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model for scoring of radiographic finger joint
destruction in rheumatoid arthritis

Toru Hirano 1, Masayuki Nishide1, Naoki Nonaka2, Jun Seita2,
Kosuke Ebina3, Kazuhiro Sakurada2 and Atsushi Kumanogoh1

Abstract

Objective The purpose of this research was to develop a deep-learning model to assess radiographic

finger joint destruction in RA.

Methods The model comprises two steps: a joint-detection step and a joint-evaluation step.

Among 216 radiographs of 108 patients with RA, 186 radiographs were assigned to the training/vali-

dation dataset and 30 to the test dataset. In the training/validation dataset, images of PIP joints, the

IP joint of the thumb or MCP joints were manually clipped and scored for joint space narrowing

(JSN) and bone erosion by clinicians, and then these images were augmented. As a result, 11 160

images were used to train and validate a deep convolutional neural network for joint evaluation.

Three thousand seven hundred and twenty selected images were used to train machine learning for

joint detection. These steps were combined as the assessment model for radiographic finger joint

destruction. Performance of the model was examined using the test dataset, which was not in-

cluded in the training/validation process, by comparing the scores assigned by the model and

clinicians.

Results The model detected PIP joints, the IP joint of the thumb and MCP joints with a sensitivity of

95.3% and assigned scores for JSN and erosion. Accuracy (percentage of exact agreement) reached

49.3–65.4% for JSN and 70.6–74.1% for erosion. The correlation coefficient between scores by the

model and clinicians per image was 0.72–0.88 for JSN and 0.54–0.75 for erosion.

Conclusion Image processing with the trained convolutional neural network model is promising to

assess radiographs in RA.
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Key messages

. Convolutional neural network-based deep learning can be applied to develop a model for assessing
hand radiographs.

. The model assesses joint space narrowing and bone erosion of the fingers of RA.

. This artificial intelligence technology will lead to more extensive and detailed evaluation of joints in future.
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Introduction

Artificial intelligence (AI) is used effectively in a wide

range of fields, including autonomous vehicles, transla-

tion, speech recognition, image processing, natural lan-

guage processing, art and medicine [1]. In medicine,

processing of histopathological images or radiographs,

mining of genomic data, screening for molecular targets

and analysis of clinical big data are considered

suitable tasks for deep learning, in which multiple

layers of neuron-like nodes mimic how human brains an-

alyse information [2]. AI trained with deep learning, such

as a convolutional neural network (CNN), which introdu-

ces robustness to variations of images, can deliver out-

standing performance in classifying various images into

significant categories [3]. Examples include the grading

of diabetic retinopathy [4], classification of skin cancer

[5, 6], prediction of lung cancer mutations [7] and classi-

fication of interstitial lung disease [8].

The management of RA has progressed dramatically

over the past several decades. With the use of numer-

ous efficacious drugs, more than half of patients have

achieved low disease activity or clinical remission, which

includes less joint pain, less joint swelling, lower serum

inflammatory markers and better global health based on

patients’ self-assessment. Disease activity and other

factors, such as progression of structural joint damage,

are considered to make treatment decisions [9]. For

evaluating structural joint damage, radiography has

been the gold standard.

Radiographic classification of RA or systemic arthritis

was first proposed by Steinbrocker et al. [10]. Several

methods for scoring radiographic joint damage in RA

were proposed by Kellgren & Bier [11], Sharp et al. [12,

13], Larsen et al. [14] or Genant [15]. Later, the Sharp/

van der Heijde method for scoring radiographs of hands

and feet was developed [16]. This method has been

widely used, especially in clinical studies. However, in

clinical settings, this method is not commonly used be-

cause it requires a high level of skill, and the differences

between examiners are considerable.

In the present research, we attempt to develop a

model for scoring of radiographic finger joint destruction

in RA. Our model comprises two steps, as shown in

Fig. 1A. The first step is a detection of joints by machine

learning (cascade classifier using Haar-like features).

The second step is a scoring of joint destruction by

deep learning (CNN), which comprises convolutional

layers, pooling layers and fully connected layers. CNN

processes the input image as two-dimentional matrix

data and gives output as numerical values or probability

of categories. CNN is currently considered to be the

most efficient algorithm for image processing. We exam-

ine the performance of our model by comparing scores

assigned by the model and those assigned by rheuma-

tologists using radiographs that were not included in the

CNN training/validation process.

Methods

Patients and images

Digital anterior–posterior radiographs of front bilateral

hands of 108 patients with RA were collected retrospec-

tively. Patients were diagnosed with RA according to the

1987 Rheumatoid Arthritis Classification by the ARA [17]

or the 2010 ACR–EULAR Classification Criteria [18]. All

patients were treated at Osaka University Hospital and

were enrolled in the institute’s cohort of RA patients.

Clinical information, such as sex, age, disease duration

and clinical laboratory values, was collected from the

medical charts. This research was approved by the

ethics committee of Osaka University Hospital and was

conducted in accordance with the Declaration of

Helsinki.

Among 216 radiographs of the 108 patients, we used

186 radiographs of 93 patients for training/validation,

and 30 radiographs of 15 patients for testing of the

trained model (Fig. 1B). From the 186 radiographs, areas

of PIP joints, the IP joint of the thumb or MCP joints

were manually clipped with the use of a graphical soft-

ware package, and 1860 clipped images were gener-

ated. The images were grey scaled, with the resolution

ranging from 40�40 pixels to 80�80 pixels. The degree

of joint destruction was scored by consensus between

two rheumatologists, with 10 or 15 years of experience

in rheumatology, according to the Sharp/van der Heijde

method [19]. The scores consisted of the joint space

narrowing (JSN) score and the bone erosion score.

Briefly, the JSN score is defined as follows: 0, no JSN;

1, focal or doubtful; 2, generalized, >50% of the original

joint space left; 3, generalized, <50% of the original joint

space left or subluxation; and 4, bony ankylosis or com-

plete luxation. The erosion score is defined as follows:

0, no erosion; 1, discrete; 2, larger, <50% of the joint

surface; 3, extending over the middle of the bone; and

5, complete collapse. The erosion score of a single joint

is calculated as the sum of each score in the joint, with

a maximal score of 5.

Detection of joints by machine learning

The first step of machine learning was to detect the fin-

ger joints. The finger joints were detected by a cascade

classifier using Haar-like features [20]. The classifier was

trained to detect finger joints such as PIP, IP and MCP

joints. The 1860 clipped images from 186 radiographs

were augmented by horizontal flipping, and a total of

3720 images was used to train the classifier (Fig. 1B).

For training the classifier and applying joint detection,

Open Source Computer Vision Library, Open-CV (v.3.4;

Intel Corporation, Santa Clara, CA, USA) was used.

Scoring of joint destruction by CNN

The second step of machine learning was to assign a

JSN score and an erosion score to each joint detected

in the previous step. The collection of the original radio-

graphs were split into three sets, namely, training,
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validation and testing datasets, following the standard

practice in machine learning (Fig. 1B). Each dataset con-

tained 146, 40 and 30 radiographs, respectively.

Radiographs contained in the training dataset were used

to tune the parameters of the CNN, and radiographs

contained in the validation dataset were used to monitor

the performance of the CNN model during the training

process. After the training process, radiographs in the

testing dataset were used to evaluate the trained CNN

model by comparing scores assigned by the model and

by clinicians. In the training process, radiographs in the

training and validation datasets were augmented by hor-

izontal flipping and/or rotation (þ10 or �10�). As a re-

sult, we obtained a total of 8760 and 2400 images of

PIP, IP or MCP joints for the training and validation

dataset, respectively. Subsequently, the obtained

images were resized to 48�48 pixels and offered to the

CNN model. The CNN model comprises two convolution

layers [filter size: 3; padding size: 1; stride: 1; activation

function: rectified linear unit (ReLU)], two pooling layers

(filter size: 2; stride: 2, maximal pooling) and three fully

connected layers with one hidden layer (512 nodes; acti-

vation function: ReLU; rate of dropout: 0.5) (Fig. 1C).

The loss function was set to softmax cross entropy, and

the optimization algorithm was set to adaptive moment

estimation (Adam) [21]. The batch size for the training

was set to 512. Batch normalization was introduced in

the CNN for the erosion score based on the preliminary

experiment [22]. Output was given as the probability of

each JSN class or each erosion class, and the class

with the highest probability was determined. The Open

Source Library for Neural Networks, Chainer (v.5.1;

Preferred Networks, Tokyo, Japan) was used for imple-

mentation of the CNN model [23].

Testing of the model

To test the performance of the trained model, we

assessed the consistency of judgements between the

model and two clinicians. One of the two clinicians

(Clinician 2) was officially trained for scoring of joint de-

struction. Thirty radiographs in the test dataset were

used (Fig. 1B). The numbers of each JSN class or ero-

sion class assigned by the model or clinicians were

counted, and the distributions of scores were compared.

The percentage of exact agreement (PEA), which is

FIG. 1 Flow of machine learning

(A) The first step of the machine learning is a detection of finger joints, and the second step is a scoring of joint de-

struction. These steps are combined as the assessment model for radiographic finger joint destruction. (B) The first

step used 3720 images for machine learning (*). The second step used 8760 images derived from 146 radiographs

for training (train dataset) the convolutional neural network (CNN), and 2400 images derived from 40 radiographs for

validation during the training process (validation dataset). Thirty radiographs were used for testing the performance of

the model (test dataset). (C) The network of the CNN consists of two convolution layers, two pooling layers and three

fully connected layers.
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identical to accuracy, and the percentage of close

agreement (PCA), which is within 1.0 score difference at

the joint level, were assessed. Sensitivity and specificity

(score zero vs at least one) were also assessed. The to-

tal score of a radiograph for JSN or erosion was calcu-

lated as the sum of each JSN score or erosion score of

PIP, IP and MCP joints. Correlations between total

scores assigned by the model and those by clinicians

were assessed using Pearson’s correlation coefficients.

Results

Patients and images

The characteristics of the patients are shown in Table 1.

Among the patients, 90 (83.3%) were female. The me-

dian and the interquartile range of age were 64.9 (53.5,

72.6) years old, and those of disease duration were 12.2

(6.4, 17.6) years. All participants were diagnosed with

RA. Seropositivity of ACPA was 67.6%. In the training/

validation dataset, the distribution of the 1860 clipped

images by joint was 744 for PIP joint, 186 for IP joint

and 930 for MCP joint. The JSN score and the erosion

score assigned by clinicians are summarized in Table 2.

Scores for intercarpal joints were not summarized be-

cause the model trained by the machine learning could

not detect many of them.

Detection of joints

Fig. 2 shows representative images processed by the

model, which detected finger joints and then assigned

scores of joint destruction. Finger joints, such as PIP, IP and

MCP joints, were identified as red rectangles by the model.

Fig. 2A shows the whole hand image processed by the

model. In this image, four PIP joints, one IP joint and five

MCP joints were correctly detected. The DIP joints, some

intercarpal and wrist joints were also detected, but many

intercarpal joints were not identified correctly.

Scoring of joint destruction

In Fig. 2, the number at the upper left corner of the rect-

angle indicates the JSN score assigned by the model

(yellow letter) and that at the lower right corner indicates

the erosion score assigned by the model (blue letter). In

Fig. 2B, an enlarged image shows joints with JSN score

0, 2, 3 or 4 and erosion score 0, 4 or 5. In Fig. 2C, an-

other enlarged image shows joints with JSN score 0, 2

or 4 and erosion score 0, 3 or 5. The accuracy (PEA) of

scoring during the training/validation process of the

CNN increased continuously with epoch, which is the

number of repetitions of the training (Fig. 3A for JSN

and Fig. 3C for erosion). The loss, which is the discrep-

ancy between the score assigned by the CNN and the

score determined by clinicians, decreased with epoch

(Fig. 3B for JSN and Fig. 3D for erosion). The training of

the CNN was stopped at epoch 40 for JSN and at ep-

och 110 for erosion, when the values of loss were mini-

mum, respectively. In the validation dataset, the

accuracy (PEA) of the JSN score reached 60.6%

(Fig. 3a, blue line) and that of erosion score reached

72.6% (Fig. 3C, blue line).

Testing of the model

The rate of joint detection by the trained model reached

95.3% (286/300). In detail, 98.3% of PIP (118/120),

86.7% of IP (26/30) and 94.0% of MCP joints (142/150)

were correctly detected by the model. Joint detection

failed in two PIP joints, four IP joints and eight MCP

TABLE 1 Characteristics of the patients

Characteristic Total Train/validation Test

n 108 93 15

Sex, female/male 90/18 77/16 13/2
Age, years 64.9 (53.5, 72.6) 64.9 (53.4, 72.6) 64.2 (56.8, 76.0)
Disease duration, years 12.2 (6.4, 17.6) 12.3 (6.8, 18.6) 9.4 (0.7, 14.1)

Class I/II/III/IV 39/56/13/0 35/46/12/0 4/10/1/0
Stage I/II/III/IV 28/19/29/32 24/16/26/27 4/3/3/5

ACPA positive, n (%) 73 (67.6) 63 (67.7) 10 (66.7)
Number of radiographs 216 186 30

Values of age and disease duration are given as the median and interquartile range. Other values are numbers in each
category.

TABLE 2 Scoring of joint destruction on training/validation

dataset

Score JSN score Erosion score

PIP/IP MCP PIP/IP MCP

0 128 510 644 761

1 58 28 74 22
2 356 184 93 33
3 326 127 28 28

4 62 81 22 15
5 N.D. N.D. 69 71

IP: IP joint of the thumb; JSN: joint space narrowing; N.D.:

not defined.
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joints. These areas often contained severely impaired

bone alignment or luxation. The distributions of scores

by the model and clinicians are shown in Fig. 3E for

JSN and Fig. 3G for erosion. The consistency of scores

by the model and clinicians are summarized in Table 3.

PEA (accuracy) between the model and two clinicians

was 49.3–65.4% for JSN and 70.6–74.1% for erosion.

The percentage of close agreement was 64.0–85.3% for

JSN and 84.3% for erosion. Sensitivity and specificity

(score zero vs at least one) were 88.0–94.2% and 52.0–

74.8% for JSN, and 34.8–42.4% and 88.2–89.4% for

erosion (Supplementary Tables S1 and S2, available at

Rheumatology Advances in Practice online). Scatter

plots of total score per radiograph are shown in Fig. 3F

for JSN and Fig. 3H for erosion. The correlation coeffi-

cients between scores by the model and two clinicians

were 0.72–0.88 for JSN and 0.54–0.75 for erosion.

Discussion

In this research, we demonstrated how a deep-learning

model was trained in order to assess radiographic finger

joint destruction in RA. Disease durations of the patients

were relatively long (median 12.2 years), and 67.6% of

the patients were seropositive for ACPA, which is a

strong predictor for radiographic progression in RA [24–

26]. Thus, the patients enrolled in this study were pre-

disposed to have joint destruction. Finger joints, such as

PIP, IP and MCP joints, were correctly detected by the

model with a sensitivity of 95.3%. Intercarpal joints

tended to be ignored by the model, probably because

images of intercarpal joints were not offered to the ma-

chine learning, and the structures of these areas were

too complex for the current model to detect. In addition,

some joints with severely impaired alignments or luxa-

tion were ignored. PEA (accuracy) of the JSN score

reached 49.3–65.4%, and that of the erosion score

reached 70.6–74.1%. PCA of the JSN score reached

64.0–85.3%, and that of the erosion score reached

84.3%. The percentage of agreement of the JSN score

for PIP/IP joints was obviously low (Table 3). Given that

machine learning was conducted using images of PIP,

IP and MCP joints together, it might be difficult for the

model to judge the differences between joints. As shown

in Fig. 3G, the distribution of erosion score seems com-

parable. However, as shown in Fig. 3E, the model and

Clinician 1 judged too much for score 0, 2 and 3 com-

pared with Clinician 2. The correlation coefficients be-

tween scores by the model and two clinicians were

FIG. 2 A representative image processed by the model

(A) A whole hand image processed by the model. The red rectangle indicates joints, such as PIP, IP or MCP. The

number at the upper left in the rectangle indicates the joint space narrowing (JSN) score (yellow letter) and that at the

lower right indicates erosion score (blue letter). (B) An enlarged image shows the joints with JSN score 0, 2, 3 or 4

and those with erosion score 0, 4 or 5. (C) Another enlarged image shows the joints with JSN score 0, 2 or 4 and

those with erosion score 0, 3 or 5. IP: IP joint of the thumb.

Radiographic finger joint destruction in RA
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0.72–0.88 for the JSN score and 0.54–0.75 for the ero-

sion score. In a previous report, correlation coefficients

between readings of multiple observers, who were radi-

ologists or rheumatologists, were 0.585–0.947 for the

JSN score and 0.529–0.962 for the erosion score [13].

Sensitivity and specificity were 88.0–94.2% and 52.0–

74.8% for JSN, and 34.8–42.4% and 88.2–89.4% for

erosion. From these results, the most problematic thing

in our model was underdiagnosis of erosions and over-

diagnosis of JSN.

Thus, image processing techniques for hand radio-

graphs using the CNN might be used in the evaluation

of joint destruction in RA. Assessment by the model

takes <1 s per image (average 0.63 s). This is obviously

faster than the time required by humans to make an as-

sessment. Although echography and MRI examinations

are increasingly used for the assessment of joint dam-

age, radiographs retain a unique value by providing a

comprehensive or panoramic view of the joints.

Automated assessment of radiographs with a deep-

TABLE 3 Consistency of scores by the model and clinicians

Evaluator Index Total (%) PIP/IP (%) MCP (%)

For JSN
Model vs Clinician 1 PEA 65.4 58.3 72.5

PCA 85.3 84.0 86.6
Model vs Clinician 2 PEA 49.3 24.3 74.6

PCA 64.0 43.1 85.2

Clinician 1 vs 2 PEA 55.5 36.7 74.5
PCA 67.6 52.7 82.6

For erosion
Model vs Clinician 1 PEA 74.1 66.0 82.4

PCA 84.3 81.9 86.6

Model vs Clinician 2 PEA 70.6 65.2 76.1
PCA 84.3 81.3 87.3

Clinician 1 vs Clinician 2 PEA 70.6 66.0 75.2
PCA 88.0 88.7 87.2

A total of 286 joints were assessed. Fourteen joints were not identified by the model. PEA is the percentage of exact
agreement, and PCA is the ratio of close agreement (within 1.0 score difference) among evaluators.

FIG. 3 Test of the model

(A, B) The accuracy, identical to the percentage of exact agreement (PEA), and the loss of joint space narrowing

(JSN) score during the process for training dataset (red line) and validation dataset (blue line). (C, D) The accuracy

(PEA) and the loss of erosion score for training dataset (red line) and validation dataset (blue line). (E) Distribution of

the JSN score assigned by the model (black bar) and by clinicians (light and dark grey bars). (F) Correlation of JSN

score between the model and clinicians. (G) Distribution of erosion score assigned by the model (black bar) and by

clinicians (light and dark grey bars). (H) Correlation of erosion score between the model and clinicians.
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learning algorithm would be of great value in many clini-

cal situations. Moreover, novel radiographic findings

about joint destruction might be discovered. Recently,

many studies using deep learning or CNN for assessing

joints or bones have been reported. These include diag-

nosis of hip OA [27], bone age assessment [28, 29],

fracture detection [30] and assessment of knees [31–33].

This research has some limitations. First, we used la-

belled data with scores assessed by the consensus of

two rheumatologists. Validity and generalizability of the

model would be improved if a greater number of images

with accurate scoring results were offered to the CNN.

Second, our model frequently failed to detect intercarpal

joints, which are often impaired in RA. For clinical appli-

cation, these areas need to be included in the assess-

ment by the model. In the present study, it was difficult

to identify each area of intercarpal joints with the model,

and a model assessing these areas could not be devel-

oped. Third, the sensitivity for erosions was obviously

low (34.8–42.4%), indicating oversight for erosions by

the model. Additionally, PEA for JSN in PIP/IP joints was

low (24.3–58.3%) and the specificity was also low (52.0–

74.8%), indicating overestimation of JSN by the model.

To overcome these problems, a larger quantity of data

should be added, and the structure of the network or

the parameters of the machine learning need to be con-

sidered. We examined several settings of parameters,

such as batch size (64, 128, 256 or 512), number of

epochs (maximum of 200 epochs), optimization algo-

rithm (Adam, AdaDelta, SGD or RMSprop), and the in-

troduction of batch normalization or dropout. The

number of combinations of these settings or parameters

is enormous, and further study to optimize them is

needed for better performance.

In the present study, we introduced a deep-learning

model using CNN, which assesses fine joint destruction

of RA. This model provides a partial assessment among

many joints that can be destroyed in RA. However, to

the best of our knowledge, a CNN-based deep-learning

model has not been applied to automated assessment

of radiographic joint destruction in RA. The introduction

of AI is useful for prevention of oversights, reduction of

time and effort, health surveys and assessment by both

specialists and non-specialists. In addition, this method-

ology can be applied to other joints, such as the elbow,

shoulder, hip, knee, foot or spine, and to other disor-

ders, such as osteoporosis, fracture or bone tumours.

We conclude that image processing with the trained

CNN model is promising to assess radiographic finger

destruction in RA.
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