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Abstract

Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter

estimation. However, the classic integer derivative has some disadvantages, including

spectral information loss and the introduction of high-frequency noise. In this paper, the frac-

tional order derivative algorithm was applied to the pretreatment and partial least squares

regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil

samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous

Region of China, and used as data sets for calibration and validation. Following laboratory

measurements of spectral reflectance and clay content, the raw spectral reflectance and

absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0

order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coeffi-

cients of calibration (R2
c), root mean square errors of calibration (RMSEC), determinant coef-

ficients of prediction (R2
p), and root mean square errors of prediction (RMSEP) were applied

to assess the performance of predicting models. The results showed that models built on

the fractional derivative order performed better than when using the classic integer deriva-

tive. Comparison of the predictive effects of 22 models for estimating clay content, calibrated

by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral

reflectance (R2
c = 0.907, RMSEC = 0.425%, R2

p = 0.916, RMSEP = 0.364%, and RPD =

2.484� 2.000) and absorbance (R2
c = 0.888, RMSEC = 0.446%, R2

p = 0.918, RMSEP =

0.383% and RPD = 2.511� 2.000) were most effective. Furthermore, they performed well

in quantitative estimations of the clay content of soils in the study area.

Introduction

Direct measurements of various physical and chemical properties of soil are more accurate

than estimations via remote sensing methods; however, they often require intensive field

investigations that can be restricted by limited funds and labor [1]. Remote sensing is consid-

ered a promising alternative approach to conventional methods for estimating soil properties

PLOS ONE | https://doi.org/10.1371/journal.pone.0184836 September 21, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wang J, Tiyip T, Ding J, Zhang D, Liu W,

Wang F, et al. (2017) Desert soil clay content

estimation using reflectance spectroscopy

preprocessed by fractional derivative. PLoS ONE

12(9): e0184836. https://doi.org/10.1371/journal.

pone.0184836

Editor: Priyabrata Santra, ICAR-Central Arid Zone

Research Institute, INDIA

Received: February 16, 2017

Accepted: August 30, 2017

Published: September 21, 2017

Copyright: © 2017 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

file.

Funding: This study was supported by the National

Natural Science Foundation of China (41130531

and 41661046), National Plan on Key Technology

Research and Development Program of China

(2014BAC15B01), China Postdoctoral Science

Foundation (2016M602909) and Scientific

Research Foundation for Doctors of Xinjiang

University (BS150246). The funders had no role in

https://doi.org/10.1371/journal.pone.0184836
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184836&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184836&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184836&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184836&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184836&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184836&domain=pdf&date_stamp=2017-09-21
https://doi.org/10.1371/journal.pone.0184836
https://doi.org/10.1371/journal.pone.0184836
http://creativecommons.org/licenses/by/4.0/


because of its high efficiency, low cost, and its large-scale, non-destructive, rapid data acquisi-

tion [1, 2]. In particular, its characteristics of high spectral resolution, convenience and con-

trolled condition are well suited to laboratory analysis of soil spectral reflectance.

Traditionally, the measurement of clay content in soil is complicated and it requires more

chemical reagents and caution, especially for salt-affected soils [3]. Therefore, based on the dif-

ferent spectral responses in the VIS–NIR (visible and near-infrared) bands to soil particle size,

spectral analysis technology could be used as an alternative to ensure the accurate estimation

of the clay content in soil.

Many studies have been conducted on the spectral response features and quantitative pre-

diction of clay content [4–7]. For example, Ben-Dor and Banin [8] considered that clay con-

tent was correlated strongly with the clay minerals in soil, and that the principal characteristic

bands were related to the lattice hydroxyl groups of layered silicates. Stenberg et al. [9] re-

viewed the application of VIS–NIR spectroscopy in soil science, and their results showed that

the characteristic bands cover the absorption spectra of the clay content (1400 nm), hydroxyl

groups (1900 nm) and clay minerals (2200 nm). Using VIS–NIR spectroscopy and pretreat-

ment by Savitzky–Golay (SG) smoothing, first derivative with SG smoothing, and other math-

ematical methods, the prediction performances of models based on multivariate adaptive

regression splines were improved [10]. In order to obtain better accuracy in estimations of clay

and soil organic matter (SOM) contents, Nawar et al. [11] applied the first- and second-deriva-

tive and another seven algorithms to pretreat the reflectance data.

The pretreatment of spectral reflectance is efficient in terms of improving the accuracy of

spectral estimation models. In previous research, spectral reflectance has been transformed

often by some commonly used functions, e.g., absorbance and the corresponding integer de-

rivative algorithms [10, 12, 13]. To some degree, the spectral derivative can eliminate the back-

ground influence of the environment and highlight certain spectral features [14]. However,

because the quantity of information is considerable, the pretreatment of spectral reflectance by

a general integer order derivative might influence the detection of crucial information and, to

some extent, cause loss of spectral information [15]. Fractional calculus is a theoretical branch

of mathematics that generalizes the classic integer derivative into an arbitrary (non-integer)

order, which has broadened the concept of the classic integer derivative [14, 16]. Because of its

improved accuracy and higher efficiency, it has been used widely in system control and diag-

nosis, digital filtering, signal and image processing, and other related fields [15, 17–19]. Of par-

ticular relevance, the fractional derivative has been applied to the pretreatment of the spectral

data of saline soil [20], which has demonstrated its validity in detecting spectral information

from reflectance data of soil from arid regions.

Compared with free iron, clay content is a more reliable indicator of the age and weathering

degree of soil at the various stages of development [21]. Soil salinization and desertification are

the most common but serious environmental problems in the Ebinur Lake basin of Northwest

China [22]. Therefore, the calibration of a rapid and accurate model for the quantitative esti-

mation of local soil clay content is crucial. Given this context and motivated by previous

research, the objective of this study was to use laboratory-derived spectral reflectance data pre-

treated by the fractional derivative, in combination with known soil clay content to establish

an acceptably accurate and stable model for soil parameter estimation.

Materials and methods

Study site and sampling

Overall, 103 soil samples were collected from the study area, namely, the Ebinur Lake basin in

the southwest of the Junggar Basin in the Xinjiang Uighur Autonomous Region of China (44˚
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300–45˚160N, 82˚060–83˚400E). The study area has an arid desert climate with mean annual

precipitation, potential evapotranspiration, and temperature of 102 mm, 2492 mm, and 7.2˚C,

respectively [23, 24]. The Alataw Pass is a famous entrance for the northwest wind in the Ebi-

nur Lake region. On average, winds with speeds >8 m s-1 occur on 164 days per year, reaching

a maximum of 185 days per year [25, 26]. The main geomorphic types are stone desert, gravel

desert, salt desert, and swamp. The soil types are mainly Mollic Solonchaks, Gypsic Regosols,

and Stagnic Solonetz [22, 27]. Soil erosion by wind is a common phenomenon within this

region because of the extreme weather and particular texture of the soil.

In order to obtain representative soil samples, 103 sampling sites (30 × 30 m) were estab-

lished, with consideration of the typical landforms, landscape types, and soil textures of the

study area. Within each site, soil samples were collected at five evenly distributed points and

then mixed thoroughly to obtain a representative sample. Overall, 103 soil samples were col-

lected at depths of 0–10 cm from the study area during May 18–29, 2015 (Fig 1).

Laboratory analysis

All 103 soil samples were air-dried, crushed, and then passed through a 2.0 mm sieve and the

resulting fine earth (<2.0 mm) was retained for further analysis. The potassium dichromate

method was applied for the measurement of SOM content [28]. The concentrations of K+ and

Na+ were determined using the flame photometry method, and those of Ca2+ and Mg2+ were

Fig 1. Study area with soil sample locations.

https://doi.org/10.1371/journal.pone.0184836.g001
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determined using the EDTA complexometric titration method [28]. The soil electrical conduc-

tivity (EC) was determined using a WTW inoLab1 Multi 3420 Set B multiparameter measuring

instrument (Wissenschaftlich-Technische Werkstätten GmbH, Germany) with extracts of soil

and distilled water in a ratio of 1:5. Soil clay content was determined using a particle analyzer

and imaging system (Bluewave S3500, Microtrac Inc., Largo, FL, USA) at room temperature.

VIS–NIR spectroscopy and spectral processing

Spectral measurement. For controlled irradiance conditions, the measurements of spec-

tral reflectance for all soil samples were conducted in a dark laboratory. The reflectance spectra

were measured using an ASD FieldSpec1 3 portable spectrometer (Analytical Spectral

Devices Inc., Boulder, CO, USA) with a spectral range of 350–2500 nm. The sampling intervals

of this spectrometer are 1.4 nm (350–1000 nm) and 2.0 nm (1000–2500 nm), while the resam-

pling interval is 1.0 nm [5, 20]. Circular containers with a diameter of 12.0 cm and a depth of

1.8 cm were used to store the soil samples (1.5 cm is considered optically infinitely thick for

soil). To avoid contamination during the measurements, these containers had been painted

black in advance [29]. Notably, each sample had the same flat measuring surface [30]. Scan-

ning was performed using a fiber optic sensor with an 8˚ zenith angle, which was placed 10.0

cm above the samples [20]. For lighting, a halogen lamp (50 W) was placed 50.0 cm from each

sample at a zenith angle of 30˚ [1, 11]. For each measurement, 20 spectral curves were gathered

from the central area of the sample, and the final reflectance was yielded by averaging these 20

representative spectra. To ensure accuracy, the spectrometer was calibrated using a Spectra-

lon1 panel with 100% reflectance prior to each measurement.

Spectral preprocessing. The measured reflectance data were translated from binary to

ASCII and exported using ViewSpecPro™ software version 6.0. Marginal wavebands with low

signal-to-noise ratios (350–400 and 2401–2500 nm) were omitted in order to eliminate the

noise at the edges of each spectrum [31]. Smoothing was conducted with the SG algorithm

using a window size of 5 and polynomial order of 2 using OriginPro1 version 9.0.0 [32]. The

processed spectra constituted the final data for later analysis (S1 File). The processed spectral

reflectance data of all the soil samples are illustrated in Fig 2.

Generally, absorbance spectra are employed in spectral analysis because unlike inversion

(1/R), root mean square (
ffiffiffiffi
R
p

), logarithm (lg R), and other forms, they have has practical spec-

tral meaning [33]. For better modeling results and improved nonlinear relations, the previ-

ously pretreated spectral reflectance was transformed into absorbance.

Fractional derivative

Fractional calculus is a theoretical branch of mathematics that generalizes the classic integer

derivative into an arbitrary (non-integer) order. Detailed descriptions of this algorithm have

Fig 2. Average reflectance spectra curves and their corresponding standard deviation values (shaded

regions).

https://doi.org/10.1371/journal.pone.0184836.g002
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been given by Schmitt [14] and by Zhang et al. [20]. In general, a fractional derivative has mul-

tiple forms, e.g., Grümwald–Letnikov (G-L), Riemann–Liouville, and Capotu [34, 35]. In

order to reduce computation complexity, the G-L definition was applied to the relevant calcu-

lations [36]. The specific formula for G-L on the section is as follows:

daf ðxÞ ¼ lim
h!0

1

ha

X½ðt� aÞ=h�

m¼0

ð� 1Þ
m Gðaþ 1Þ

m!Gða � mþ 1Þ
f ðx � mhÞ ð1Þ

where α and h are considered the order and step length, respectively, and the Gamma function

is as defined in Eq (2):

GðzÞ ¼
Z 1

0

expð� uÞuz� 1du ¼ ðz � 1Þ! ð2Þ

The actual spectral resolution of the instrument in this research was 1 nm; thus, setting

h = 1 means Eq (1) can be written as:

daf ðxÞ
dxa

� f ðxÞ þ ð� aÞf ðx � 1Þ þ
ð� aÞð� aþ 1Þ

2
f ðx � 2Þ þ � � � � � �

Gð� aþ 1Þ

n!Gð� aþ nþ 1Þ
f ðx � nÞ ð3Þ

Notably, when α = 1 or 2, Eq (3) is identical to the common first- and second-derivative

equations. The 0.0 order stands for data that are not processed by the algorithm [20, 37, 38].

Thus, according to Eq (3), the 0.0 to the 2.0 order fractional derivatives of spectral reflectance

and its absorbance (order interval: 0.2) were calculated under the Java programming inte-

grated development platform Eclipse.

Estimation model and prediction accuracy

Selection of calibration and validation set. For choosing the calibration and validation

data set, the Concentration Gradient, Kennard–Stone (K-S), Sample Set Partitioning Based on

Joint x-y Distances (SPXy), and other algorithms have been used widely [11–13]. The K-S algo-

rithm is based on spectral distances, i.e., the spectral distance between two samples is calcu-

lated as in Eq (4). In spectral analysis, xp(i) and xq(i) are the responses at the ith wavelength for

samples p and q:

dspðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
½xpðiÞ � xqðiÞ�

2

q

p; q 2 ½1; n� ð4Þ

The SPXy algorithm is a modification of the K-S algorithm that can accommodate multidi-

mensional variable space and two intersample distances [39–41]. In this algorithm, the sample

distances are determined based on the independent variable (sp) and dependent variable (p)

space for the parameter under consideration, and n is the number of samples. As above, y
means the actual clay content in this research. Therefore, the distance dp(p,q) can be computed

as:

dpðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyp � yqÞ
2

q

¼ jyp � yqj p; q 2 ½1; n� ð5Þ

By assigning the same weight to the distributions of the samples in the sp and p spaces, the

distances dsp(p,q) and dp(p,q) are both divided by the maximum values in the data set. Thus,
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the normalized d(p,q) can be calculated as follows:

dðp; qÞ ¼
dspðp; qÞ

maxp;q2½1;n�dspðp; qÞ
þ

dpðp; qÞ
maxp;q2½1;n�dpðp; qÞ

p; q 2 ½1; n� ð6Þ

In this research, the calibration and validation data sets were selected by the SPXy algo-

rithm, and they comprised 52 and 51 samples, respectively.

Modeling method and accuracy test. Partial least squares regression (PLSR) has been

proven a robust and reliable approach in spectral quantitative research, primarily because of

its advantages regarding dimension reduction and the synthesis and solving of collinearity

problems among independent variables [20, 42]. Here, to take full advantage of spectral reflec-

tance data, all wavelengths in the 401–2400nm range were applied in building up the models

using PLSR.

The performance of clay content prediction models is often assessed by five performance

indices: the ratio of performance to deviation (RPD), determinant coefficients of calibration

(R2
c ), root mean square errors of calibration (RMSEC), determinant coefficients of prediction

(R2
p), and root mean square errors of prediction (RMSEP):

R2 ¼

Xn

i¼1

ðMi �
�MÞ � ðPi �

�PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðMi �
�MÞ2�

Xn

i¼1

ðPi �
�PÞ2�

s ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðPi � MiÞ
2

s

ð8Þ

RPD ¼ SD=RMSEP ð9Þ

where Mi is the measured value and Pi is the predicted value, �M is the mean of the measured

values; �P is the mean of the predicted values, SD is the standard deviation of the measured val-

ues, and n is the number of samples.

Optimal models are represented by high values of R2
c , R2

p, and RPD but low values of

RMSEC and RMSEP. Generally, the RPD can be divided into three grades: Class A

(RPD� 2.000) has good predictive performance; Class B (1.400 < RPD < 2.000) indicates a

possibility of distinguishing between high and low levels of clay content poorly, and Class C

(RPD� 1.400) has no predictive ability [13, 43].

The entire calculation of this step was conducted using MATLAB1 software version

R2012a (MathWorks, Inc., Natick, MA, USA).

Results

Statistical analysis of soil data

The descriptive statistical characteristics of the 103 soil samples are presented in Table 1. The

clay content of all samples was low with mean and maximum values of 1.288% and 4.543%,

respectively. Furthermore, the standard deviation was 0.961% and the coefficient of variation

was 74.557%, indicating intermediate variability. The SOM content had a wider range, varying

from 0.684 to 78.387 g kg-1 with a mean value of 21.429 g kg-1. There were significant correla-

tions between the clay and SOM contents (r = 0.307), as well as clay content and EC (r = 0.314)

at the 0.05 significance level.
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Soil spectrum

To investigate the relationship between clay content and spectral reflectance, soil samples with

different clay contents were selected for curve plotting (Fig 3). The three spectral curves had

similar shapes, variation tendencies and characteristic peaks. Thus, it was not complicated to

distinguish the spectrum with the lowest, average, and highest clay contents in the range of

401–2400 nm, despite the spectral curves of the three soil samples having some overlapping

sections (e.g., 550–600 and 1870–2000 nm). Because of moisture from different sources, there

were three significant absorption features located around 1400, 1900, and 2200 nm [44, 45]. It

was obvious that all three spectra had the highest reflectance near 2150 nm. The curves could

be distinguished approximately from 400 to 600 nm and from 1900 to 2000 nm. The diagram

shows that clay contents of 0.000% and 4.543% corresponded to the lowest and highest reflec-

tance, respectively, with the average spectrum approximately mid-way in between. The rela-

tionship intuitively reflected the correlation of clay content and corresponding spectral

reflectance, which laid the foundation for this research.

Performance of PLSR models for quantitative estimation of clay content

Model calibration using all wavelengths can exploit all the spectral information of spectral

reflectance. Furthermore, derivative pretreatment can effectively eliminate the impact of back-

ground noise on the target spectrum and enhance the spectral characteristics of the analyte

[10, 46]. In order to benefit from PLSR, all raw spectral reflectance and corresponding absor-

bance data, pretreated by the fractional derivative, were applied in the process of model cali-

bration. Using an order interval set to 0.2, PLSR was used to build 22 inversion models. In this

research, the performances of the estimating models were affected significantly by the various

derivative orders (Tables 2 and 3).

For spectral reflectance, in the range from the 0.0 to the 1.0 order, the trend of model pref-

erence was not obvious: the highest values of R2
c , R2

p, and RPD were only 0.459, 0.551, and

1.196, respectively, for the 1.0 order, while the RMSEC and RMSEP achieved their optimal sta-

tus (0.848% and 0.770%, respectively) at the 0.8 order. The five parameters did not reach maxi-

mum or minimum values for the same order within the specified range. However, the indices

did show a slight improvement with the increase from the 1.0 to the 1.6 order. When the order

reached 1.8, the performance of the model showed significant improvement with the highest

values of R2
c (0.907), R2

p (0.916), and RPD (2.484� 2.000), while the RMSEC (0.425%) and

RMSEP (0.364%) were the lowest of all the 11 models. This proved to be a critical point. As the

Table 1. Statistical characteristics of various soil attributes of soil samples.

Item Unit Min Max Mean Standard

Error

Standard Deviation Coefficient

of variation

Skewness Kurtosis

Clay % 0 4.543 1.288 0.095 0.961 74.557% 1.178 1.367

Sand % 1.432 70.758 23.239 1.421 14.430 62.094% 0.995 0.654

Silt % 25.068 98.568 75.472 1.500 15.219 20.165% −0.990 0.632

SOM g kg-1 0.680 78.390 21.430 1.065 10.814 50.460% 1.336 6.148

EC ms cm-1 0.063 84.410 18.289 2.372 23.959 131.002% 0.732 1.383

K+ g kg-1 0.031 2.922 0.378 0.036 0.367 96.953% 3.805 2.251

Na+ g kg-1 0.024 107.761 18.297 2.646 26.727 146.075% 1.590 1.517

Ca2+ g kg-1 0.104 19.900 4.326 0.459 4.634 107.125% 1.451 1.588

Mg2+ g kg-1 0.100 3.456 0.431 0.068 0.685 158.969% 2.630 7.041

https://doi.org/10.1371/journal.pone.0184836.t001
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order increased to 2.0, despite higher values of RPD (�2.000), the performance of each subse-

quent model was lower than the previous one (Figs 4 and 5).

The absorbance models built using PLSR had similar variation trends to the spectral reflec-

tance models. The optimal accuracy parameters did not appear at the same order. Considering

the case of the range from the 0.0 to the 1.2 order, the pair of R2
c and RMSEC, and the group of

R2
p, RMSEP, and RPD reached their optimum status at the 0.8 order and 1.2 order, respectively.

For orders>1.6, the stabilities and accuracies of these models were perfected. However,

despite the highest value of RPD (2.511), the model based on the 1.8 order did not possess the

optimal values of R2
c and RMSEC, which were 0.903 and 0.379% at the 1.6 order, respectively.

For absorbance, RPD exceeded 2.000 for two models (Figs 6 and 7). After repeated siftings to

determine good predictive performance and stability, the model based on the 1.8 order was

selected as the optimum inversion model of absorbance.

For clay content, the results using the validation data set with the 1.8 order were the best

among the 22 models with the values of R2
p = 0.916, RMSEP = 0.364% and RPD = 2.484 and

Fig 3. Spectral reflectance of soils with different clay contents from the Ebinur Lake basin, China. Note: spectral curve (a) denotes the soil sample with

4.543% clay content, 24.172 g kg-1 SOM, 68.547 g kg-1 Na+, and 6.044 g kg-1 Ca2+; spectral curve (c) denotes the soil sample with 0.000% clay content,

25.340 g kg-1 SOM, 3.088 g kg-1 Na+, and 2.808 g kg-1 Ca2+.

https://doi.org/10.1371/journal.pone.0184836.g003
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R2
p = 0.918, RMSEP = 0.383% and RPD = 2.511, for spectral reflectance and the absorbance

model, respectively (Figs 5 and 7). The calibration accuracies of these two models were slightly

lower than with validation data set, but they remained within a reasonable range with values of

R2
c and RMSEC of 0.888–0.907, and 0.425%–0.446%, respectively. The slopes for the spectral

reflectance and absorbance models with the 1.8 order using the validation data set were well

distributed along the 1:1 line, indicative of good validations, while values over or under the 1:1

line indicated inaccurate estimation of the clay content in the soils of the Ebinur Lake basin

(Figs 4 and 6). The results verified that the model based on spectral reflectance, pretreated

using the fractional derivative, could be used to predict the clay content of soils.

Discussion

Effective pretreatment of spectral data could enhance the features of spectral reflectance, and

minimize the irrelevant and useless information of the spectra [20, 47]. Therefore, the perfor-

mance of models for soil parameter estimation could be improved to some extent. The classic

integer derivatives have exact physical meanings and the first and second derivatives represent

the slope and curvature of the spectral curves, respectively. Normally, the order interval is 1.0,

Table 2. Statistics of validation results of the calibration set and the corresponding performance on the validation set of raw reflectance.

Order Principal

Components

Calibration set Validation set

R2

c RMSEC/% R2

p RMSEP/% RPD

0.0 2 0.417 0.927 0.254 0.869 1.033

0.2 2 0.306 0.925 0.423 0.863 1.090

0.4 2 0.323 0.905 0.517 0.832 1.149

0.6 2 0.539 0.862 0.465 0.788 1.130

0.8 3 0.538 0.848 0.530 0.770 1.179

1.0 3 0.459 0.872 0.551 0.772 1.196

1.2 4 0.671 0.713 0.741 0.639 1.482

1.4 4 0.809 0.643 0.706 0.576 1.400

1.6 4 0.723 0.700 0.729 0.615 1.458

1.8 5 0.907 0.425 0.916 0.364 2.484

2.0 5 0.905 0.445 0.880 0.388 2.103

https://doi.org/10.1371/journal.pone.0184836.t002

Table 3. Statistics of validation results of the calibration set and the corresponding performance on the validation set of absorbance.

Order Principal

Components

Calibration set Validation set

R2

c RMSEC/% R2

p RMSEP/% RPD

0.0 2 0.363 0.922 0.328 0.869 1.058

0.2 2 0.287 0.918 0.465 0.858 1.107

0.4 2 0.399 0.892 0.516 0.816 1.151

0.6 2 0.566 0.865 0.435 0.787 1.109

0.8 3 0.379 0.866 0.630 0.775 1.261

1.0 3 0.485 0.873 0.512 0.783 1.164

1.2 3 0.575 0.808 0.608 0.736 1.258

1.4 3 0.632 0.737 0.686 0.699 1.371

1.6 4 0.903 0.471 0.887 0.379 2.133

1.8 5 0.888 0.446 0.918 0.383 2.511

2.0 5 0.898 0.472 0.861 0.407 1.966

https://doi.org/10.1371/journal.pone.0184836.t003
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Fig 4. Clay content models using calibration data set based on raw spectral reflectance data treated by fractional

derivatives.

https://doi.org/10.1371/journal.pone.0184836.g004
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Fig 5. Clay content models using validation data set based on raw spectral reflectance data treated by fractional

derivatives.

https://doi.org/10.1371/journal.pone.0184836.g005

Predicting soil clay content by reflectance spectroscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0184836 September 21, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0184836.g005
https://doi.org/10.1371/journal.pone.0184836


Fig 6. Clay content models using calibration data set based on absorbance treated by the fractional derivatives.

https://doi.org/10.1371/journal.pone.0184836.g006
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and regression models are built based on the first or second orders. However, pretreatment of

the integer derivative has some disadvantages, such as spectral information loss and the

Fig 7. Clay content models using validation data set based on absorbance treated by the fractional derivatives.

https://doi.org/10.1371/journal.pone.0184836.g007
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introduction of high-frequency noise [14]. Compared with the integer derivative, the fractional

derivative has a narrower order interval, which could reveal greater information of spectral

reflectance, because the order is extended to non-integers, which could add detailed curves

among the integer derivative spectral curves. Although the explicit spectral meaning of the

fractional derivative has not been clarified yet, the non-local and genetic characteristics of the

fractional derivate have been recognized widely. It is suggested that the fractional derivative

between the 0.0 and the 2.0 order could be identified as the sensitivity to the slope and curva-

ture of spectral curves [20]. Currently, the discrete algorithm of the fractional derivative only

applies to spectral reflectance data obtained from ASD portable spectrometers with equal

intervals.

Raw spectral reflectance and the first and second derivatives are three approaches com-

monly used in model calibration. In terms of spectral reflectance, the model using non-pre-

treated data (0.0 order), performed the poorest among the 11 models, with the lowest values of

R2
c , R2

p, and RPD and the highest values of RMSEC and RMSEP (0.417, 0.254%, 1.033, 0.927%,

and 0.869, respectively). For spectral reflectance pretreated by the first derivative, the perfor-

mance of the corresponding model improved slightly; however, it remained inadequate for the

estimation of clay content (RPD = 1.196< 1.400). When the order was set as 2.0, the model

had good prediction ability, with values of R2
c = 0.905, RMSEC = 0.445%, R2

p = 0.880, RMSEP =

0.388%, and RPD = 2.103� 2.000. When the order was extended to include non-integers,

eight additional models were built based on the fractional order. Considering the five accuracy

indices for these models, they did not increase or decrease directly, but rather they varied

irregularly. The model based on the 1.6 order had limited predictive ability with a value of

RPD = 1.458� 1.400. It is noted that the prediction ability of the model based on the 1.8 order

improved with optimal values of accuracy indices (i.e., R2
c = 0.907, RMSEC = 0.425%, R2

p =

0.916, RMSEP = 0.364%, and RPD = 2.484� 2.000), which exceeded the 2.0 order model.

Although the 2.0 order model has good predictive performance (RPD = 2.103� 2.000), the

precision parameters of the model based on the 1.8 order had improved further to some extent.

Instead of adding complexity, it was vital to obtain further modeling results and to enhance

the quantitative predicting ability of the models.

Among the 11 models, 10 had better performance than the 0.0 order model and 5 per-

formed better than the 1.0 order model. Nevertheless, only one model built on the fractional

order (the 1.8 order model) was superior to the 2.0 order model. Furthermore, the variation of

absorbance models showed similar trends.

In this research, the SPXy algorithm was applied to select the calibration and validation

data sets. This approach is based on the distance between the independent variable and depen-

dent variable space for the parameter under consideration [39]. Commonly, previous research

has used the Concentration Gradient and K-S algorithms that consider the concentration or

corresponding spectroscopy of the samples. However, the SPXy algorithm combines both

these aspects and it can accommodate multidimensional variable space, e.g., the clay content

and reflectance data in our study. Consequently, it was considered reasonable that these inver-

sion models might have various calibration and validation data sets.

In previous research, clay content has been estimated quantitatively using ultraviolet–visi-

ble, VIS–NIR, and mid-infrared reflectance spectroscopy [4, 6, 48–50]. For spectral reflectance,

multiple pretreating methods have been used, e.g., SG smoothing and the first derivate and

second derivatives. Based on these approaches, many predicting models have been established.

For example, Rossel et al. [1] applied the VIS spectral range (400–700 nm) to predict soil tex-

ture and soil organic carbon contents. Bilgili et al. [10] discovered that clay was strongly corre-

lated with SOM, and they developed an optimized model for estimating local clay content that
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had good performance (R2 = 0.83, RMSE = 4.03 g kg-1). Using PLSR with first derivative reflec-

tance data, Nawar et al. [11] achieved values of R2
p, RMSEP, and RPD of 0.65, 8.79%, and 1.67,

respectively, when predicting the clay content in the soil of El-Tina Plain in Egypt.

The coefficients of all wavebands and the constant term of two optimal models established

in this study are illustrated in Fig 8. Results obtained in the current study were in accord with

previous research, and they indicated that the relatively larger absolute values of the coeffi-

cients were located within the range 670–850 nm [51]. The use of the fractional derivative in

this study allowed greater exploration of the spectral information than previous approaches; it

reduced information loss, and revealed the details of the variation trends of the 5 accuracy

indices based on the spectral reflectance and absorbance models of 11 orders.

In reality, only limited quantitative information can be acquired using remote sensing tech-

niques [48]. Generally, soil spectral features are affected by variations in the SOM, EC, iron

oxide, and soil texture and moisture content. The SOM content in the Ebinur Lake basin is

low (near 2%). With SOM content of 2% as a boundary, that is, when SOM content exceeded

2%, the SOM played a principal role in masking out the spectral features, while the SOM con-

tent was less than 2%, it became less effective [46, 52, 53]. In the study, the soil clay content

was divided into five groups: 0%–1% (n = 46), 1%–2% (n = 40), 2%–3% (n = 8), 3%–4% (n =

7), and>4% (n = 2). Hence, it was obvious that the clay texture was not dominant within the

study area, which meant that corresponding characteristic bands were difficult to detect. In

addition, the correlation between the clay content and EC was significant (r = 0.314). In the

arid ecology, salt concentrations in soils is generally high. Soluble salts in soil could bind fine

particles and further form hard salt crust, which could fix the clay of soil [54, 55]. It might

influence the accuracy with clay content estimation to some degree. Furthermore, there was

certain difficulty in the calibration of the retrieval model using the spectral reflectance data.

The introduction of the fractional derivative algorithm generates a narrower order interval,

which can reduce the loss of spectral information to some extent, extract additional spectral

information, and determine the optimal prediction model. In this study, the model based on

the fractional derivative 1.8 order was established as optimal.

Conclusions

In this research, the fractional derivative algorithm was used for the pretreatment of spectral

reflectance. Based on this, 22 spectral models for the estimation of clay content in the desert

soils of the Ebinur Lake basin were calibrated using PLSR, and the accuracy indices of the vari-

ous models were compared. It was found that the values of R2
c , R2

p, RMSEC, RMSEP and RPD

of the models did not increase or decrease. They were irregular and they reached optimal

Fig 8. Coefficients of all bands and the constant term of the spectral reflectance model (a) and the

absorbance model (b). Note: VIS denotes visible spectroscopy (400–780 nm), SWNIR and LWNIR denote

shortwave and longwave near infrared spectroscopy (780–1100 nm and 1100–2526 nm, respectively). Red

line denotes the borderline of range of VIS, SWNIR and LWNIR.

https://doi.org/10.1371/journal.pone.0184836.g008
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values at a fractional order. The two best models were selected: one. calibrated based on the 1.8

order of spectral reflectance (R2
c = 0.907, RMSEC = 0.425%, R2

p = 0.916, RMSEP = 0.364%,

and RPD = 2.484� 2.000), and the other based on the 1.8 order of absorbance (R2
c = 0.888,

RMSEC = 0.446%, R2
p = 0.918, RMSEP = 0.383%, and RPD = 2.511� 2.000). The Ebinur Lake

basin is representative of an area with severe salinization. For a model designed to predict the

different clay contents of soils, the salt contents might have a certain impact on model accu-

racy. Therefore, the next step in future research is to distinguish the features of salt, salt ions,

SOM and soil texture from spectral reflectance curves to improve estimation accuracy.
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