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ABSTRACT

	

Previous immunolabeling studies (Roman, L . M., and A . L . Hubbard, 1983, ) . Cell
Biol ., 96 :1548-1558; Roman, L . M., and A . L . Hubbard, 1984, J . Cell Biol ., 98:1488-1496,
companion paper) established leucine aminopeptidase (LAP) as a specific marker for the bile
canalicular (BC) domain of the rat hepatocyte plasma membrane (PM) . In this study, we have
isolated membrane from a sonicated PM vesicle fraction using anti-LAP-coated Staphylococcus
aureus cells as a solid-phase immunoadsorbent . The extent and specificity of the immunoad-
sorption were assessed by following the behavior of LAP (the BC marker) and "P-labeled
membrane phospholipids (a uniform membrane marker) . The BC fraction obtained was
significantly enriched in LAP (yield : >70% of PM-LAP) . Alkaline phosphatase, 5'-nucleotidase,
and a 110,000-dalton glycoprotein, HA-4, were enriched in the BC fraction to the same extent
as LAP (enzyme or antigen/LAP = 1 .0) . However, alkaline phosphodiesterase I was not enriched
to the same degree (enzyme/LAP = 0.5) . Contamination of this BC fraction by membrane
derived from the sinusoidal domain and endoplasmic reticulum, as determined from the
distribution of the asialoglycoprotein receptor and NADH cytochrome c reductase, respec-
tively, was small (<13%) .

Indirect immunofluorescence has shown that the membrane
glycoprotein, leucine aminopeptidase (LAP),' is localized to
the bile canalicular (BC) domain of the rat hepatocyte plasma
membrane in situ (1) . Immunolabeling studies carried out on
isolated plasma membrane (PM) sheets at the ultrastructural
level have confirmed that LAP is both highly concentrated in
this domain and uniformly distributed within it (2) . Therefore,
LAP becomes a useful marker for the isolation of BC mem-
brane.

Several groups have attempted to separate the three do-
mains of the hepatocyte plasma membrane by procedures
that relied primarily on differences in physical parameters
(i .e ., size, density, surface charge, etc ., references 3-6) . How-
ever, most ofthe subfractions obtained were contaminated by
membranes derived from the other plasmalemmal domains

'Abbreviations used in this paper :

	

APDE, alkaline phosphodiester-
ase; ASGPR, asialoglycoprotein receptor; BC, bile canalicular (do-
main); LAP, leucine aminopeptidase ; PM, plasma membrane; PSS,
0 .5 ml of 20 mM Na phosphate, 0.15 M NaCl, 0.25 M sucrose, pH
7.4 .
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as well as from intracellular organelles . In recent years, im-
munological methods have been successfully used to isolate
particular organelles or specialized regions of an organelle
from heterogeneous mixtures of components (7-9) . The do-
main-specific location of LAP and the availability of LAP
antibodies prompted us to choose an immunoadsorption
approach for the isolation of BC membrane.
Using formaldehyde-fixed, heat-inactivated Staphylococcus

aureus cells complexed with anti-LAP antibodies, we have
successfully isolated BC membrane from a plasma membrane
fraction . In addition to LAP, the vesicle fraction we obtained
was highly enriched in alkaline phosphatase, 5'-nucleotidase,
and a BC antigen, HA-4, suggesting that these proteins are
also concentrated in the BC domain . Alkaline phosphodies-
terase (APDE) was not enriched to the same extent as these
other activities . Contamination by membrane derived from
either the sinusoidal domain or endoplasmic reticulum, as
determined from the distribution of the asialoglycoprotein
receptor (ASGPR) and NADH cytochrome c reductase, re-
spectively, was small .

Portions ofthis work have been presented elsewhere (10) .
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MATERIALS AND METHODS

Materials
Reagents were obtained from the following sources; thymidine 5'-mono-

phosphate p-nitrophenylester, phosphatidylcholine, sodium cyanoborohydride,
Sigma 104 phosphatase substrate, Sigma Chemical Co ., St. Louis, MO; aden-
osine 5' monophosphate (5'-AMP) Calbiochem-Behring Corp., La Jolla, CA ;
glutaraldehyde and osmium tetroxide (OsO,) from Electron Microscopy Sci-
ences, Fort Washington, PA; nonimmune guinea pig whole serum, Gibco
Laboratories, Inc., Grand Island, NY ; thin-layer chromatography plates, with-
out fluorescent indicator, Arthur Thomas, Philadelphia, PA. All other chemicals
were of reagent grade. Starter cultures ofS. aureus were from Dr. E. Merisko,
Department of Anatomy, University of Kansas; the phospholipid standards
from Dr . K. Miller, Department of Physiological Chemistry, Johns Hopkins
University School of Medicine ; monoclonal antibodies to the hepatic antigen
HA-4 from L . Braiterman, Department of Cell Biology and Anatomy, Johns
Hopkins University School of Medicine ; and rabbit antibodies to the asialgly-
coprotein receptor from Dr . P. Zeitlin, also from the Department of Cell
Biology and Anatomy, Johns Hopkins .

Preparation and Treatment of a Plasma
Membrane Fraction
PLASMA MEMBRANES : Plasma membranes were prepared from the liv-

ers of male Sprague-Dawley rats by the procedure of Hubbard et al . (11) .
Protease inhibitors (0.5 mM phenylmethylsulfonyl fluoride, 10 U/ml Trasylol,
1 mM benzamidine, and 1 kg/ml leupeptin and antipain) were added to the
homogenization solution (0 .25 M sucrose, 5 mM Tris-HCI, 1 mM MgCI,, pH
7 .4) Phenylmethylsulfonyl fluoride was added again to the final membrane
preparation . The plasma membrane fraction was diluted with 0 .25 M sucrose
to give a final protein concentration of 1 mg/ml, aliquoted into 1-ml samples,
and frozen at -70°C .

31P-LABELED PLASMA MEMBRANES : To prepare 31P-labeled mem-
branes, 5 mCi Of 12p (Amersham Corp., Arlington Heights, IL; orthophosphate,
carrier free in 0.5 ml PBS) was injected into the saphenous vein of an
anesthetized rat, the animal (-200 g) was sacrificed by decapitation 5 h later,
and PM sheets were isolated .
ALKALINE-EXTRACTED PLASMA MEMBRANES : The alkaline extrac-

tion procedure ofHubbardand Ma (12)was followed with minormodifications.
Aliquots ofPM (2 ml, at 1 mg/ml) were mixed with an equal volume of0.1 M
NaHC03/C03, pH 10.5, by three strokes in a Dounce-type glass homogenizer
with a loose-fitting pestle . After 5 min on ice, the suspension was centrifued at
100,000 g for 30 min . The supernate was removed and the pellet was resus-
pended to its initial volume in 0.25 M sucrose.
PREPARATION OF SONICATED PLASMA MEMBRANE VESI-

CLES: To disrupt the plasma membrane sheets into vesicles, a suspension of
plasma membranes or alkaline-extracted membranes (1 and 0.5 mg/ml, re-
spectively, and both containing the mixture of protease inhibitors listed above)
was Sonicated at 0 °C for a total of 120 s (eight 15-s bursts with 5-s intervals on
ice) in a bath sonicator (Laboratory Supply Co., Hicksville, NY; 600 V, 80
kilocycles). The suspension was centrifuged for 10 min at 1,700 g (Beckman
TJ-6, Beckman Instruments, Inc., Palo Alto, CA) and the supenate was
centrifuged again underthe same conditions. The final supernate wasexamined
by phase-contrast microscopy and found to be devoid of large membrane
sheets .

Antibodies
The preparation and characterization of anti-LAP antibodies have already

been described (1) . Control sera were obtained from nonimmunized guinea
pigs (preimmune) or purchased from Gibco Laboratories (nonimmune) and an
IgG fraction was prepared as previously outlined (1) .

Preparation of Antibody-coated S. aureus
S . A U R EU S C E LL S :

	

Formaldehyde-fixed, heat-inactivated S. aureus cells
were prepared by the procedure of Kessler (13) and stored in 2-ml aliquots at
-70°C as 10% suspensions (wt/vol) in PBS containing 0.05% sodium azide.
Before use, the thawed cells were passed through 30-pm nitex screening (Tetko,
Elmsford, NY), divided into 0 .25-0.6-ml aliquots, and washed five times by
sedimentation and resuspension in SNET buffer (0.15 M NaCl, 5 mM EDTA,
50 mM Tris-HCI, pH 7 .4,0 .25% Triton X-100, and 5 mg/ml BSA) as outlined
by Merisko et al. (8). All centrifugations were for 1 min at 8,000 g in an
Eppendorf centrifuge (Brinkman Instruments, Westbury, NY) .
ANTIBODY-COATING OF CELLS :

	

250- or 500-ul aliquots of washed
cells (resuspended to a concentration of 10% cell wt/vol) were centrifuged and
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the pellets were resuspended in one third the initial volume ofSNET. Affinity-
purified anti-LAP or nonimmune IgG (0.15-0.25 mg in PBS) was added to the
S. aureus cells and the volume was adjusted to the initial 10% (wt/vol)
concentration with SNET. The cells used to pretreat the Sonicated vesicles (see
below) were prepared by incubating 125 or 250 kl ofS. aureus cells (at 20%)
with an equal volume of nonimmune whole guinea pig serum . All antibody-
cell adsorptions were incubated for 1 h at 4°C with constant agitation, after
which excess antibody was removed by two cycles of sedimentation and
resuspension in SNET (0 .5-0 .75 ml) . The efficiency of IgG binding was
monitored by radioimmunoassay on the antibody solution before and after
exposure to the S. aureus cells. The radioimmunoassay was carried out as
described (2).

CROSS-LINKING OF ANTIBODIES TO CELLS : In some experiments
antibodies were cross-linked to the S. aureus cells to reduce the amount ofIgG
eluted during the preparation of samples for SDS PAGE . The washed, IgG-
coated cells were rinsed three more times in 20 mM Na phosphate, pH 7 .4 (0.5
ml), and resuspended in this buffer to their initial volume, and an equal volume
of0.05% glutaraldehyde in 20 mM Na phosphate was added. After 1 h at 4°C,
the cells were sedimented, washed twice with phosphate buffer, resuspended in
0.5 ml 10 mM Na cyanoborohydride (NaCNBH,), and incubated in this
solution for 30 min at room temperature to reduce the Schiff bases formed.
The cross-linked cells were used for preliminary immune overlay experiments
with the guinea pig anti-LAP antibodies ; however, native cells were used as
immunoadsorbents for several of the studies described below.

Immunoadsorption of Sonicated Vesicles with
Antibody-coated S. aureus Cells
A flow sheet for the immunoadsorption protocol followed is presented in

Fig . 1 . Aliquots from the indicated steps were saved for 3zPand enzyme analyses .

Pretreatment

	

Incubation with
5 . aureus coated
with nonimmune

serum

L
Unbound vesicles

I_

Adsorption

	

Incubation with 5. aureus cells
coated with

immune or nonimmune antibodies

Washes

Analysis

	

Cells
with
bound
vesicles

32P-Plasma membranes

3ZP-Sonicated vesicles

Cells Unbound
vesicles

FIGURE 1

	

Flow sheet for the immunoadsorption of bile front mem-
brane . The fractions underlined were analyzed for LAP activity and
3ZP-radioactivity . See Materials and Methods for details .



DETERMINATION OF OPTIMUM ADSORPTION CONDITIONS : An-
tibody-coated S. aureus cells were incubated with pretreated sonicated vesicles
for 15-120 min at 4°C with constant agitation . 60-min incubations gave the
highest ratio ofimmune to nonimmune binding (10-20 x LAP, 8-17 x "P) .
Longer incubations resulted in higher nonspecific binding (data not shown) .
The maximum amount of LAP activity was bound (70-80%) when 250 Al of
affinity-purified antibody-coated cells were incubated with 125 Ag of pread-
sorbed membranes. When the amounts of cells and vesicles were doubled, the
amount of LAP activity adsorbed also doubled. Approximately 50% of the
antigen binding activity was lost when antibody was cross-linked to S. aureus
cells with 0.025% glutaraldehyde, as assessed by the amount of LAP activity
adsorbed relative to the amount of affinity-purified anti-LAP bound to the S.
aureus cells (determined by radioimmunoassay) .
PRETREATMENT OF MEMBRANE VESICLES : To reduce nonspecific

binding, the sonicated vesicles were first incubated with S. aureus cells coated
with nonimmune whole serum (Fig. 1) . The antibody-coated cells were sedi-
mented and washed with 0 .5 ml of20 mM Na phosphate, 0.15 M NaCl, 0 .25
M sucrose, pH 7.4, supplemented with 5 mg/ml BSA (PSS-BSA). The cells
were resuspended in PSS-BSA and transferred to plastic tubes that had been
coated for 4-5 h at room temperature with a solution of0.2 mg/ml phospha-
tidylcholine in PSS. Phospholipid coating was necessary to reduce nonspecific
binding of the membrane vesicles to the tubes. After sedimentation, the cells
were diluted to their initial volume with PSS-BSA and an equal volume of
sonicated vesicles (250-500 Ag) was added. After incubation at 4°C for 45 min
to 1 h with constant agitation, the S. aureus cells were sedimented and the
unbound membranes in the supemate were collected for subsequent immu-
noadsorption.
IMMUNOADSORPTION OF BILE FRONT-DERIVED MEMBRANE VES-

ICLES: Immune and nonimmune IgG-coated S. aureus cells (± cross-linking)
were washed three times in 0.5 ml PSS-BSA, transferred to PC-coated tubes,
and sedimented. Unbound membrane vesicles from the pretreatment step (0.5
or 1 ml) were added directly to cell pellets and vortexed vigorously. After
incubation for 45 min to 1 h at 4°C with constant agitation, the cells were
sedimented and the supemate was saved . The cells were washed, once with
PSS-BSA, once with PSS, and then resuspended with PSS to a final volume of
0.5 or 1 .0 ml.

Analytical Procedures
ASSAYS :

	

LAP was assayed as previously described (1). Akahne phospho-
diesterase (APDE) was assayed according to the protocol of Touster et al . (14)
as described by Hubbard et al . (11) . 5'-nucleotidase was determined by a
radiochemical assay (15). Alkaline phosphatase activity was assessed by follow-
ing the release of p-nitrophenol at 410 nm according to the procedure of Ray
(16) as modified by Hubbard et al . (11). Protein was determined according to
Bradford (17) using BSA as a standard.

SD S PAGE : Unbound fractions from the pretreatment and adsorption
steps, as well as the initial sonicated vesicles, were sedimented at 100,000 g for
60min . Membrane adsorbed to S. aureus (0.1 ml) was sedimented as described
above. The pellets were solubilized by boiling in SDS (4%), dithiothreitol (16
mM), EDTA (4 mM), and Tris-HCI, pH 8 .7 (30 mM). After alkylation in
iodoacetamide (50 mM), samples were electrophoresed on 8% polyacrylamide
slab gels (18), then either stained wtih Coomassie Blue or transferred to
nitrocellulose (1).

IMMU NOBLOT :

	

Transferred samples were incubated with either I 'l l-
labeled antibody (a mouse monoclonal IgG to the BC antigen, HA-4) or
immune or preimmune whole serum followed by "I I-protein A as previously
described (1), except that the paper was preincubated with a filtered solution of
2% gelatin in wash buffer and the antibodies and protein A were diluted in
filtered wash buffer containing 0.4% BSA.

IODINATION :

	

ProteinA was iodinated bya modification of the procedure
ofGreenwoodet al . (19) as described in reference 2 .
ELECTRON MICROSCOPY :

	

After immunoadsorption, l Vol of a cell
sample was diluted with 5 Vol PSS, mixed with 6 Vol of 2% glutaraldehyde in
0 .1 M Na cacodylate, pH 7.4, and incubated for 30 min on ice. The initial
sonicated vesicles were fixed in a similar manner . After sedimentation at
100,000 g for 20 min (S. aureus cells) or 60 min (vesicles), the pellets were
processed for electron microscopy as described (20) .

RESULTS
Analysis of the Plasma Membrane and Sonicated
Vesicle Preparation
We followed the distributions and enrichments of two PM

marker enzymes, 5'-nucleotidase and APDE, throughout the
fractionation scheme and found them to be similar to those

we reported earlier (11). The relative specific activity andyield
of LAP (13 ± 6-fold [range 8-26] and 9 ± 4% [range 8-17])
were lower than those of the other two PM markers, in
agreement with the reports ofToda et al . (21) and Wisher and
Evans (22).
For the immunoprecipitation experiments described below,

it was necessary to uniformly label the plasma membrane so
that nonspecific binding (i .e ., non-bile front membrane)
could be determined . Since no protein marker was available,
we incorporated 3ZP into liver phospholipids and then isolated
32 P-labeled PM sheets . The 32P-labeled material followed the
same distribution as protein in our PM isolation . The final
yield of 3ZP-labeled membrane averaged 1 .1 % of the homog-
enate radioactivity (range 0.52-1 .6%). The nature of the 31p_

labeled material (lipid vs . protein) and the identification of
the radioactive species in the plasma membrane fraction were
determined by lipid extraction and thin-layer chromatography
as described by Kale (23) . 95% of the initial radioactivity was
extracted by methanol/chloroform (2:1) and 90% of the ex-
tracted label was recovered in the lower chloroform phase
(85 .5% ofthe initial counts) . Analysis ofthe chloroform phase
by thin-layer chromatography revealed that the four major
classes of phospholipids were present in the extracted plasma
membranes and that each had incorporated 3ZP to some extent
during the 5-h labelingperiod . Phosphatidylethanolamine and
phosphatidylcholine were the most abundant chemical and
radiolabeled species present, in agreement with the results of
Skipski et al . (24) and Takeuchi and Terayama (25) .
When isolated PM sheets were sonicated and the resulting

preparation was examined morphologically, the predominant
components were smooth-surfaced vesicles ranging from 100
to 1,000 nm diam (Fig. 2a) . Rough microsomes, mitochon-
dria, and filaments were also found .

Immunoadsorption of Bile Front Membranes
DISTRIBUTION OF LAP ACTIVITY AND 32P RADIOAC-

TIVITY : We followed the distribution of LAP activity to
monitor the isolation of bile front membrane . The activity of
the enzyme was not affected by incubation ofthe vesicles with
S. aureus cells and >90% of the initial activity could be
accounted for in the unbound (supemate), wash, and final
cell fractions .
When sonicated vesicles were incubated with anti-LAP

serum-coated S. aureus cells, 63% of the initial activity and
24% of the 3ZP radioactivity were adsorbed (Table I, experi-
ment A). However, the amounts of 3ZP-radioactivity in both
immune and nonimmune samples were higher than those
predicted on the basis of the LAP activity bound in the same
samples (Table I, experiment A, compare last two columns) .
The levels of 3ZP bound were substantially reduced when the
sonicated vesicle preparation waspretreated with nonimmune
serum-coated cells (Table I, experiment B). The amount of
LAP bound was not significantly altered. In addition, the 3ZP
ratios of material bound in the immune vs . nonimmune
samples increased from two to eight using such a pretreat-
ment. As seen in Table I (experiment C), both the amount of
LAP activity bound to the immune antibody-coated S. aureus
cells as well as the specificity ofbinding were further increased
when affinity-purified anti-LAP antibodies and nonimmune
IgG were used to coat the cells. That is, we could adsorb as
much as 73% of the LAP activity using affinity-purified anti-
LAP whereas as nonimmune IgG gave 15-fold lower adsorp-
tion (5%) .
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FIGURE 2

	

Electron micrograph of the sonicated vesicles and adsorbed membrane fraction . (a) An electron micrograph of the
middle region of the initial sonicated vesicle fraction (-50% of the pellet) . The size of the vesicles range from 100-1,000 nm .
junctional elements, dense fibrillar material, as well as a few mitochondria were also present. Bar, 0 .2 /m . x 42,800 . (b) Anti-
LAP-coated S . aureus cells that had been incubated with pretreated sonicated vesicles . 90% of the cells were covered to various
degrees by attached closed vesicles (arrow) . (c) Nonimmune-IgG-coated S. aureus cells were nearly devoid of associated vesicles .
Bar, 0.2,m . x 42,800 .

OTHER APPROACHES TO REDUCE NONSPECIFIC BIND-
ING : We were concerned that the pretreatment step removed
too much of the initial LAP and "P (-50% ofeach) . There-
fore, we examined other protocols that might reduce nonspe-
cific binding . Removal of the cytoplasmic filaments by alka-

500
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line extraction of the PM before sonication was not effective
in reducing the level of nonspecific binding (Table 1, experi-
ments C and D) . These findings suggested that the filaments
were not contributing to nonspecific binding .
When we examined the morphology of those membranes



Distribution of LAP during Immunoadsorption Preadsorption of the Sonicated Vesicle Preparation

adsorbed during the pretreatment step, we observed many
vesicle aggregates not in direct contact with the S. aureus
cells . Experiments carried out to determine the origin ofthese
aggregates revealed that incubation ofthe membrane vesicles
in PSS-BSA without S. aureus cells resulted in sedimentation
of 50-60% of LAP and APDE activities, as compared with
incubation in 0.25 M sucrose, which resulted in the sedimen-
tation of only 10-15% ofthese activities . The aggregation was
not domain specific, because 5'-nucleotidase, the BC-antigen
HA-4, and a sinusoidal marker, ASGPR, followed the same
distribution as LAP and APDE during the preadsorption step
(data not shown) . Thus, the pretreatment step was necessary
to remove vesicle aggregates that were generated in the im-
munoadsorption buffer and nonspecifically sedimented with
the S. aureus cells.
MORPHOLOGY OF THE IMMUNOADSORBED VESICLE

FRACTION : When S. aureus cells that had been incubated
with affinity-purified anti-LAP and preadsorbed vesicles were
examined by electron microscopy, they were found to be
covered to various degrees with attached vesicles (Fig. 2 b) .
The binding of closed vesicles (100-400 nm) in the adsorbed
samples suggested that plasma membrane vesicles and not
LAP-containing membrane fragments were recognized by the
anti-LAP antibodies. S. aureus cells complexed with nonim-
mune IgG were essentially free of adsorbed vesicles (Fig. 2 c) .
The unbound vesicle fraction after immunoadsorption was

morphologically similar to the initial sonicated vesicle as well
as the pretreated vesicle preparations (data not shown). No
obvious enrichment or depletion of a particular size or shape
vesicle class was noted . This result indicated that BC vesicles
were not morphologically distinguishable from those derived
from the sinusoidal domain .

Biochemical Characterization of the Adsorbed
Vesicle Population
ESTIMATION OF THE ENRICHMENT OF BILE FRONT

MEMBRANE: A summary of the enrichment of LAP activity
from an initial homogenate through immunoadsorption is
presented in Table II . Since BSA was included in all incuba-
tions, we were not able to measure the protein concentration
of the adsorbed vesicle population . Thus, we used the distri-
bution of `P and the specific radioactivity (32P/mg protein)

TABLE I

* The amount of LAP and 32P activity removed from the initial PM vesicle preparation is expressed as percent of recovered activity associated with S. aureus
cells. Recoveries were 85-95%.

i 1, immune; NI, nonimmune; APAb, affinity-purified anti-LAP ; NI IgG, nonimmune IgG .
S The amount of LAP and 3'P bound to the S. aureus cells was determined by direct assay and expressed as a percent of initial (± preadsorption) without
correction for recoveries (90-100%) .

r The amount of 32 P predicted to be associated with the adsorbed vesicles was determined from the following assumptions: (a) the membranes were uniformly
labeled with `P; (b) LAP was only in the bile front membrane ; and (c) the bile front membrane represented 23% of the membrane in the PM fraction .

' Ratios of LAP or `P bound to the S. aureus cells in immune vs. nonimmune samples.

TABLE II

Enrichment of LAPActivity during Immunoadsorption

* The homogenate and plasma membrane values were determined immedi-
ately after isolation of the PM fraction and separately from the last two
fractions. Approximately 1% of the total PM was used in the pretreatment
and immunoadsorption experiment (-250 Ag protein) .

' The protein values used to determine the specific activity of the initial and
adsorbed samples were calculated from the 32 p values . The specific activity
of 3'P in the PM preparation was 9 .0 x 10" cpm/mg PM protein .
Sample calculation :

3ZP in pretreated sonicated vesicles
__ 4,414 cpm +9.0 x 10" cpm/mg PM protein a0.050 mg protein

(measured)

	

( 32p sp act in PM)

LAP in adsorbed membranes

= 0 .28 umol/h +0.0097 mg protein = 29 ,2mol/h per mg protein
(measured)

of 32P in the PM fraction to estimate the amount of vesicle
protein adsorbed onto the antibody-coated cells . The 1.5-fold
increase in the relative specific activity between the plasma
membrane and initial preadsorbed vesicle fraction may have
been due to removal of non-LAP-positive components (i.e .,
unbroken plasma membrane sheets, lateral membranes with
associated filaments, mitochondria, and lysosome-like struc-
tures) or variability in LAP measurements between the PM
and adsorbed vesicles . As can be seen from Table II, >70%
of the initial LAP activity was bound to the cells with an
enrichment of 153-fold over that in the homogenate.
DISTRIBUTION OF OTHER ACTIVITIES PRESENT IN

THE PM FRACTION : Having established a procedure that
gave significant enrichment of LAP activity, we next assessed
the distribution of several conventional plasma membrane
enzymes, 5' nucleotidase, alkaline phosphatase, and APDE.
The results of this study are presented in Table III . Both 5'-
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Pretreatment

%

LAP

Removed*

32P Antibody; % LAPS bound % 32 Ps bound

32pl

predicted

A. None Serum- 1 63 .4 ± 8.01 9, 24 .4 ± 13.0 15 .0 ± 2 .3
Serum-NI 7.0 ± 4.0 12.4 ± 3.4

1 2
2.1 ± 0.6

B. Adsorb
49.0±6.0 55.0±8.0 Serum- 1 62.0±6.6 10 17.8±6.2

18

15.0±1 .5
Serum-NI 6.3±2.0 2.3±0.7 1 .2±0.5

C. Adsorb
47.0±13.0 51 .0±11 .0

APAb 73 .0±4.01
15

24.0±4.0
12

17.0±1 .0
Ni IgG 5.0±1 .0 2.0±0.9 0.8±0.4

D. Alkaline extract APAb 73.0 ~ 6 38 .2 1 6 16 .8
NI IgG 12 .1 6.0 2.3

Fraction
Total

activity
Amole/h

Specific
activity

umole/h per

Relative
specific
activity

mg protein
Homogenate 984* 0.19 1
Plasma membranes 94,5 5.0 26
Initial pretreated sonicated 0.36 7.2; 38

vesicles
Adsorbed membranes 0.28 29.Ot 153



nucleotidase and alkaline phosphatase, two plasma mem-
brane enzymes reported to be concentrated in the bile front
domain (26, 27), were adsorbed to nearly the same extent as
was LAP (i .e ., enzyme/LAP = 1 .15 and 1 .11, respectively) .
APDE, however, demonstrated a different distribution, with
-25% ofthe activity adsorbed under conditions that yielded
-50% LAP binding . This result was unexpected, since Siera-
kowska et al . (28) and Smith and Peters (29) have suggested
that APDE was concentrated in the bile front domain. The
lower amount of LAP activity bound to the S. aureus cells
seen in these experiments, relative to those reported in Table
I (-45 vs . 70%), was attributed to the use ofcross-linked cells.
However, the distribution ofthe three enzymes was the same
using native (uncross-linked) antibody-coated cells in two
experiments (data not shown).
The distribution of NADH cytochrome c reductase, an

endoplasmic reticulum marker, was also examined (Table
III), since endoplasmic reticulum represents ~20% of the
membrane in our PM fraction . This activity was substantially
depleted in the adsorbed preparation as compared with that
in the initial PM vesicle preparation and there was no specific
binding .

Immunological Characterization of the Adsorbed
Vesicle Preparation
We next examined the distribution of two domain-specific

markers throughout the immunoadsorption procedure using
an immunological approach. ASGPR is a marker for the
sinusoidal surface and the antigen termed HA-4 is concen-
trated in the bile canaliculardomain . Both antigens have been
localized to their respective domains by indirect immunoflu-
orescence (P . Zeitlin, L. Braiterman, and A. Hubbard, unpub-
lished data) . Aliquots from each step in the adsorption pro-
tocol were prepared for SDS PAGE, electrophoresed, trans-
ferred to nitrocellulose, and then incubated with the appro-
priate antibodies as described in Materials and Methods . The
results ofthis analysis are presented in Fig . 3 . Quantitation of
autoradiograms by densitometry revealed that the HA-4 an-
tigen was adsorbed to anti-LAP-coated S. aureus cells to the
same extent as was LAP, while the ASGPR was not . That is,
under conditions where 77% ofthe LAP activity was adsorbed
onto the S. aureus cells, 70% ofthe HA-4 antigen was bound
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TABLE III

Distribution ofSelected Enzymes after Immunoadsorption`

DISCUSSION

' Experimental series No . 1-3 were carried out with cross-linked S. aureus cells (500)AI) and 500,ug sonicated PM vesicles. This treatment reduced the binding
capacity of the cells. In series No. 4, 500pl native S. aureus cells were used, accounting for the higher percent adsorption of LAP (73%). The ímmunoadsorption
protocol and the enzyme activity determinations were modified in the following manner : for 5'-nucleotidase, the input of membrane was increased from 250
to 500 jug and the unbound fraction and the washes were first concentrated by ultracentrifugation (100,000 g, 60 min), resuspended to -20% of their initial
volume with PSS-BSA, and then assayed; for alkaline phosphatase, the bound activity was determined from the difference between the activity in the initial
sample and the unbound fractions (i .e ., initial-unbound [supernate + washes]), because the S. aureus cells had endogenous phosphatase activity . Enzyme
recoveries were >85% .

4 Average of three experiments ± SD .
' (I - NI of enzyme) + (I - NI of LAP) .

to the immunoadsorbent . However, <4% of the ASGPR
present in the preadsorbed sonicated vesicles was adsorbed
onto the anti-LAP-coated S. aureus. This latter data suggests
that the BC vesicle fraction was not significantly contaminated
with membrane derived from the sinusoidal domain .

Kawajiri et al. (30) first described a solid-phase affinity ad-
sorption protocol for the subfractionation of rat liver micro-
somes. We have adopted this procedure for the isolation of
bile front membrane. Using LAP as a specific probe for this
domain and formaldehyde-fixed, heat-inactivated S. aureus
cells complexed with anti-LAP antibodies, we have obtained
a membrane fraction significantly enriched in LAP activity.

Biochemical and Immunological Characterization
of the Adsorbed Vesicle Population
Enzyme analyses carried out on the adsorbed vesicle pop-

ulation revealed that LAP was significantly enriched over the
homogenate value (153-fold) . This enrichment is about three
times higher than that reported by Inoue et al. (6) for a BC-
enriched fraction obtained by differential centrifugation fol-
lowing Ca"-mediated precipitation oflateral, sinusoidal, and
intracellular membranes. However, our value may be an
overestimate owing to the uncertainty in determining the
protein concentration of initial vesicle fraction and the ad-
sorbed BC membranes. Nonetheless, the substantial amount
of PM-LAP adsorbed onto the S. aureus cells, and the low
amount of non-BC contamination, indicates that a significant
purification ofthe BC membrane has been achieved.
The maximum adsorption of LAP-positive vesicles we ob-

tained was 80% . Since we have not attempted a second
immunoadsorption with the remaining 20%, we do not know
at present if these vesicles contain LAP in an accessible
orientation (e.g., right-side-out) or an orientation that would
not be recognized by our antibody (e.g ., inside-out) . In the
preceding paper (2), we have shown that our anti-LAP prep-
aration does not bind to the cytoplasmic side of the BC
membrane.
We found that 5'-nucleotidase, alkaline phosphatase, and

the antigen HA-4 were adsorbed to the same extent as was

Immune

Percent initial activity bound

Nonimmune I/NI Enzyme/LAPS

1. Alkaline phosphatase 56.7±0.74 7.3±0.7 8.3±0.9
LAP 48.5±5.0 5 .2±0.9 9.2±1 .1

1 .15

2. 5'-Nucleotidase 48.4±5.7 3 .8±0.7 13.0±2.2
LAP 45.7 ± 3.8 5 .5 ±0.6 8.5 ± 1 .7

1 .11

3. APDE 25.3±2.7 2.2±1 .2 10.0±4.4
LAP 49.4±7.3 6.9±1 .5 7.3±1 .1

0.53

4. NADH cytochrome c reductase 6.7 ± 1 .2 4.3 ± 2.0 2.0 ± 1 .1
LAP 73.0±2.4 4.3±1 .2 18.0±5.4

0.03



FIGURE 3

	

Distribution of two domain-specific antigens during im-
munoadsorption of BC membranes (immunoblots) . Aliquots from
each step of the immunoadsorption protocol were prepared for
SDS PAGE, electrophoresed, transferred to nitrocellulose, and then
incubated with specific antibodies to the BC antigen, HA-4 (top
panel), or the sinusoidal front antigen, ASGPR (bottom panel) . The
lanes from left to right, with the fraction of each applied to the gel
in parentheses, are SV, sonicated vesicles (0 .1); PI-SV, pretreated
sonicated vesicles (0 .1); PI-Cell, cells from pretreatment (0.1) ; C-
Cell, antibody-coated S. aureus control (0 .2); UB-1, unbound fraction
after incubation with immune anti-LAP-S. aureus (0 .5) ; B-1, bound
fraction-immune (0 .2); B-Nl, bound-nonimmune (0 .2) ; UB-NI, un-
bound-nonimmune (0 .5) . Arrowheads designate the position of HA-
4 (110 kdalton) and ASGPR (85 and 43 kdalton) . The reactive
components at --55 and 26 kdalton in the top panel, lanes PI-Cell,
C-Cell, B-1, and B-Nl, have been tentatively identified as the heavy
and light chains of immunoglobulin (by co-migration with stand-
ards) . The band migrating at ^-68 kdalton in the bottom lanes PI-
Cell, UB-1, and LIB-NI appears to be albumin .

LAP, suggesting that these membrane markers are also con-
centrated in the BC domain of hepatocytes . However, APDE
distributed differently, indicating that -50% ofthis activity is
associated with noncanalicular membranes in our PM prep-
aration . This last observation was unexpected, since several
groups have reported a canalicular distribution for APDE by
both subcellular fractionation (29) and enzyme cytochemistry
(28). In addition, APDE is enriched in our plasma membrane
fraction to the same extent as 5'-nucleotidase. However, there
are several possible explanations for the apparent discrepancy .
First, enzyme cytochemistry localizes activities not antigens,
thus there are uncertainties regarding the specificity of the
substrate for only one enzyme. Secondly, subfraction of the
hepatocyte PM has to date yielded heterogeneous fractions
containing membrane derived from all three plasmalemmal
domains . Thus, caution must be used in assigning an enzyme
activity to a particular domain based on its sedimentation
characteristics. Since the BC membrane fraction we have
obtained represents one of the purest such preparations, our
finding that APDE is relatively depleted from it suggests to us
that several enzymes in different PM locations may be hydro-
lyzing the same substrate.
The absence ofASGPR in our adsorbed BC vesicle fraction

suggests that it is not significantly contaminated by sinusoidal
membrane and confirms data obtained by others in our
laboratory (11) that the ASGPR is not present in the BC
domain but is present in the other two domains .

This receptor appears to be concentrated in coated pits
along the sinusoidal surface of hepatocytes in situ (31) . Thus,
we were concerned that such regions might form coated
vesicles during sonication, resulting in a distribution of the
receptor during immunoadsorption that did not represent
that of the whole sinusoidal domain . Two observations argue
against such a concern : (a) the receptor is also present outside
of coated pits (31) ; and (b) the sonicated vesicle preparation
contains a number of vesicle profiles that contain coated
regions . This latter observation indicates that all coated pits
do not form coated vesicles during sonication .
The low percent of the initial PM NADH cytochrome c

reductase (2.3%) adsorbed onto the S. aureus cells indicates
that the BC fraction is not significantly contaminated by
membrane derived from the endoplasmic reticulum . If we
assume that only membrane derived from the BC, sinusoidal
front, and endoplasmic reticulum were adsorbed to the S.
aureus cells (a reasonable assumption, considering they ac-
count for -93% of all the membrane in the initial PM
preparation [I 1 ]), then 20% of the membranes initially pres-
ent were adsorbed, and 87% of these were derived from the
BC. The remaining 13% (at most) were derived from the
endoplasmic reticulum (<3%) and sinusoidal front (-10%) .2

Other Methods for the Isolation of Hepatocyte
Plasma Membrane Domains
A number of groups (3-6, 22, 32) have attempted to isolate

a particular membrane domain by procedures that have relied
primarily on physical parameters . While enrichment of do-

'Taking the example ofthe BC, -22% of the membrane in the PM
fraction is derived from BC (11). The amount of BC membrane in
the final adsorbed fraction is estimated from PM-BC (22%) times the
percent of PM-LAP activity present in the adsorbed fraction (78%)
which equals 17.2%, normalized to the total amount of membranes
(of all types) adsorbed (20%) .
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main-specific markers has been achieved by these schemes,
the fractions still showed contamination by membrane de-
rived from the other PM domains and intracellular organelles.
Elements of the endoplasmic reticulum were the major con-
taminants in all of these studies even when the domain
fractions were derived from isolated PM (5) .

The Use of Immunoadsorption to Isolate
Membrane Subfractions
Immunoadsorption has been demonstrated to be an effi-

cient method to isolate various membrane subfractions. Ito
and Palade (7) used polyacrylamide beads coated with rabbit
anti-NADPH cytochrome c reductase to subfractionate vesi-
cles derived from the Golgi apparatus . Merisko et al. (8)
employed S. aureus cells complexed with anticlathrin anti-
bodies to isolate coated vesicles from porcine brain. More
recently, Miljanich et al . (9) used polyacrylamide beads coated
with antiserum directed against electric organ synaptic vesicles
to isolate a membrane fraction enriched in "active zones" (the
region of the nerve terminal plasma membrane where syn-
aptic vesicles fuse) .
We have used immunoadsorption to isolate BC membrane

from hepatocyte PM. The technique is rapid, requiring -4 h
of total incubation time after the initial isolation of a PM
fraction . The protocols followed are relatively simple, requir-
ing only four solutions and a microcentrifuge. At present this
technique is not preparative, since -I% of the protein from
a single PM preparation is used for one immunoadsorption,
with ---75 izg of BC membrane recovered in the final fraction.
However, it could easily be scaled up 10-100-fold . Nonethe-
less, in its present form, this technique is amenable to char-
acterization of the BC membrane proteins, as we have
demonstrated here . In addition, immunoadsorption in con-
junction with immunoprecipitation could be used for biosyn-
thesis and transport studies, where the movement of compo-
nents into or out ofa particular membrane domain could be
assessed .
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