling SPR with the
novel biomolecules immobilized on the gold thin film. Another equally important parameter that
governs the sensitivity of the SPR sensor is the transport of low concentration target molecules to the
sensor surface. Several methods have been employed by other researchers to improve the sensitivity
of biosensor [51–53]. According to the theoretical phenomenon of SPR, the sensitivity of the SPR
sensor is governed by binding between the analyte and the surface binding interactions at the gold
surface. The binding between them causes the changes in the refractive index on the gold surface, and,
thus, would able to excite the surface plasmon wave to produce the SPR signal [54–56]. Nowadays,
graphene and its derivatives, i.e., graphene and reduced graphene oxide, have generated tremendous
interest because of their biocompatibilities, large surface area, non-toxicity, enriched functional groups,
and excellent optical, electrical, and mechanical properties [57–61]. In this sense, graphene-based
materials have emerged as potential sensing platforms for the immobilization of biomolecules or for
the detection of various analytes [62–67]. Since then, recent works on graphene-SPR-based materials
have been applied in many fields. Their important sensing parameters, such as sensitivity, detection
limit, and binding affinity, are discussed and summarized in Table 1.

Table 1. Graphene- surface plasmon resonance (SPR)-based materials in biological applications.

Sensor Layer Target Limit of Detection Sensitivity Reference

Graphene α-thrombin 0.05 nM - [68]

Au/SAM/Graphene/ Tuberculosis bacillus - - [69]

Ag/Graphene-MoS2 ssDNA - - [70]

Graphene Mycobacterium tuberculosis (cssDNA) 28 fM - [71]

RGO Rabbit IgG 0.0625 µg/mL - [72]

Au/GO-COOH Anti BSA 0.01 pg/mL - [73]

Cr/Au/MoS2/Graphene Urea - 230◦/RIU [74]

Au/SAM/GO/3ABA Galectin-3 2.0 ng/mL - [75]

Au/Graphene Glucose - 1227 nm/RIU [76]
DNA 0.1 nM -

In view of biological sensing, Wang et al. (2011) have developed the graphene-based SPR sensor
with the aptamer binding to monitor alpha-thrombin in the detection chamber [68]. The novel concept of
graphene was further utilized for the detection of Tuberculosis bacilli in 2012. Chiu et al. demonstrated
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a novel Au-self assembled monolayer-graphene nanocomposite, yielded a highly sensitive analysis
when compared to the conventional Au/Cr-based SPR chips [69]. In a publication by Aksimsek and
Sun, the sensitivity of graphene-molybdenum disulfideconjugated with ssDNA was analyzed with a
silver substrate [70]. They found that the shift in the resonance angle and sensitivity were significantly
improved by 13% with the number of graphene layers. Other work on the detection of Mycobacterium
tuberculosis DNA (deoxyribonucleic acid) hybridization in SPR sensor was introduced by Prabowo et
al. (2016), and yielding the best detection limit of 28 fM [71]. In 2017, Jiang et al. used goat anti-rabbit
IgG-modified reduced graphene oxide to detect rabbit IgG. The lowest detection limit of 0.0625 µg/mL
rabbit IgG was successfully obtained, compared to the commercial SPR apparatus of 0.3125 µg/mL [72].
Next, the carboxyl-functionalized graphene oxide composite was developed for the detection of protein
bovine serum albumin. Experimental results revealed a strong linear graph of R2 = 0.973 with a
detection limit of 0.01 pg/mL [73]. In 2017, Jamil et al. reported on the MoS2/graphene-based SPR sensor
for urea detection. The results showed that the sensitivity of the SPR sensor was greatly enhanced
by adding the number of MoS2 and graphene layer [74]. The first graphene-based SPR sensor for
galection-3 detection was reported by Primo and co-workers in 2018. The preparation of the sensor
film began by self-assembling the gold surface with four bilayers of poly(diallyldimethylammonium
chloride) and graphene oxide, followed by the covalent attachment of 3-aminephenylboronic acid
(3ABA). It was found that the detection limit of the proposed sensor was 2.0 ng/mL [75]. Today,
the combination of optical fiber and SPR sensor has been capturing increasing research interest. Gong
et al. have developed a D-shaped plastic optical fiber surface plasmon resonance based on the graphene
for the detection of glucose and DNA. The obtained proposed sensor’s sensitivity was 1227 nm/RIU
(refractive index unit) for glucose detection. Meanwhile, for DNA detection, a satisfactory linear
response with an R2 of 0.996 was achieved in the concentration range of 0.1 nM to 1 µM [76].

As can be noticed from Table 1, no research for DENV detection using graphene-based material
incorporated with an SPR sensor has yet been reported. It is desirable that the graphene-SPR-based
materials technique has a high potential in biosensing, thus, for the first time, we developed a novel
graphene-based composite material to detect DENV quantitatively using the SPR technique. The SPR
sensing platform of gold/cadmium sulfide quantum dots-reduced graphene oxide (Au/CdSQDs-rGO)
film was expected to improve their sensitivity and limit of detection, thus be well adapted to be used
for quantitative clinical analysis.

Meanwhile, in the first work on heavy metal ion detection, Lokman et al. (2014) successfully
detected Pb2+ using Au-chitosan-graphene oxide (Au/CS/GO)-based SPR sensor. They compared
the performance of the developed SPR sensor with and without graphene oxide (GO). Even though
both thin films can detect Pb2+ as low as 0.03 ppm, a rougher surface was observed when GO was
added to Au/CS, which was believed it could improve the adsorption of Pb2+. As a result, Au/CS/GO
showed wider Pb2+ range with higher sensitivity [77]. Furthermore, a work by Nawi et al. used gold
nanoparticles decorated graphene oxide-polyaniline nanocomposite (AuNPs/GO/PANI) deposited
onto indium-tin-oxide glass. The nanocomposites have high sensitivity towards Pb2+ detection
when exposed to different concentrations of Pb2+, ranging from 0.03 ppm to 3 ppm [78]. Another
similar work by Kamaruddin et al. implemented multiple metallic layers Au-Ag-Au to the CS-GO
layer, which was also used to detect Pb2+, and there was a shift in SPR angle increased up to 3.5◦

compared to the Au-CS-GO layer only. A high sensitivity value of 2.05◦ ppm−1 using the SPR
sensor was obtained [79]. Once again, Kamaruddin and his co-workers used the same active layer,
Au/Ag/Au/CS-GO incorporated with SPR to detect Hg2+. They observed higher sensitivity of the
previously developed sensor towards Pb2+ compared to Hg2+, thus, they calculated the binding affinity
and found that CS-GO was more favorable to Pb2+ [80]. Besides, a work for K+ detection using SPR
sensor was reported by Zainudin et al. (2018) where valinomycin-doped chitosan-GO (C-GO-V) was
used as an active layer. A preliminary test with Au thin film for K+ detection showed no shift in the
resonance angle. However, when replaced with Au/C-GO-V, they successfully yielded the lowest
detection limit of 0.001 ppm with a sensitivity value of about 0.00948◦ ppm−1 [81]. Daniyal et al. used
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nanocrystalline cellulose modified with hexadecyltrimethylammonium bromide and GO composite
(CTA-NCC/GO) as an SPR active layer to detect Cu2+. A high sensitivity value of 3.271◦ ppm−1 was
obtained. It was found that the sensor could detect Cu2+ as low as 0.01 ppm [82]. Another work by
Daniyal et al. used the same active layer (CTA-NCC/GO) but this time for Ni2+ detection. Experimental
results showed that CTA-NCC/GO can detect Ni2+ as low as 0.01 ppm with a calculated sensitivity
value of 1.509◦ ppm−1 [83]. As can be seen, all the above mentioned studies used GO-based material
as an active layer. Differently, a work by Ramdzan et al. used coated chitosan/carboxyl-functionalized
graphene quantum dots on top of gold (Au/Cs/CGQDs) thin film and incorporated this with SPR to
detect Hg2+. The resonance angle was directly increased with Hg2+ concentrations. The Au/Cs/CGQDs
can detect Hg2+ as low as 0.5 ppm with a sensitivity of 0.00062◦ ppm−1 [84]. Table 2 summarizes and
compares graphene-SPR-based materials in metal ion sensing.

Table 2. Graphene-SPR-based materials in metal ions sensing.

Active Layer Metal Ions Limit of Detection Sensitivity References

Au/CS/GO Pb2+ 0.03 ppm 1.11200◦ ppm−1 [77]
AuNPs/GO/PANI Pb2+ 0.03 ppm - [78]
Au-Ag-Au CS-GO Pb2+ 0.1 ppm 2.05◦ ppm−1 [79]
Au/Ag/Au/CS-GO Hg2+ 0.1 ppm 1.66◦ ppm−1 [80]

C-GO-V K+ 0.001 ppm 0.00948◦ ppm−1 [81]
CTA-NCC/GO Cu2+ 0.01 ppm 3.271◦ ppm−1 [82]
CTA-NCC/GO Ni2+ 0.01 ppm 1.509◦ ppm−1 [83]

Cs/CGQDs Hg2+ 0.5 ppm 0.00062◦ ppm−1 [84]

Briefly, the studies on graphene-SPR-based material for heavy metal ion detection remains inchoate,
thus, further work on heavy metal ions detection, using other graphene composite material as an active
layer in SPR, should be conducted since graphenes have the potential to enhance SPR performance.
In the present work, chitosan-graphene oxide-cadmium sulfide quantum dots (Chitosan-GO-CdS QDs)
composite thin film was developed as a sensor layer for cobalt ion detection via the surface plasmon
resonance sensor. The objective of this work was to improve the detection limit of the metal ion and
the sensitivity of the detection.

2. SPR-Based Kretschmann Configuration

2.1. Theory

The optical phenomenon of SPR occurs when the incident He-Ne laser light is reflected from the
metal-dielectric interface under certain resonance conditions. Basically, when an electromagnetic wave
of incident light hits a metal film, the free electrons on the metal collectively oscillate in waves, thus
producing charge density waves propagating along the metal-dielectric interface (Figure 1a). These
charge fluctuations, called surface plasmon waves (SPW), are accompanied by an evanescent field and
decay exponentially with distance from the surface. The waves that correspond to the evanescent field
are evanescent waves and are given by [85]:

→

E = Eo(x̂ + iẑ)ei(ktx sinθ.
ni
nt
−wt)e−β|z|, (1)

where β = kt

(
sin2 θ.

n2
i

n2
t
− 1

) 1
2
, kt is the wave vector in the transmitted medium, θ is the incident angle,

and ni and nt are the refractive indices of the prism and transmitted medium, respectively. These waves
are strongly sensitive to any refraction index alteration in the dielectric medium adjacent to the metal
surface [23,86]. In order to satisfy the SPR resonance condition, the incident light must be in transverse



Materials 2019, 12, 1928 5 of 14

magnetic (TM) mode, known as p-polarized light, to excite SPW. P-polarized is needed because its
electric field vector is oriented perpendicular to the metal film, which can be expressed as follows:

→

E = Eo(x̂ + iẑ)ei(kx−ωt)e−k|z|, (2)

where Eo, k, andω are the amplitude, the wave vector, and the angular optical frequency of the electrical
field, respectively, and x̂ and ẑ are unit vectors, as shown in Figure 1b. The second condition for the
surface plasmon wave excitation is given by kx = ksp, where kx is 2π

λ np sinθ, ksp is approximated as
2π
λ

√
ε1ε2
ε1+ε2

, np is the refractive index of the prism, ε1 is the real part of the dielectric constant of the
metal, and ε2 is the dielectric constant for the dielectric medium in contact with the metal surface.
The coupling of two waves vector of the evanescent wave, kx, with that of the surface plasmons, ksp,
results in a sharp dip of SPR signal at resonance angle (θSPR) as shown in Figure 1c.
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Figure 1. Schematic diagram of the detection-based SPR technique. (a) Surface plasmon waves;
(b) Electric field components; (c) SPR resonance angle.

2.2. Experimental

Figure 2 shows the SPR setup system, where a derivative thin film was attached to a prism surface
using a refractive-index-matching fluid. This prism was then placed on an optical stage driven by
a stepper motor from 48◦ to 60◦ (Newport MM 3000). Light from the laser source (632.8 nm, 5 mW)
was then shone onto the sensor film surface. The reflected light was collected by a photodiode and
then processed by a lock-in-amplifier (SR 530). A 100 µL flow chamber was attached to the derivative
thin film to be filled up by the sample solution for the detection system. For the detection system,
0.1 pM DENV solution was injected into the chamber using a syringe pump. The SPR measurement
was carried out continuously from 0 to 20 min for each concentration of DENV solution.
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3. Results and Discussions

3.1. Graphene-SPR Based Materials for DENV Detection

As illustrated in Figure 3, the first step to develop a sensor film made of gold/cadmium sulfide
quantum dots-reduced graphene oxide/antibodies (Au/CdSQDs-rGO/Ab) film is to deposit a glass
cover-slip (24 mm × 24 mm × 0.1 mm, Menzel-Glaser, Germany) with an Au layer using a sputter coater
(50 nm, 20 mA). Next, the spin coating technique was applied to deposit the CdSQDs-rGO composite
solution on top of the Au surface (30 s, 6000rpm). The coated film was then incubated in 2 mM of
N-Ethyl-N-(3-(dimethylaminopropyl) carbodiimide (EDC; Fluka) and 5 mM of N-hydroxysuccinimide
(NHS; Sigma Aldrich) (EDC/NHS) solution for 15 min, followed by 0.01 µM Ab immobilization.
Figure 4a–c depicts the SPR signal for the Au, Au/Ab, and Au/CdSQDs-rGO/Ab sensor film generated
by the detection of 10 pM DENV solution. As expected, no response was observed with the gold
film without immobilization of Ab. From Figure 4b, the shift in SPR resonance angle can be observed
when a gold film was immobilized with Ab. Subsequently, the shift in SPR resonance angle increased
rapidly by 0.0438◦ due to the immobilization of the antibodies to the sensor surface, thus confirming
the potential of Au/CdSQDs-rGO/Ab sensor film as a DENV-sensing material.
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and (c) Au/CdSQDs-rGO/Ab sensor film.

Further, the developed sensor film was exposed to various concentrations of DENV solution
ranging from 0.1 pM to 100 pM, as shown in Figure 5. The DENV solutions were injected one after
another into the flow chamber to be in contact with the sensor film for 20 min under room temperature.
Prior to that, the phosphate buffer saline (PBS) solution was first injected into the flow chamber to obtain
the reference SPR signal. The obtained resonance angle was 53.954◦. When 0.1 pM DENV solution
was subsequently introduced, the resonance angle was right-shifted to 53.968◦. The increase in the
resonance angle indicated that the DENV antigen had been bound onto sensor film through the specific
interaction between DENV and monoclonal antibodies. This phenomenon can cause changes in sensor
film thickness, and, hence, increases its refractive index. The changes in SPR angle were greater when
the higher concentration of DENV solution (1 pM–100 pM) were introduced. However, the change
in SPR angle resulted in a left-shift in resonance angle. It was apparent that the immobilization of
biorecognition molecules was moving further apart from the previous binding, thus decreases the
plasmonic coupling [87]. The limit of quantitation obtained with the proposed sensor was 0.1 pM
DENV solution.

The reaction between the sensor film and the DENV antigen was evaluated using the Langmuir
model, which can be expressed as follows:

∆θ =
∆θmax

KD + C
, (3)

where ∆θmax is the maximum SPR shift at the saturation, C is the concentration of DENV, and KD is
the equilibrium dissociation constant. As shown in Figure 6a, the fitting graph yielded a KD value of
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9.13 pM with R2 of 0.98. Moreover, the binding affinity, KA, of the sensor film to the DENV antigen,
determined as the inverse proportional to KD, was 0.10948 pM−1. The sensitivity of the sensor film
was then determined by plotting a linear graph from 0 pM to 10 pM DENV solution. The linear fit
showed a good response with the sensitivity value of 0.0055◦/pM (R2 = 0.62). The selectivity test was
also tested by detecting 100 pM human serum albumin (HSA), and the mixture of HSA and DENV
solution. As shown in Figure 6b, the resonance angle shift for DENV antigen was higher than that
for HSA, which indicated a high selective binding towards the immobilized antibodies on the sensor
film. Aside from that, as it can be seen, the resonance angle shift for the detection of the DENV + HSA
solution was greatly increased due to the non-specific binding of the high molecular weight of HSA.Materials 2019, 12, x FOR PEER REVIEW 8 of 14 
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Figure 5. Optical reflectance for DENV concentrations (0.1–100 pM) in contact with Au/CdSQDs-rGO/Ab
layer (inset: the zoomed in graph).
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3.2. Graphene-SPR Based Materials for Metal Ion Detection

The surface plasmon resonance technique integrated with graphene oxide-based material can also
be applied for metal ion detection, as illustrated in Figure 7. Cobalt is a trace element that can be found
widely in nature. One of the biological functions of cobalt is as a metal component of vitamin B12, also
known as cyanocobalamin. However, excessive intake of cobalt and other cobalt compounds can be
toxic to the human body, as reported by previous researchers [88–90]. Therefore, chitosan-graphene
oxide-cadmium sulfide quantum dots (Chitosan-GO-CdS QDs) composite thin film was developed
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as a sensor layer for cobalt ion detection via surface the plasmon resonance sensor. The potential of
the graphene oxide based sensor layer for biosensor application to detect cobalt ion was evaluated by
exposing the sensor layer with deionized water and also with the different concentrations of cobalt ion
(0.1 ppm, 1 ppm, 10 ppm, and 100 pm). Initially, deionized water was used to obtain the reference
SPR signal, and then was furthered by introducing different concentration of cobalt ion on the sensor
layer. The SPR curves of the experiment were obtained, as shown in Figure 8. From the SPR curves,
the resonance angles of the deionized water, 0.1, 1, 10, and 100 ppm of cobalt ion obtained were 53.934◦,
53.952◦, 54. 025◦, and 54.057◦, respectively, as shown in Figure 7. The introduction of the cobalt ion on
the sensor layer caused the resonance angle to shift to the right, and, as the concentration of cobalt
ion was increased, the resonance angle shift also increased. This result confirmed the potential of the
sensor layer to detect cobalt ion in low and higher concentrations.
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The angle shift value was then calculated and a graph was plotted for the degree of the resonance
angle against concentration, as shown in Figure 9. The plotted data was then fitted with the Langmuir
equation to obtain the binding affinity, KA and the maximum angle shift at the saturation of the SPR
curves, ∆θmax. From the Langmuir fitting, the sensor layer showed a high binding affinity toward the
cobalt ion, with an affinity constant of 5.4357 ppm−1 with an R2 value of 0.8224. The high binding
affinity of the sensor layer toward the cobalt ion may due to the electrostatic force between the
graphene oxide sheets and also the CdS QD element. Complementary to this, the Langmuir fitting also
showed that the saturation value of the sensor layer occurred when the concentration of the cobalt
reached 10 ppm, with a maximum angle shift of 0.1865. In addition, the sensitivity of the sensor was
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0.01937 ◦ ppm−1, which was determined by obtaining the slope of the linear fitting of the data from 0
to 10 ppm. These results show that the sensor layer has a great potential to detect cobalt ion.
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4. Conclusions

In this study, a quantitative technique for the rapid and quantitative detection of DENV
and Co2+ was developed using graphene-SPR-based materials. The graphene-based materials of
Au/CdSQDs-rGO/Ab and Chitosan-GO-CdS QDs were able to differentiate the concentration of DENV
and Co2+ from 0.1 to 100 pM and from 0.1 to 100 ppm, respectively. Besides that, the graphene-SPR-based
sensor showed a good sensitivity of 0.0055◦ pM−1 and 0.0193◦ ppm−1 for DENV and Co2+, respectively.
The reaction between the graphene-based sensor film with DENV and Co2+ were also evaluated
using the Langmuir model. Interestingly, both the DENV and Co2+ have a good binding affinity
towards the graphene-based film, i.e., 0.10948 pM−1 and 5.4537 ppm−1, respectively. On the other
hand, the graphene-based material showed a higher sensitivity towards DENV compared to HSM.
The DENV was also able to be differentiated in the mixture of HSM, and, hence, verified that the
Au/CdSQDs-rGO/Ab had a good selectivity towards DENV. Therefore, the above results proved that
the graphene-SPR-based sensor was successfully developed for health and environmental monitoring
application in sensing DENV and Co2+.
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