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Abstract

Background

Lassa fever (LF) is one of the most devastating rodent-borne diseases in West Africa, caus-

ing thousands of deaths annually. The geographical expansion of LF is also a concern;

cases were recently identified in Ghana and Benin. Previous ecological studies have sug-

gested that high natural-host biodiversity reduces the likelihood of spillover transmission of

rodent-borne diseases, by suppressing the activities of reservoir species. However, the

association of biodiversity with the geographical expansion of LF has not been the subject of

epidemiological studies.

Methodology/Principal findings

We conducted a spatial analysis based on sociodemographic, geographical, and ecological

data, and found that higher rodent species richness was significantly associated with a

lower risk of LF emergence in West Africa from 2008 to 2017 (Odds Ratio = 0.852, 95%

Credible Interval = 0.745–0.971).

Conclusions/Significance

The results reinforce the importance of the ‘One Health’ approach by demonstrating that a

high level of biodiversity could benefit human health.

Author summary

Rodent diversity has been studied as a protective factor for rodent-borne diseases and

rodent-related tick-borne diseases, such as hantavirus infection and Lyme diseases, in
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human population. The protective effect is called dilution effect and based on the ecologi-

cal mechanism that the high diversity of rodent species could suppress the activities of res-

ervoir rodents thereby reduce the likelihood of spillover transmission from rodents.

However, the effect has been studied mostly for endemic diseases, and the effect on the

geographical expansion of rodent-borne diseases has not been the subject of epidemiolog-

ical studies. Considering that the dilution effect may also be applicable to the geographic

expansion of rodent-borne infectious diseases in that a high rodent species diversity could

decrease migration of infected rodents from the disease-endemic area, we examined the

association between rodent species richness and the geographical expansion of Lassa fever

(LF) in West African countries. Analyzing the regions without LF until 2007, the results

showed that the region with lower number of rodent species showed higher risk of emerg-

ing LF cases from 2008 to 2017, implying the protective effect of higher rodent species

richness on spatial expansion of LF. The results reinforce the importance of the ‘One

Health’ approach by demonstrating that a high level of biodiversity could benefit human

health.

Introduction

Lassa fever (LF) is an acute viral hemorrhagic fever transmitted by Mastomys natalensis, a

multi-mammate rat, which is broadly distributed across sub-Saharan Africa. The annual num-

ber of cases has been estimated based on a longitudinal study as 100,000–300,000, with 5,000

deaths, although there is a large uncertainty with these estimates. [1,2]. Recently, the number

of LF cases surged in Nigeria [3], and the unprecedented size of the outbreak caused severe

social and economic dislocation at the national level. Moreover, LF have also caused a global

concern, as Germany [4], the United Kingdom [5] and the United States [6] reported imported

LF cases. In Germany, secondary local infection from an imported case also reported [7].

Because of its relatively long incubation period (6–21 days [8]) and the global increase in the

use of air transportation, LF importation represents a considerable threat to public health,

globally.

Interestingly, the distribution of LF is limited to West Africa; there has been no report of

autochthonous LF in sub-Saharan Africa, where the reservoir species are distributed. Lassa

fever virus (LASV) originated 1,000 years ago in Nigeria, and only recently spread to the west-

ern region known as the Mano River Union (MRU), which encompasses Cote d’Ivoire,

Guinea, Liberia, and Sierra Leone [9]. However, there have been relatively few LF cases

between Nigeria and the MRU, implying the existence of factors that limit the distribution of

LF to certain regions.

Geographical barriers may explain the limited distribution of LF. Siddle et al. [10] detected

genetic variations of LASV among regions partitioned by rivers in Nigeria, and suggested that

such geographical barriers suppress migration of reservoir rodents. The mountain chain

between Nigeria and Cameroon could also explain the lack of reports of autochthonous LF

cases in Cameroon during a large-scale outbreak in Nigeria. However, these factors cannot

account for the absence of LF in other parts of West Africa; i.e., the countries between MRU

and Nigeria. A recent study [11] proposed a co-evolution hypothesis as an alternative explana-

tion. The hypothesis states that the genetic variation of reservoir rodents in West Africa could

result in differences in the ability to transmit the virus. Redding et al [12] suggested that only

one clade of M. natalensis (Western clade) can host LASV by phylogeographic evidence.

PLOS NEGLECTED TROPICAL DISEASES Ecological drivers of Lassa fever emergence

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009108 February 1, 2021 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0009108


However, the hypothesis has not been confirmed given the broad host range of LASV [13],

such as Hylomyscus pamfi and Mastomys erythroleucus [14].

Other factors can be associated with the geospatial distribution of LF in West Africa. For

example, climate factors, especially for precipitation or humidity, can affect the distribution of

LF. Fichet-Calvet and Rogers [15] found that emergence of LF was associated with humidity

possibly because LASV survival is better in humid environment and also rodent becomes

active in a rainy season. Deforestation and anthropogenic environmental disruption could also

increase contact between reservoirs and human, which subsequently lead to increase LF cases

[16]. In addition, level of surveillance sensitivity can affect the distribution of reported LF.

While weak surveillance system for LF is generally found in many West African countries [17],

recent implementation of Regional Disease Surveillance Systems Enhancement Project which

aimed to strengthen infectious disease surveillance capacity in West Africa [18] could increase

LF reports.

Rodent species richness; i.e., the number of rodent species, may explain the geographic lim-

itation of LF. A high rodent species diversity could suppress the abundance and activities of

each rodent species [19], including Mastomys natalensis, thus reducing both the disease preva-

lence among rodents and its transmission to humans; this is known as the dilution effect [19].

There are controversies on the generality of the dilution effect. For example, one of necessary

conditions for dilution effect is that suitability of high-competency species in low diversity

environment should be better than other host species. In the regions where the underlying

condition is not satisfied, low diversity could even decrease spillover transmission risk [20].

However, in case of LF in West Africa, the necessary condition is highly likely to be satisfied

because M. natalensis showed the strongest competency among local rodent species and resil-

ient in modified environment [21]. The dilution effect has been discussed mostly for endemic

diseases [22,23], but it may also be applicable to the geographic expansion of rodent-borne

infectious diseases in that a high rodent species diversity could decrease migration of infected

rodents from the disease-endemic area. In this study, we examined the association between

rodent species richness and the geographical expansion of LF in West African countries based

on spatial data from multiple sources.

Methods

Study design and the study unit

We examined the association of rodent species richness with LF emergence events. Although

there are several criteria for defining an emerging infectious disease (e.g., a novel pathogen,

mutation, or drastic increase in incidence), the spread of LF to regions with no reported

human cases was used herein. Specifically, cases emerging after 2008 were analyzed, because

the geographical distributions of rodent species in the West Africa countries were assessed

after 2008 (Table A in S1 Text), and distribution data are needed to calculate rodent species

richness. This study was conducted over the 10-year period of 2008 to 2017; LF emergence

events during this period was an outcome variable. Accordingly, historical LF cases prior to

2007, and those from 2008 to 2017, were extracted from the data. We compared the rodent

species richness between regions with and those without LF emergence events, excluding the

regions with LF cases reported before 2008 (Fig 1).

The study area was defined based on two criteria. First, we selected regions suggested to

harbor the main reservoir species, Mastomys natalensis, because cases of autochthonous LF are

unlikely in regions without the reservoir. Second, we selected only West African countries

with at least one autochthonous LF case up to 2017, under the assumption of a surveillance

capacity sufficient for detecting and reporting LF (Fig 2 and Fig A in S2 Text).
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Data acquisition and preprocessing

We acquired data on historical LF cases, rodent species richness, and sociodemographic, cli-

mate, land cover, and geographic factors from various sources (Table 1). Historical LF cases

were obtained from a review [13] and the World Health Organization Disease Outbreak News

Fig 1. Study design. The outcome of interest was Lassa fever (LF) emergence events over a 10-year period beginning in 2008, and the main explanatory variable was

rodent species richness. Regions with LF cases reported before 2008 were excluded from the analysis; we compared rodent species richness between regions with LF

cases from 2008 to 2017 and those with no reported LF cases up to 2017. Regions A and D had LF cases before 2008, so were excluded from the analysis. In Region C,

LF emerged after 2008. We compared rodent species richness between Regions C and B.

https://doi.org/10.1371/journal.pntd.0009108.g001

Fig 2. Study area and study units. Based on web-based surveillance data and a prior review, historical Lassa fever (LF)

cases (up to 2017) were analyzed. Provinces in West Africa were categorized as follows: grey, outbreak reported before

2007; red, LF emergence events over a 10-year period beginning in 2008; and white, no human LF cases up to 2017. We

created a 1 × 1˚ grid map, and categorized the grids based on their intersection with the provinces. For example, using

a 50% threshold, if a grid consisted of 60% province A and 40% province B, it was considered to be province A. We

created two datasets using thresholds of 40% and 60% to confirm the robustness of the results. Made with Natural

Earth.

https://doi.org/10.1371/journal.pntd.0009108.g002
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(WHO DON) [24]. These data were supplemented with other informal web-based surveillance

data (ProMed-Mail [25] and Health map [26,27]) because of the insufficient surveillance

capacity associated with the resource-limited setting of this study. Although these are not

national-level surveillance data, prior epidemiological [28,29] and infectious-disease detection

[30] studies also used a multiple-source approach. Details of the web-based surveillance data

and historical LF events are provided in S3 Text. We listed the historical LF cases by year and

province. The provinces in the study area were categorized into regions with LF cases before

2007, regions with LF emergence events from 2008 to 2017, and regions with no LF cases

before 2017. Next, we created 1 × 1˚ grid maps, and categorized the grids based on their inter-

section with the province map. Using a 50% threshold, if a grid consisted of 60% province A

and 40% province B, for example, it was considered to be province A (Fig 2).

The International Union for the Conservation of Nature (IUCN) [31] has developed a com-

prehensive spatial database of species’ ranges, including terrestrial mammals. The geographical

range of avian species was obtained from Birdlife [32]. The mammalian and avian species

range data are in polygon format. To calculate the species richness, we intersected polygons

and counted the number of species whose distribution range occupied more than 50% of a

given grid. Rodentia species were included in the calculation of rodent species richness, and

Carnivora, Accipitridae, Falconidae, and Strigidae species in that of predator species richness.

As sociodemographic factors, population density [38,39] and gross domestic product

(GDP) [40] were analyzed and adjusted for. Population density data were acquired for 2010

and 2015 and GDP data for 2012 and 2013, and averaged as representative values for the study

period. The human footprint score [33] was used to assess anthropogenic pressure on the envi-

ronment. The score ranged from 0 to 50, and a higher score indicated greater anthropogenic

pressure. We used the score for 2009, because only data for 1997 and 2009 were provided.

These data are in raster format. We extracted the value of each raster cell, and used it to calcu-

late the population density, GDP per capita, and human footprint score in a given grid area.

To adjust for potential confounding effects, global climate data from 1970 to 2000 were

obtained from WorldClim v. 2.0 [37], which provides monthly average temperature and pre-

cipitation data at a resolution of 1 km per pixel in raster format. The annual average tempera-

ture and annual precipitation were calculated for each grid area.

Table 1. Data sources used in this study.

Variable Data source Ref(s)

Lassa fever outbreak Gibb et al, ProMed-MailHealthmap, WHO DON [13,24–27]

Rodents species richness IUCN [31]

Mammalian predator species richness IUCN [31]

Avian predator species richness Birdlife [32]

Human footprint score Venter O et al [33]

Forest cover GFC [34]

Agricultural land use Tuanmu et al [35]

Elevation SRTM [36]

Precipitation Worldclim [37]

Temperature Worldclim [37]

Population Worldpop [38,39]

GDP a Kummu et al [40]

Total space b -

a GDP, gross domestic product
b Total space was calculated directly from the polygon map.

https://doi.org/10.1371/journal.pntd.0009108.t001
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In terms of geographic variables, forest cover, agricultural land use, and elevation land

cover data were acquired from Tuanmu et al. [35]. They analyzed four global land cover prod-

ucts: DISCover, GLC2000, MODIS2005, and GlobCover. Agricultural land use data were

obtained in raster format. The range of each raster cell was 0 to 100, representing the probabil-

ity of land cover. We used a threshold value of 50 (i.e., a 50% probability of agricultural land

use) to assess agricultural land use in a given raster cell. In terms of forest land cover, raster

data from Global Forest Change (GFC) [34] were used. The forest cover variable ranged from

0 to 100 and was in raster format; the value represents the probability of a tree canopy. As in a

previous study [41], we used 50 as the threshold for the presence of forest in a given raster cell.

We summed all raster cell values in each grid area to estimate the area of each type of land use

in a given grid area. Elevation data were obtained from Shuttle Radar Topography Mission

(SRTM; v. 4.1) [36], which provides 90-meter-scale global elevation data in raster format. We

averaged the values for each grid.

R software (v. 3.5.1) [42] was used for preprocessing. The “rgdal” package [43] was used for

shape file importation and the “raster” package [44] was employed to intersect polygons and

extract raster values. Parallel computing was performed using the “doParallel” package [45].

All dataset used in this study can be found in S1 Data.

Statistical analysis

We evaluated the general characteristics of grids with and without LF emergence events. The

mean and standard deviation of each variable were calculated, and choropleth maps with dec-

ile values were generated. To avoid multicollinearity, variables with a variance inflation factor

(VIF) value of> 10 [46] and a one-to-one correlation coefficient of> 0.8 were excluded from

the analysis.

Logistic regression models were used to examine the association between LF emergence

events and rodent species richness. A generalized linear model (GLM) with spatial autocorre-

lation was employed. The equation can be expressed as below: ln p
1� p

� �
¼ aþ biXi þ vi þ εi

where p is a probability of LF emergence; α is the intercept; βi is the regression coefficient; Xi

is the set of explanatory variables; υi is the structured spatial random effect for grid i; εi is the

non-spatial random effect for grid i. A Bayesian approach with integrated nested Laplace

approximation [47] was applied using the “R-INLA” package [48]. The results of the fully

adjusted models are shown as odds ratios (ORs) and 95% credible intervals (95% CIs). Area

under the curve (AUC) values were estimated based on the mean value fitted to the model. To

evaluate uncertainty caused by mismatch between the grid and province maps, we conducted

a sensitivity analysis using thresholds of 40% and 60% to assess the robustness of the results.

Considering that OR can seriously exaggerate Relative risk (RR) unless rare disease assump-

tion is satisfied, we planned to conduct Zou’s modified Poisson regression [49] if the propor-

tion of grid with emergence cases is small. Although Poisson regression model can estimate

RR directly, the error for the estimated RR can be exaggerated in binomial data analysis. Zou

proposed a modified Poisson regression method to deal with this issue by using a robust error

variance procedure.

Results

Descriptive analysis

The general characteristics of the grids are shown in Table 2. The rodent species richness was

lower in the grids with versus without LF emergence events (12.79 and 14.73, respectively).

Also, the population density and GDP per capita were higher in the regions with LF emergence
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events (158.74 per km2 and 3,833.37 USD per capita, respectively) than in those without LF

emergence events (56.79 per km2 and 2,359.56 USD per capita, respectively). In terms of cli-

mate, the regions with LF emergence events had higher annual precipitation (1,282.79 mm)

than did those without LF emergence events (1,086.44 mm), but the temperature was higher in

non-emergence than in emergence regions (27.18˚C and 26.66˚C, respectively). The propor-

tion of forest cover was higher in the non-emergence regions (10.81%) than in emergence

regions (7.64%); the proportion of agricultural land use also differed (43.13% in emergence

regions, 36.35% in non-emergence regions). The spatial distributions of the variables are

shown in Fig A-J in S4 Text.

Assessment of multicollinearity

The VIF values were calculated to assess multicollinearity. None of the variables had a VIF

value of> 10, so none were excluded. In the one-to-one correlation analysis, all combinations

of variables had a low or moderate correlation, and none were excluded (Table A and Fig A in

S5 Text)

Association between rodent species richness and LF emergence

The rodent species richness showed a significant negative association with LF emergence

events (OR = 0.852, 95% CI 0.745–0.971), but its association with predator species richness

(OR = 1.090, 95% CI 0.972–1.226) was not significant (Table 3). In a sensitivity analysis using

different thresholds to generate grid maps (0.4 and 0.6 for models S1 and S2, respectively),

negative associations were also found (OR = 0.864, 95% CI 0.745–0.987 and OR = 0.870, 95%

CI 0.766–0.988 for models S1 and S2, respectively). The AUC for all models was > 0.81, indi-

cating an excellent fit to the data.

The OR we estimated can exaggerate the relative risk (RR) because the model included a

large number of cases (the OR is similar to the RR only if the number of cases is small, accord-

ing to rare disease assumption). To address this issue, the modified Poisson regression pro-

posed by Zou [49] was used and the RR was estimated as 0.915 (95% CI = 0.856–0.978).

Because the interquartile range (IQR) of the rodent species was 5 (first quartile, 12; third

Table 2. Descriptive analysis results.

Variables With LF a (N = 66) Without LF a (N = 126)

Mean (±SD)

Rodent species richness 12.79 ± 3.5 14.73 ± 3.7

Predator species richness 36.52 ± 3.8 34.35 ± 6.6

Human footprint score b 10.8 ± 3.1 8.57 ± 2.9

Forest cover (%) 7.64 ± 15.3 10.81 ± 24.0

Agricultural land use (%) 43.13 ± 34.2 36.35 ± 33.2

Elevation (m) 292.78 ± 153.8 271.98 ± 110.0

Precipitation (mm) 1282.79 ± 556.6 1086.44 ± 605.8

Temperature (˚C) 26.66 ± 0.8 27.18 ± 1.2

Population density (per km2) 158.74 ± 228.0 56.79 ± 87.7

GDP c per capita (USD) 3833.37 ± 1982.9 2359.56 ± 1353.1

Total space (1000 km2) 14.17 ± 1.1 14.12 ± 1.0

a LF, Case report of Lassa fever during the study period (2008–2017).
b The human footprint score ranged from 0 to 50; a higher score indicates greater anthropogenic pressure on the environment.
c GDP, gross domestic product

https://doi.org/10.1371/journal.pntd.0009108.t002
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quartile, 17), the RR for IQR decrease in richness was 1.56 (= (1/0.915)5, 95% CI = 1.11–2.18),

representing a 56% higher risk of emergence in the regions where IQR lower rodent richness

is shown.

Discussion

We examined the association between rodent species richness and emerging LF events,

defined as geographic expansion in West Africa over a 10-year period beginning in 2008. The

hypothesis was that a higher rodent species richness suppresses the activities of reservoir

rodents, and thus reduces the migration of LF-infected reservoirs from an endemic area. The

results showed that a higher rodent species richness was negatively associated with LF emer-

gence, and the association was robust irrespective of the method used to categorize the

regions.

The negative association between rodent species richness and the risk of LF emergence sug-

gested that the dilution effect [23] can apply to the spatial spread of infectious diseases. The

high richness environment could reduce activities of reservoir rodents, and consequently

reduce LF prevalence among reservoir species. Considering that incidence of human LF was

associated with the prevalence in rodents [50], The low possibility of human LF case report in

high rodent richness area can be mediated by low prevalence among rodents. However, the

association reported herein may not generalize to other rodent-borne diseases, as not all path-

ogens show high host specificity as LASV. Although other species, such as Hylomyscus pamfi
and Mastomys erythroleucus [14], have been proposed as the natural host of LASV, LASV has

greater host specificity than other rodent-borne diseases, such as hantaviruses.

The predator species richness did not show a significant association with the risk of LF

emergence. This is not consistent with prior ecology [51] and disease ecology [22,52] studies

Table 3. Association between rodent species richness and LF emergence events.

Variable Odds ratio (95% Credible Interval)

Main model Model S1 Model S2

Rodent SR a 0.852 (0.745–0.971) 0.864 (0.754–0.987) 0.870 (0.766–0.988)

Predator SRa 1.090 (0.972–1.226) 1.092 (0.969–1.233) 1.073 (0.965–1.195)

Human foot print 1.141 (0.853–1.527) 1.173 (0.876–1.571) 1.106 (0.841–1.456)

Forest cover 0.541 (0.016–16.239) 0.307 (0.007–12.429) 0.437 (0.014–12.111)

Agricultural land use 0.684 (0.078–5.736) 0.858 (0.099–7.185) 1.084 (0.136–8.348)

Elevation 1.002 (0.997–1.007) 1.003 (0.997–1.008) 1.000 (0.995–1.005)

Precipitation 1.001 (1.000–1.002) 1.001 (1.000–1.003) 1.001 (0.999–1.002)

Temperature 0.887 (0.414–1.890) 0.769 (0.353–1.662) 0.792 (0.376–1.654)

Population density 1.006 (0.999–1.013) 1.005 (0.998–1.011) 1.004 (0.999–1.009)

GDP b per capita 1.000 (1.000–1.001) 1.000 (1.000–1.001) 1.000 (1.000–1.001)

Total space 1.001 (1.000–1.002) 1.001 (1.000–1.002) 1.000 (1.000–1.001)

AUC c 0.841 0.849 0.810

a SR, Species richness
b GDP, gross domestic product
cAUC, area under the curve

Note: The analyses were conducted using multivariable logistic regression models with consideration of spatial

autocorrelation. The outcome variable was LF emergence events. The grid size was 1 × 1˚. The number of grids with

and without LF emergence was 66 (cases) and 126 (controls), respectively; the total number of grids was 192. The

rodent and predator variables indicate species richness.

https://doi.org/10.1371/journal.pntd.0009108.t003
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on the regulatory effect of predator species richness on rodent activities. The inconsistency

may be explained by composition of rodent prey species of predators in these regions. The pri-

mary reservoir of LF, M. natalensis, is not a dominant rodent species in West Africa [53]. Con-

sidering that predation pressure tends to focus on dominant species [54], the effect of predator

richness is unlikely to have led to noticeable differences in rodent activity. As an exploratory

ecological study, there are several limitations that should be noted. First, we did not consider

the temporal changes of species richness from 2008 to 2017. However, the temporal fluctuation

in rodent species richness is unlikely to be considerable, as most rodent species we included

showed “LC” class, meaning low probability of extinction. Second, some important species

were not analyzed. For example, several insectivore species are in the same trophic hierarchy

as rodents, with which they compete, thus limiting the rodent population size. Third, we did

not include relative abundance of individual rodent species as a measurement for rodent diver-

sity and only counted the number of species. Although investigating relative abundance of

individual rodent species in whole West African region could not be practical at this moment,

additional studies with different diversity measures (e.g. Simpson diversity index) are worth-

while to be conducted. Fourth, considering that we did not consider the abundance of reser-

voirs in this study, we cannot exclude the possibility that the absence of LF in many West

African countries could be derived from low abundance of reservoirs. However, various fac-

tors that are considered to be associated with reservoir abundance, such as level of human

modification [21], vegetation index, temperature and elevation [55] were adjusted in our mod-

els. In addition, Olayemi et al [50] found that reservoir abundance could be high in some non

LF endemic area implying that the abundance of reservoir would have limited effect on the LF

emergence. Fifth, a recent LF risk map from Mylne et al [55] suggested that presence of LF is

possible in Senegal and Niger where we excluded in the models. Inclusion of those countries

in the model could change our results, although a recent review study [56] did not find the evi-

dences of LF presence in those countries. Sixth, we considered M. natalensis as a major reser-

voir in this study, but other possible reservoirs such as Rattus rattus and Mus musculus can be

included in the follow-up studies [57]. Seventh, our study design was based on macroscopic

scale as the study unit was 1 × 1˚ grid. Future studies with microscopic scale can supplement

our results. Marien et al [58] found that there is spatial heterogeneity in LF prevalence among

rodents on a household level. Considering that high LF prevalence among rodents is associated

with higher probability of spillover transmission, microscale heterogeneity within our study

unit is highly expected [57]. Eighth, we did not include outbreak information from individual

countries’ health authorities. However, considering surveillance capacity may vary in different

countries, our data collection process using multiple sources including ProMed-Mail, Health-

map, and WHO DON can minimize potential underreporting bias. Lastly, we used 1 × 1˚ grid

squares; use of a different scale (e.g., 0.5 × 0.5˚ grid squares) would have resulted in a different

sample size, thus affecting the values of explanatory variables. This is known as the modifiable

area unit problem.

The results have important implications for public health and environmental conservation.

From a public health perspective, the results could be used to predict areas at risk of LF emer-

gence in West Africa. Although prediction of the risk from the results of current study alone

cannot be reliable, further studies that incorporate other predictors such as population explo-

sion, anthropogenic invasion on nature can improve the outcome. In addition, the results can

be used for advocating ecosystem services, as rodent diversity could be dependent on conser-

vation efforts at the local level. Considering the limited effect of anthropogenic rodent control

on reducing LF incidence [59], holistic approach incorporating environmental aspect can be

essential to minimize the impact from LF.
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