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Abstract

Xeroderma pigmentosum (XP) is a rare, autosomal recessive disorder of DNA repair characterized 

by sun sensitivity and ultraviolet (UV) induced skin and mucous membrane cancers. Described in 

1874 by Moriz Kaposi in Vienna, nearly 100 years later James Cleaver in San Francisco reported 

defective DNA repair in XP cells. This eventually provided the basis for a mechanistic link 

between sun exposure, DNA damage, somatic mutations and skin cancer. XP cells were found to 

have defects in 7 of the proteins of the nucleotide excision repair pathway and in DNA polymerase 

eta. XP cells are hypersensitive to killing by UV and XP cancers have characteristic “UV 

signature” mutations. Clinical studies at NIH found a nearly 10,000-fold increase in skin cancer in 

XP patients under age 20 years demonstrating the substantial importance of DNA repair in cancer 

prevention in the general population. About 25 % of XP patients have progressive neurological 

degeneration with progressive loss of neurons, probably from DNA damage induced by oxidative 

metabolism which kills non-dividing cells in the nervous system. Interestingly, patients with 

another disorder, trichothiodystrophy have defects in some of the same genes as XP but they have 

primary developmental abnormalities without an increase in skin cancer.

PROLOGUE FABLE

Imagine it’s the late 1800’s. An infant is taken outside on the first sunny day of 

spring. After a short time, the child becomes irritable and starts crying. By the next 

morning her skin becomes very red and blistered with eyes swollen shut. Parents 

wonder what sort of malady this could be? Slowly the skin and eyes heal. But it 

happens again and again. Strong sunlight seems to bother her eyes which are often 

red and watering. Just past her first birthday, her skin starts to develop freckle-like 

spots, mostly in areas not covered by clothing. In older childhood growths develop 

and turn into tumors that seem to eat through her skin. She doesn’t always respond 

when called as if she were becoming deaf, she is having more difficulty walking 

and her thinking has become quite slow.

We now know xeroderma pigmentosum (XP) as a rare autosomal recessive disorder of DNA 

repair, which manifests clinically as photosensitivity, actinic damage to the skin, cancer of 
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UV exposed areas of the skin and mucous membranes of the eyes and mouth, and in some 

patients, progressive neurologic degeneration (Table 1). The skin is normal at birth and the 

disorder may present in two different ways. Some patients have an exaggerated response to 

UV exposure with pronounced burning and blistering on minimal exposure to sunlight 

(Figure 1A). Others have a normal acute response to sun exposure. However, they all 

develop freckle-like pigmentary changes in sun exposed areas which eventually appear as 

poikiloderma (hyperpigmentation, hypopigmentation, atrophy and telangiectasias). Unlike 

children in the general population, this freckling (lentiginous hyperpigmentation) typically 

appears before the age of 2 years (Figure 1B). The average age of first skin cancer is less 

than 10 years (Figure 2A).

Our evolving understanding of the puzzling clinical findings of XP have raised many 

questions related to cell biology, photobiology, photo-carcinogenesis, neurodegeneration, 

and genome stability. Answering the questions has illuminated several areas of biology but 

there are still many yet to be clarified.

HISTORY OF XERODERMA PIGMENTOSUM

The road to our current understanding of XP starts in the late 19th century with Moriz 

Kaposi, the Hungarian-born professor of dermatology in Vienna. In 1874, Kaposi described 

four patients with xeroderma or “parchment skin” in the early textbook of dermatology 

(Hebra and Kaposi 1874) which he wrote with Professor Ferdinand Hebra, his father-in-law 

(Kraemer et al. 1987). “ In addition to the parchment-like dryness, thinness, and wrinkling 

of the epidermis, the checkered pigmentation, and the small dilatations of the vessels, the 

most remarkable symptoms were the contraction and, at the same time, thinning of the 

skin.”, features designating poikiloderma. His description distinguishes the pigmented 

lesions from normal as “dark brown, pigmented spots resembling those of freckles”, 

recognizing the clinical distinction between freckles and clinically atypical pigmented 

lesions (e.g., lentigines) (Figure 1B,C,D and F). He notes that the “condition of the skin 

ceased with an abrupt line of demarcation” (Figure 1F) at the upper third of the arm”, but 

does not postulate why. He mentions the occurrence of a pear-shaped, red, granulating, 

fissured tumor that had developed within one year, and states “We recognised the growth to 

be an epithelioma, and destroyed it in great part.” However, his puzzlement was evidenced 

by his statement “ I have no more to say respecting this peculiar disease…”

In 1883, Albert Neisser of Breslau, Germany reported XP with neurologic abnormalities in 

two siblings who had XP with progressive neurologic degeneration beginning in the second 

decade (Neisser 1883). Today it is recognized that about 25% of XP patients in the US 

develop progressive neurologic degeneration (Bradford et al. 2011) and Table 1 and Figure 

1D.

In 1878, R. W. Taylor, MD of New York reported the first XP patients in the US at the 

inaugural meeting of the American Dermatological Association. In1888 he reviewed the 

world literature and reported a total of 40 cases (Taylor 1888).

The state of understanding of the disease was proposed in a 1926 report as follows (Per 

1926).
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1. Xeroderma pigmentosum is due to an extreme sensitization of the skin to ultra-

violet rays of the sun.

2. This congenital insufficient resistance of the skin to the actinic rays seems to be 

dependent on the consanguinity of the parents.

3. Photodynamic substances in the organism (haematoporphyrin) do not play any part 

in the pathogenesis of this disease.

4. The actinic rays of the sun produce an unquestionably unfavourable influence on 

the course of xeroderma pigmentosum.

5. Medical preventive measures have a high value in this disease. However, 

notwithstanding detailed pathological studies of the disease … no one has 

succeeded in making clear the obscure pathogenesis of this disease.”

In 1932, de Sanctis and Cacchione described 3 brothers in the same family with features of 

XP, mental deficiency, dwarfism and gonadal hypoplasia with progressive neurologic 

degeneration beginning at 2 years of age (de Sanctis and Cacchione 1932). This severe 

phenotype is not commonly observed. XP was described in a black African in 1938 

(Loewenthal and Trowell 1938) (Figure 1C) and in an American black in 1940 (King and 

Hamilton 1940).

Gartler reported ultraviolet hypersensitivity of XP cells in 1964 (Gartler 1964) but the 

importance of this report was not recognized for years. DNA repair abnormalities in XP 

were brought to the attention of the general scientific community by Cleaver’s report in 

1968 describing deficient excision repair in cultured skin fibroblasts (Cleaver 1968). Stable 

DNA photoproducts were identified by Setlow (Setlow and Setlow 1962). These 

photoproducts were not removed by XP cells (Setlow et al. 1969; Cleaver and Trosko 1970). 

XP cells were reported to be defective in the excision repair pathway by which UV damage 

to DNA is repaired in vitro (Reed et al. 1969) and also in vivo (Epstein et al. 1970). The 

excision repair proficient form of XP was described in 1971(Burk et al. 1971) and 

subsequently named “XP Variant” (Cleaver 1972). Cell fusions studies (1972) demonstrated 

heterogeneity of the XP molecular defects (De Weerd-Kastelein et al. 1972). Fusion of 

fibroblasts from different XP patients to form heterokaryons (a cell with nuclei from 

different patients) was found to exhibit correction (complementation) of the defective repair: 

The different nuclei supplied what the other was lacking to correct the defect. This implied 

that different cells had different defects and led to the characterization of different 

complementation groups A through G. (Kraemer et al. 1975a; Kraemer et al. 1975b; Arase 

et al. 1979; Keijzer et al. 1979) (Figures 3 and 4). Two decades of research and advances in 

molecular biology, including generation of rodent cell complementation groups and yeast 

mutants, finally yielded the genes responsible for the different complementation groups : 

XPA (Tanaka et al. 1990), XPB/ERCC3 (Weeda et al. 1990a; Weeda et al. 1990b), XPC 

(Legerski and Peterson 1992), XPD/ERCC2 (Flejter et al. 1992a; Flejter et al. 1992b), XPE/

DDB2 (Dualan et al. 1995), XPF/ERCC4 (Sijbers et al. 1996), XPG/ERCC5 (Mudgett and 

MacInnes 1990), and XP VARIANT (polymerase eta) (Johnson et al. 1999; Masutani et al. 

1999) (Figure 3 and 4 and Table).
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WHAT HAVE WE LEARNED ABOUT XP AND WHAT HAS XP TAUGHT US 

ABOUT BASIC BIOLOGY?

Relationship of Sun Exposure to Skin Cancer Epidemiologic studies in the normal 

population have been used as evidence to support a role for sunlight as a cause of skin 

cancer. For example, a higher frequency of skin cancer reported in a) Caucasians with light 

colored skin and eyes and frequent sunburns, b) individuals with large outdoor exposures 

such as sunbathers and outdoor laborers, c) association with latitudes closer to the equator, 

and d) exposed areas of the body compared to covered areas. However, this relationship is 

most clearly and powerfully demonstrated in XP patients, where UV damage leads to an 

early onset and increased frequency of both non-melanoma skin cancer (NMSC) and 

melanoma. In XP patients, the median age of first NMSC was 9 years (Bradford et al. 2011) 

compared to 67 years in the general population (Figure 2A). Similarly, the median age of 

first XP melanoma was 22 years, compared to 55 yr in the general population (Figure 2B). 

This highlights the profound role of an intact DNA repair system in providing protection 

against skin cancer, in effect, giving the average Caucasian individual more than half a 

century delay in the onset of skin cancer.

XP patients can develop hundreds of skin cancers. Compared to the general population, XP 

patients under age 20 years have a 10,000- fold increase in the frequency of NMSC, 2000-

fold increase in melanomas, a 1000-fold increase in cancer of the sun exposed tissues of the 

eye and 100,000-fold increase tongue cancers (Kraemer et al. 1994; Bradford et al. 2011). 

The anatomic distribution of NMSC in XP patients is similar to that in the general 

population with over 80% occurring on the face, head and neck (Kraemer et al. 1994). The 

distribution of melanomas is different from that of NMSC in XP patients and in the general 

population. Melanoma occurs more commonly on the extremities and in both groups more 

than 45% of melanomas were found on the extremities. This suggests that there are different 

mechanisms involved in the generation of melanoma versus NMSC. The similarity of the 

distribution of both melanomas and NMSC in both groups suggests that the mechanism of 

carcinogenesis in XP patients mirrors that in the general population. However, the reversal 

in median age of onset of NMSC and melanomas in XP patients (9 years and 22 years) in 

comparison to the general population (67 years and 55 years) (Figure 2A and B) points to a 

greater role of sun exposure/ DNA repair in induction of NMSC.

The UV exposed areas of the skin, tongue and eye have a high cancer risk (Figure 1C, E, G 

and H). While there is an increased risk to the anterior portion of the eye (Ramkumar et al. 

2011), the lens is a barrier to UV penetration and acts as protection to deeper eye structures. 

Similarly, the UV exposed areas of the lips and tongue have an increased cancer risk 

compared to deeper, more shielded mucous membrane surfaces. The observation that 

covered areas of the skin and other tissues are highly protected in XP patients (Figure 1F), 

with lower cancer frequencies, demonstrates the benefit of UV protection in the prevention 

of sun induced malignancy.

XP patients under age 20 years have an approximately 50-fold increase in cancers of the 

brain and other central nervous system (Kraemer et al. 1994). These include brain 

medulloblastoma (Giannelli et al. 1981), glioblastoma, spinal cord astrocytoma (DiGiovanna 
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et al. 1998) and Schwannoma. These are not sunlight exposed tissues and the relationship of 

these cancers to DNA damage is not known. On the other hand, carcinogens in cigarette 

smoke bind to DNA and cause the type of damage that would be repaired by the NER 

system in normal cells (Maher et al. 1977; Maher et al. 1987). Thus XP patients are at 

greater risk of smoking induced cancer. A 34 year old smoker with XP died of lung cancer 

(Kraemer et al. 1994). In a study of 106 XP patients followed at the NIH for almost 4 

decades, the median age at death of the XP patients was 32 years, a significant reduction 

compared to the general population (Figure 2C) (Bradford et al. 2011). The median age at 

death of XP patients with neurologic degeneration (29 years) was younger than those 

patients who had no neurological degeneration (37 years) (Figure 2D). Neurological 

degeneration was second only to cancer in cause of death in XP patients.

Role of Sun Burning in the Development of UV Induced Skin Damage and Skin Cancer

Studies in the general population have dissociated the role of acute burning versus chronic 

lower exposures in the causation of skin cancer. The chronic exposure of light skinned, 

outdoor workers has been associated with the development of multiple basal cell carcinomas 

and squamous cell carcinomas. In contrast, acute blistering burns in childhood have been 

implicated as a cause of melanoma. However, experience with XP demonstrates that this 

relationship is more complex. XP typically presents as either of two diverse clinical 

scenarios. A young child of 1–2 years of age outdoors in a relatively shady environment can 

develop an alarming blistering or oozing eruption (Figure 1A). The onset of the eruption 

may be delayed for a day or so and may be misdiagnosed as impetigo. After repeated 

occurrences the parents learn to rigorously protect the child. Other children with XP do not 

burn after minimal sun exposure (Figure 1B). However, most XP patients do develop early 

onset freckling before the age of 2 years. XP children who do not burn but only freckle, may 

not utilize rigorous sun avoidance and paradoxically may accumulate more sun exposure 

and often develop skin cancers in early childhood (Bradford et al. 2011). It is somewhat 

surprising that in the general population, blistering burns are associated with earlier onset of 

melanoma, while in XP, this is reversed. XP patients who never burned on minimal sun 

exposure were found to be significantly more likely to develop skin cancer at an earlier age 

than those who always or sometimes burned on minimal sun exposure (Bradford et al. 

2011).

XP patients with defects in complementation groups A, B, D and G tend to have blistering 

burns on minimal sun exposure; while those in groups C, E and variant do not (Figures 3 

and 4 and Table 1). However, all are at high risk to develop early onset freckling, lentigines 

and skin cancers. These observations dissociate the acute burning from the mechanism of 

UV carcinogenesis raise important unanswered questions about how the different 

abnormalities of DNA repair lead to increased cancer risk in all, but acute photosensitivity 

only in some. Clearly, the inflammatory reaction of acute burning is not necessary for the 

development of skin cancer in XP patients.

A Model of Photoaging?

Photoaging, or dermatoheliosis, describes changes to the skin from chronic exposure to the 

sun or UV radiation. This includes pigmentary changes and alterations in texture and color. 
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Early damage to melanocytes appears as freckling (tan, symmetrical, round macules) and 

later as lentigines (colored variable intensity of brown with irregular shapes, sizes and 

borders). In contrast, solar elastosis gives the skin a bumpy, yellowed appearance and is 

thought to be secondary to damage to structural components of the dermis including elastic 

and collagen fibers. Telangiectasias are the vascular components of UV damage and atrophy 

becomes noticeable when the full spectrum of poikilodermatous changes are present. These 

changes are common in the sun exposed areas of light skinned Caucasians in the general 

population who have sustained excessive, chronic UV damage, where skin laxity, sagging, 

and wrinkles are prominent. In contrast, while patients with XP develop freckling at an early 

age followed by the development of large numbers of lentigos and telangiectasias, they do 

not develop the skin laxity, sagging, wrinkles or cutis rhomboidalis of the posterior neck. As 

described by Kaposi in 1874 (Hebra and Kaposi 1874), they actually develop skin 

tightening-the opposite of wrinkling. This contrast dissociates the mechanisms causing the 

pigmentary and vascular changes (DNA damage in the epidermis and upper dermis) from 

the causes of damage to structural components of dermal elastic and collagen fibers. This 

may be explained in part by the absorption of shorter wavelength, DNA damaging, UVB by 

the epidermis and greater penetration of UVA into the deeper dermis with a direct damaging 

effect on protein. The degree of elastosis may serve as a “dosimeter” of the amount of UV 

reaching the dermis (Robbins et al. 1974). Thus XP patients demonstrate severe epidermal 

changes with minimal UV exposure to the proteins in the dermis because of their defective 

repair of epidermal DNA damage.

A Model for Clinical Research: Chemoprevention of Skin Cancers

Because of the high frequency of skin cancers in XP patients and the associated morbidity, 

effective chemoprevention approaches would convey enormous benefit. In fact, XP has been 

used as a model for skin cancer chemoprevention studies. Since each patient may develop 

large numbers of new skin cancers significant differences may be observed with small 

numbers of patients. A trial of oral isotretinon conducted with only 7 XP patients 

demonstrated a statistically significant (63%) reduction in new skin cancers compared to the 

2-year interval before treatment (Kraemer et al. 1988). This controlled clinical trial was one 

of the first to conclusively demonstrate effective chemoprevention of any cancer in humans. 

Today isotretinoin and the related retinoid acitretin are widely used in patients at high risk of 

developing new skin cancers who have other predisposing conditions including post-

transplantation and the nevoid basal cell carcinoma syndrome. T4 endonuclease V, a 

bacterial DNA repair enzyme, was also tested in a double-blind study of 20 XP patients and 

found to lower the rate of actinic keratoses and basal cell carcinoma (Yarosh et al. 2001).

Specificity in Sensitivity to Damaging Agents

One of the lessons learned from XP is that patient hypersensitivity to damaging agents is 

specific. While XP cells are hypersensitive to killing by UV they have normal killing after 

x-rays. In normal cells the bulky DNA damage caused by UV is repaired by the NER system 

which is defective in XP patients (Figure 3). Most of the X-ray damage is different and the 

X-ray repair systems are normal in XP cells. In fact, patients with XP who develop 

inoperable eye or internal tumors such as brain or spinal cord tumors have been treated with 

high dose x-irradiation as therapy and tolerated the treatment well (Grier 1919; Giannelli et 
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al. 1981; DiGiovanna et al. 1998). This is in contrast to patients who are hypersensitive to x-

irradiation, such as patients with the nevoid basal cell carcinoma syndrome (NBCC). NBCC 

patients have a germline mutation in the PATCH gene, and their cells retain only one of the 

two normally present functional alleles. Basal cell carcinomas result when NBCC cells 

sustain a second hit, which can be the result of x-irradiation. NBCC patients who develop 

neuroblastoma at a young age and receive treatment with radiation therapy frequently 

develop large number of basal cell carcinomas in the radiation port, where they may also be 

at risk for development of additional central nervous system tumors (Kleinerman 2009). 

These observations clearly highlight the differences in mechanisms of repair of UV induced 

versus x-irradiation induced DNA damage.

DNA Repair - Molecular Mechanisms of Carcinogenesis

The skin of XP patients is hypersensitive to sun exposure and this is reflected in a 

hypersensitivity of cultured skin fibroblasts following exposure to UV radiation (Ruenger et 

al. 2008; Kraemer and Ruenger 2008). Thus examination of cultured cells from XP patients 

provides an opportunity to obtain insights into detailed mechanism of the relationship of UV 

damage to carcinogenesis. For example, cells from XP patients are hypersensitive to killing 

by UV and by UV-mimetic chemical compounds such as benzo-a-pyrene in cigarette smoke 

(Maher et al. 1977; Maher et al. 1987; Kraemer and Ruenger 2008). In addition, XP cells are 

hypermutable following UV exposure thereby linking sun exposure to somatic mutations.

UV exposure of DNA produces several types of stable dipyrimidine nucleotide 

photoproducts (Kraemer and Ruenger 2008). The major photoproduct is the cyclobutane 

pyrimidine dimer (CPD) of adjacent thymines (T), cytosines (C) or mixed T and C. Also 

formed are 6-4 pyrimidine-pyrimodone TC photoproducts (6-4PP). These DNA lesions 

serve as substrates for the nucleotide excision repair (NER) pathway (Figure 3). In normal 

cells the DNA distorting 6-4PP are repaired more rapidly (within 6 h) than the CPD (about 

50% removed by 12 h). Neither photoproduct is repaired by XP cells. Unrepaired 

photoproducts are pre-mutagenic lesions. During replication, a DNA polymerase meeting an 

unrepaired photoproduct can stop replication – leading to cell death. Since the photoproduct 

distorts the nucleotides they do not code properly. Polymerases that bypass the 

photoproducts frequently incorporate the incorrect nucleotide (for example incorporating a T 

in place of a C that is involved in a TC photoproduct) (Lange et al. 2011). This leads to a C 

to T mutation which is characteristic of UV mutagenesis. In cultured XP cells and UV 

treated plasmids grown in XP cells these C to T or CC to TT “UV signature mutations” are 

frequently found after UV exposure (Bredberg et al. 1986; Gozukara et al. 1994).

If purified plasmid DNA is exposed to UV and transfected (introduced) into cells, the 

plasmid DNA is subject to repair by the DNA repair processes of the cell. The efficiency of 

repair can be assessed by use of a plasmid that codes for a marker gene. The DNA damage 

in the plasmid can be measured or modified before introduction into the cells and then the 

effect measured (Emmert et al. 2002). We used this assay to demonstrate that one UV 

photoproduct in the coding strand of the marker gene was sufficient to block its transcription 

in sensitive XP cells (Protic-Sabljic and Kraemer 1985) thereby demonstrating the 

importance of DNA repair in removal of DNA damage that blocks transcription. Similarly, 
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replicating plasmid coding for a suppressor tRNA marker that is assessed in bacteria 

revealed that the XP cells introduce a high frequency of mutations into the plasmids. 

Sequence analysis of the recovered plasmids showed that the mutations following UV 

exposure of the plasmid are frequently at sites of dipyrimidine photoproducts and lead to C 

to T mutations (Bredberg et al. 1986). This is strong direct evidence of the role of UV in 

mutagenesis. These cellular studies have provided a molecular foundation for demonstration 

the UV induced origin of mutations found in non-melanoma skin cancer (Giglia et al. 1998; 

Couve-Privat et al. 2004) and melanomas (Daya-Grosjean and Sarasin 2005; Wang et al. 

2009) in cancer suppressing genes [p53, PTCH and PTEN] in XP patients. This CC to TT 

UV “signature” has been used to link sun exposure to mutations in many other cancer 

related genes in melanomas and other skin cancers in the general population (Prickett et al. 

2009; Pleasance et al. 2010; Wei et al. 2011).

XP cells are defective in NER (Figure 3) (Van Steeg and Kraemer 1999). This system serves 

to recognize DNA damage, excise the damage and replace the damaged region with 

undamaged DNA. Global genome repair (GGR) serves to identify DNA damage in the 99% 

of the DNA that is not involved in transcription. Transcription coupled repair (TCR) is 

triggered by a stalled RNA polymerase that contacts DNA damage in actively transcribed 

genes comprising the remaining 1% of the DNA. DNA photoproducts in the global genome 

are recognized by several proteins acting in tandem including double strand DNA binding 

protein 2 (DDB2) and XPC. TCR related proteins include Cockayne syndrome A and B. 

After recognition the DNA is unwound by XPB and XPD helicases which are part of the 10 

subunit basal transcription factor IIH (TFIIH). These proteins are thus involved in both 

DNA repair and transcription of many other genes. The XPA protein maintains the open 

DNA region containing the damage which is then cut out by XPF /ERCC1 and XPG 

endonucleases as part of an approximately 30 nucleotide single stranded fragment. The 

resulting gap is filled in by DNA polymerase and ligase. The TCR pathway acts more 

rapidly than the GGR pathway and in fact shows strand specific repair with preferential 

repair of the transcribed strand. The NER pathway is closely coordinated so that if one of the 

proteins is defective then the entire pathway does not function correctly. Thus mutations in 

any of the above proteins lead to clinical diseases (Figures 3 and 4). The “XP variant” form 

of XP has normal NER. These patients have clinical XP with increased skin cancer 

susceptibility. Their cells are deficient in an error-prone DNA polymerase, polymerase eta, 

which normally serves to permit DNA replication past unrepaired photoproducts. 

Identification of this class of bypass polymerases provides insights into the varied 

mechanisms that organisms have developed to cope with DNA damage (Lange et al. 2011).

XP Neurologic Degeneration

About 25% of the XP patients have progressive neurological degeneration (Bradford et al. 

2011). These patients often have defects in the XPA, XPB, XPD or XPG gene (Table 1 and 

Figure 4). They are usually born with normal size and weight. The earliest clinical 

abnormalities are frequently absent deep tendon reflexes and high frequency hearing loss 

and these can act as screening tests. Affected individuals may have delayed developmental 

milestones. The age of onset and rate of progression of the neurological abnormalities is 

variable among patients. Typical involvement includes sensorineural hearing loss, 
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progressive intellectual impairment which may progress in severe cases to slurred speech, 

loss of ability to walk, difficulty swallowing and requirement for use of a feeding 

gastrostomy. Imaging studies show thinning of the cortex of the brain with concomitant 

dilation of the ventricles, and thickening of the skull bones. The pathology is a primary 

neuronal degeneration without evidence of inflammation or infiltration by other cells. XP 

patients with neurological degeneration have a high mortality (Figure 2D) (Bradford et al. 

2011).

Relationships Within the Family of DNA Repair Disorders

There are three related, clinically defined disorders of DNA repair that can be used as 

archetypes to understand the spectrum of genotype/phenotype relationships within this 

group (Table 1 and Figure 4)(Kraemer et al. 2007). Photosensitivity, neurologic/

developmental abnormalities and skin cancer are important pathological features which can 

be used to distinguish between these three archetypes: XP, trichothiodystrophy (TTD) and 

Cockayne syndrome (CS). In addition, there are several related or overlapping disorders 

with similar features that form a family of syndromes involving neural, oncologic, 

cutaneous, developmental and other abnormalities. Table 1 lists detailed clinical features 

which may be useful in distinguishing between XP, XP with neurologic disease, TTD, CS 

and XP/CS complex. While photophobia and skin sun sensitivity may be seen in all of these 

conditions, lentiginous hyperpigmentation is seen in XP but not TTD nor CS. Pigmentary 

retinal degeneration is seen in CS, but not in XP or TTD. More precise clinical delineation 

has permitted the identification of subtle overlap syndromes in patients with features of two 

of these disorders. Figure 4 diagrams the current state of the evolving genotype/phenotype 

relationships within this group. Phenotypes representing the clinical disorders are shown in 

red and molecular defects are shown in grey with the overlapping patterns showing the 

underlying molecular defect identified in patients within each phenotypic group. XP can be 

diagnosed on clinical criteria based on the presence of acute burning on minimal sun 

exposure, early onset freckling before the age of 2 years and skin cancer. While XP patients 

usually do not have developmental abnormalities, about 25% of XP patients develop 

progressive neurologic degeneration. TTD is a disorder characterized by short, brittle hair, 

and multisystem abnormalities (Figure 1I–L). TTD developmental abnormalities may be 

evident in the pregnant mother carrying a TTD affected fetus. These pregnancy 

abnormalities may include abnormal triple screen test results, preterm delivery, 

preeclampsia, placental abnormalities or HELLP syndrome (Moslehi et al. 2010; Tamura et 

al. 2011). The newborn may present with a collodion membrane, short stature, micrognathia, 

and have increased risk of infections, growth and developmental delay, congenital cataracts 

and other abnormalities. While patients frequently have photosensitivity, they do not 

develop skin cancer or the freckle-like pigmentary abnormalities of XP. In contrast to XP, 

the neurologic involvement in TTD patients is usually not one of progressive decline. CS 

has features of both disorders with photosensitivity and both developmental delay and 

progressive growth and neurologic decline, but not skin cancer. Cerebro-oculo-facial-

skeletal syndrome is a severe variant of CS with abnormalities beginning in utero. Infants 

are born with contractures (arthrogryposis), thought to be due to decreased fetal movement, 

extreme microcephaly, congenital cataracts and facial dysmorphism (Laugel et al. 2008; 

Laugel et al. 2010). Careful and precise assessment of clinical features of each disorder has 
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led to the identification of patients with several overlap syndromes. Patients with XP/TTD 

have features of both diseases, albeit mildly attenuated. They have tiger tail banding and hair 

shafts defects, but less prominent than occurs in TTD leading to longer hair. They are at risk 

for skin and possibly internal malignancies, but at a lower frequency than seen in XP. 

Similarly, overlap syndromes of XP/CS, CS/TTD and COSF/TTD have been described 

(Figure 4). Different mutations in the XPD gene have led to the greatest heterogeneity in 

clinical phenotype. Patients with the rare UV-sensitive syndrome have mild photosensitivity 

without pigmentary abnormalities or apparent CNS defects (Itoh et al. 1996). Their cells 

have the same transcription defects as CS cells and have been reported to have defects in the 

CS-A or CS-B genes (Horibata et al. 2004; Nardo et al. 2009) (Figure 4). This suggests that 

the CNS defect in CS patients may be related to an additional property of the CS proteins.

HOW HAS XP HELPED US UNDERSTAND THE BASIC BIOLOGY AND 

MECHANISMS UNDERLYING OTHER DISEASES ?

When the genes that are defective in XP patients were identified, the homologous genes 

were soon identified in mice. Knockout mice with many of these defects have been 

generated [see Mouse Mutation Database v5 at http://pathcuric1.swmed.edu/Research/

research.htm] and serve as models for probing the role of these genes in carcinogenesis. For 

example mice with defects in XPA, and XPC have increased susceptibility to UV induced 

skin cancer (deVries A. et al. 1995; Sands et al. 1995; Cheo et al. 2000; Tanaka et al. 2001). 

XP heterozygous mice also have an increase in cancers both of the skin and of internal 

organs (Cheo et al. 2000). This suggests that humans who are heterozygous for XP disease 

causing mutations – such as 1 million Japanese people who are carriers of an XPA founder 

mutation (Hirai et al. 2006) - may be at increased cancer risk. However, mice are not perfect 

models for these diseases since TTD and CS patients do not have increased skin cancer 

susceptibility but mice with TTD and CS mutations do have increased post-UV cancer 

frequency (van der Horst et al. 2002).

Single nucleotide polymorphisms (SNP’s) are variants in the DNA sequence that occur with 

a frequency of at least 1% in the general population. SNP’s may affect gene function, or 

more commonly, act as markers of genetic differences to which they are linked elsewhere in 

the genome. A polyA-T polymorphism (PAT) in intron 9 of the XPC DNA repair gene, was 

found to be linked to an A to C SNP in exon 15 that changed amino acid 939 from Lysine 

(AAA) to Glutamine (CAA) but did not alter the XPC function (Khan et al. 2000) The PAT 

polymorphism was also linked to an XPC intron 11 -5C/A SNP that altered the frequency of 

alternatively spliced XPC mRNA which was shown to have reduced DNA repair ability 

(Khan et al. 2002). This XPC PAT polymorphism was associated with increased 

susceptibility to head and neck squamous cell carcinoma (Shen et al. 2001) and to cutaneous 

melanoma (Blankenburg et al. 2005). The use of polymorphisms in the XPD (ERCC2) DNA 

repair gene as an indication of cancer susceptibility has been questioned (Clarkson and 

Wood 2005). However, recent meta-analysis of 13 case control studies of bladder cancer 

(Stern et al. 2009) and 56 case control studies of several types of cancer (Wang et al. 2008) 

found a weak but consistent association with several polymorphisms in the XPD gene.
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Interestingly wild type mice appear to have a defect in NER since assays DNA repair 

indicate reduced repair, yet the rodent cells have normal post-UV survival. These cells have 

a defect in the DDB2 NER gene in the dermis with defective GGR but normal TCR. A 

“humanized” mouse was developed that had addition of the DDB2 gene shows increased 

DNA repair (Alekseev et al. 2005). Interestingly, mouse keratinocytes have a higher level of 

DDB2 and greater repair than fibroblasts (Pines et al. 2009)

While patients with defects in some of the NER genes show profound, progressive 

neurologic abnormalities, mice with defects in XPA or CS do not. However, crossing of Xpa 

or Xpc mice with Csb mice does result in mice with severe neurological abnormalities 

(Murai et al. 2001; Laposa et al. 2007). The XPG mutant mouse does show neurological 

abnormalities. These mouse model systems have been used to mimic some features of 

neurological degeneration in the general population. A major theory of neuro-degeneration 

involves generation of free radicals by oxidative processes involving the mitochondria. 

These have been studied in mice with NER defects. Treatment with anti-oxidants are 

assessed in these mice.

XP cells have been used as reagents to determine the mechanism of action of 

chemotherapeutic agents. For example, XP cells with defective TCR are hypersensitive to 

killing by cis-platinum but XPC cells with a GGR defect have a normal response (Furuta et 

al. 2002). This indicates that the TCR pathway plays a role in the action of platinum and 

suggests that tumors that are resistant to platinum may have alterations in their TCR related 

genes. Interestingly, use of XP cells determined that a toxin from the sea squirt ET743, was 

activated by this TCR machinery to induce lethal DNA strand breaks (Takebayashi et al. 

2001). This agent is currently in clinical trials for cancer therapy.

Immune diversity is generated by hypermutability of immunoglobulin variable genes in 

maturing B lymphocytes. The spectrum of mutations in B cells from XP variant patients 

with defects in the DNA polymerase eta were found to show a deficiency in the frequency of 

A-T mutations and a concomitant rise in G-C mutations. This data indicates that polymerase 

eta in involved in generating mutations in immunoglobulin variable genes (Zeng et al. 

2001).

EPILOGUE

We are in the second decade of the 21st century. A young child is taken out on the first 

sunny day of spring in a modern umbrella stroller, but the child becomes irritable. By the 

next morning her skin becomes red and blistered, necessitating a trip to the emergency 

room. The pediatrician thinks this is a burn from the sun but is concerned about how parents 

could have let this happen. After a second episode, an astute dermatologist recognizes acute 

burning on minimal sun exposure, begins a work up for photosensitivity disorders, and 

instructs the parents to immediately start measures for aggressive sun protection. The child 

will not burn again. We have learned a great deal in the approximately 140 years since 

Kaposi’s description in 1874 (Hebra and Kaposi 1874). We now know that the skin changes 

of XP, are the result of UV exposure. Once a diagnosis is made, the family can be guided to 

sources of skin and eye protection (e.g., sun blocks, protective clothing, window tinting), an 

easy to use UV meter, and instructional materials for the school, and all of this may be 
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facilitated through contact with patient support groups that can be help in identifying 

resources for the family (Tamura et al. 2010). We know many, but probably not all of the 

disease causing genes. Genetic testing may be available for confirmation of diagnosis not 

only in patients but also in utero and for future pregnancy planning. Vitamin D 

supplementation will prevent deficiency. Monitoring for possible neurologic involvement 

will permit early detection and management (for example hearing aids). The Americans with 

Disabilities Act (ADA) requires a safe, UV protected school environment and mandated 

individualized educational plans (IEP) assist in education.

This child may develop freckles and lentigines, but the family should have the knowledge 

and tools to avoid most of the damage that UV can cause in XP. If a skin cancer develops, 

advanced topical and surgical management can provide a cure with minimal discomfort and 

cosmetic alteration. Patients now can live healthy fulfilling lives well into adulthood despite 

having many hundreds of skin cancers (Oh et al. 2011). While we have far, we still have a 

long way to go. Many patients are unable or unwilling to utilize extreme sun protection and 

better methods are needed. Genetic testing is not readily available. We do not have effective 

intervention for neurologic decline. And, we often have too long a delay in diagnosis. 

Individuals who do not have extreme sun sensitivity may not be diagnosed early, leading to 

substantial sun damage at a young age. While all XP patients are at high risk for the 

development of skin cancer, we do not understand why some patients burn and others just 

freckle. We do not have a method to reverse the damage. And why don’t patients with TTD 

who have photosensitivity and abnormal NER develop skin cancer? We can diagnose, treat, 

prevent damage and understand some of the pathophysiologic mechanisms, but for all of 

these, still not as well as we would like.
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Figure 1. 
XP and TTD patients studied. a) Patient XP420BE complementation group XP-D at 9 

months of age with severe blistering erythema of the malar area following minimal sun 

exposure. Note sparing of her forehead and eyes that were protected by a hat. b) Patient 

XP358BE (XP-C) at age 2 years did not sunburn easily but developed multiple 

hyperpigmented macules on her face. A rapidly growing SCC or keratoacanthoma grew on 

her upper lip and a pre-cancerous lesion appeared on her forehead. c) Northern African 

patient XP393BE (XP-C) (Mahindra et al. 2008) at age 23 years with numerous 

hyperpigmented macules on his face. Nodular basal cell cancer is present on his left nasal 

root. Pigmented basal cell cancer is present on his left cheek. His eyes show cornea scarring 

from unprotected sun exposure. d) Patient XP19BE (XP-A) (Robbins et al. 1991) at age 35 

years with neurological degeneration. He has numerous hyperpigmented macules on sun 

exposed areas of his face and neck. Progressive sensorineural deafness requires use of a 

hearing aid. Images a–d from (Bradford et al. 2011) e. Corneal clouding, pterygium, contact 

lens, loss of lashes on lower eyelid. f. Sharp demarcation between the poikilodermatous 

changes seen in sun exposed skin compared to double covered area of the buttocks of 35 

year old XP patient. g. Loss of vermillion border of the lips with prominent telangiectasias 
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and scaring of the lips and anterior tongue. h: squamous cell carcinoma of the anterior 

tongue in African man (from (Mahindra et al. 2008)). i–j Clinical appearance of TTD. i : 3 

yo girl with short brittle hair which is sparse and broken off at different lengths. She rarely 

has haircuts except to trim uneven areas. She has a smiling, outgoing personality typical of 

TTD. j. Tiger tail banding under polarizing microscopy (Original magnification × 10.) 

(Images i–j from (Liang et al. 2005).
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Figure 2. 
XP skin cancer by age at first skin cancer diagnosis and skin cancer type and mortality 

compared to U.S. general population. a. Proportion of NMSC patients diagnosed at selected 

ages. b. Proportion of melanoma patients diagnosed at selected ages. Individuals with both 

NMSC and melanoma were used for both analyses. General population data taken from 

(Glass and Hoover 1989). c. Kaplan Meier curve of xeroderma pigmentosum patient 

survival compared to US general population: 30% of XP patients had died by age 32. The 

survival of the XP patients was significantly less than the general population (p<0.001). d. 

Kaplan Meier curve of xeroderma pigmentosum patient survival stratified by neurologic 

phenotype. Patients with neurologic degeneration had poorer survival rates than those 

without neurologic degeneration (p=0.04). (Graphs from (Bradford et al. 2011)).

DiGiovanna and Kraemer Page 20

J Invest Dermatol. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Nucleotide excision repair (NER) pathway. Transcription coupled repair (TCR) removes 

damage from actively transcribing genes while global genome repair (GGR) removes 

damage from the remainder of the genome. In GGR damage such as ultraviolet induced 

cyclobutane pyrimidine dimers (CPD) or 6-4 photoproducts (6-4 PP) are recognized by 

proteins including the XPE (DDB2) and XPC gene products. In TCR, the lesion appears to 

block the progress of RNA polymerase II in a process involving the CSA and CSB gene 

products. Following initial damage recognition the pathways converge. The XPB (ERCC3) 

and XPD (ERCC2) helicases unwind the region surrounding the lesion along with the XPA 

and XPG (ERCC5) gene products, and replication protein A (RPA). The XPF and XPG 

(ERCC5) endonucleases perform incisions to remove the lesion in a fragment of about 30 

nucleotides. The resulting gap is filled in by de novo DNA synthesis. This system is 

coordinated so that if one part of the pathway is mutated the entire pathway fails to function 

normally. Mutations in the genes in rectangles have been associated with clinical disease. 

This diagram is modified from (Van Steeg and Kraemer 1999; Kraemer et al. 2007).
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Figure 4. 
DNA repair diseases - relationship of clinical disorders (red rectangles) to molecular defects 

(gray ovals) in DNA repair diseases. Ten clinical diseases and 13 molecular defects are 

represented. One disease may be caused by mutations in several different genes. Conversely, 

different mutations in one gene may result in several different clinical diseases. Modified 

from (Kraemer 2004; Kraemer et al. 2007).
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