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A B S T R A C T   

An important aspect of assessing the authenticity of wines is its geographical origin. The aim of 
the work is to authenticate by geographical origin according to the data of the ICP-spectrometric 
and chemometric analysis of elemental "images" of wines produced from white grape varieties 
Chardonnay, Riesling and Muscat grown in four regions of the Krasnodar Territory, Russia. The 
difference in the contents of Al, Ba, Ca and Rb in wines was found depending on the variety, and 
Al, Ba, Rb, Fe, Li, Sr – depending on the region of grape growth. Different models of the exper-
imental data processing were used for attribution of the produced varieties of wine to the area of 
the grape’s growth. The criterion for the quality of the constructed models was the accuracy of the 
attribution of a wine variety to the area of the grape’s growth (%). Analysis of the elemental 
analysis data of 153 wine samples showed that in terms of attribution accuracy, automated neural 
networks (100 %) are preferred among machine learning methods, followed by support vector 
machines (98.69 %) and general discriminant analysis (94.77 %). The applied mathematical 
models enabled the revealing of the cluster structure of the analyzed wine varieties and their 
attribution to the area of a grape growth with high accuracy. Sr, Li and Fe concentrations in wines 
were found as the dominating predictors in the constructed models for definition of the 
geographical origin of wines. The combination of ICP-spectrometric analysis data with the ca-
pabilities of statistical modeling of machine learning methods focused on large-dimensional data 
made it possible to successfully solve small-dimensional problems of the definition of the 
geographical origin of wines by their elemental composition and variety.   

1. Introduction 

The steady increase in the production and consumption of wine is accompanied by an increasing number of counterfeit and low- 
quality wine products. This is due to a number of factors, including the use of standardized parameters to measure the quality of wine 
[1–3]. 

The main way to evaluate the quality of wine is a sensory evaluation conducted by experts [4–6]. Sensory assessment is the main 
feature that determines consumer preferences [7,8]. When similarities in the organoleptic characteristics are found between wines 
made from different grape varieties, differentiation must be done using instrumental and chemometric methods, which allow 
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recognition of a wine as a whole based on an analysis of its "image" [9–11]. 
The "image" of a wine consists of the component composition that determines its bouquet and flavor [12–16]. The quality of wines 

is established by methods of electrophoretic, chromatographic, and elemental analysis, followed by chemometric processing and 
comparison of the data obtained by the wine under study with its "image" [17–19]. This approach, due to the specifics of the estab-
lished profiles, is widely used in assessing the quality of wines – processing the organoleptic properties of wines [17,20–22]; the 
influence of the chemical composition of wines and grapes on the taste and aromatic properties of the drink [23–26]; differentiation of 
wines by zones of grape cultivation [17,20–23,27–31], etc. 

To control the authenticity of wine on a regional basis, it is first necessary to identify identifying criteria. The most significant 
among them will be parameters whose variability remains constant despite changes in external environmental factors. The mineral 
composition is a key indicator of the geographical attribution of wine, due to the consistency of the elemental composition of soil from 
grape-growing sites [32,33]. The relationships between the mineral content in the soil, grape, and wine make it possible to determine 
the varietal and geographical origins of wine, thanks to the consistency and specificity of the elemental makeup of the grape varieties 
grown on soil from specific areas [32–34]. 

The elemental composition of wine ideally should depend only on the mineral composition of the soil and the grapes, as well as the 
climatic conditions. It should not depend on the production technology, transportation, or storage [35]. The relationship between the 
soil, the grapes, and the wine in the formation of its elemental composition may be disrupted by technological methods used in wine 
production, such as stabilization and clarification using auxiliary materials to remove components that cause turbidity of different 
origins [34,36]. The variety of component compositions in wines is also determined by the maturity of the grapes [37]. It can be 
assumed that the ratio of mineral nutrients in finished wine has a complex relationship to the geological minerals found in the 
vineyard. Therefore, in order to determine the fact of adulteration and/or ascertain the regional origin of wine, many researchers use 
the mineral composition which is least affected by external influences in a specific geographical region [38,39]. 

Wine differentiation is carried out using statistical modeling methods - discriminant analysis, classification trees [40], principal 
component analysis [41], neural networks [40,42], machine learning, etc. [43–47]. To carry out calculations, statistical packages 
SPSS, STATISTICA, SAS, STATA, etc. are used, as well as modern data analysis tools, for example, the R programming environment [45, 
48]. An analysis of the literature data on the use of chemometric classification methods shows that none of these publications analyzes 
the capabilities of discriminant analysis and various Data mining methods for identifying the varietal and regional affiliation of wines. 

To determine significant indicators in assessing the quality and ownership of wines, a large amount of data on the elemental 
composition of the drink from different geo-graphical areas is required [49]. Currently, the elemental composition of wines is 
determined by methods that allow simultaneously determining the maximum list of elements in a wide range of their concentrations. 
For wines, the set of these elements is very wide. The content of elements in wines varies in the range: 10–1000 mg/L for macro-
elements - Ca, K, Na, and Mg; 0.1–10 mg/L for minor elements - Al, Fe, Cu, Mn, Rb, Sr and Zn; 0.01–1000 μg/L for microelements - Ba, 
Cd, Co, Cr, Li, Ni, Pb, V and REE [50]. One of the main stages of multi-element analysis of wine is sample preparation. Traditional 
methods of “dry” and “wet” ashing do not fully meet the requirements of online multi-element analysis [51]. 

Modern requirements for elemental analysis are met by the methods such as atomic emission spectrometry (ICP-AES) and 
inductively coupled plasma mass spectrometry (ICP-MS) [52]. Instruments for ICP-AES and ICP-MS analysis allow analysis using 
element atomization systems with an inductively coupled plasma spectrometer [32,53]. The high temperature of the plasma discharge 
(7000–10000 K) ensures complete destruction of organic matter in wine samples, while the ability to adjust the amount of wine added 
to the sample ensures accurate results [54]. However, the addition of undiluted wine to the plasma results in the destabilization of the 
electrical discharge, the presence of matrix interferences from the sample, and an inevitable reduction in the analytical signals of the 
detected elements [55]. These issues were addressed by the authors [53,54], who proposed pre-diluting the wine with 1 M nitric acid. 
This acid solution does not have a negative impact on the analytical signals of the elements but does contribute to the destruction of the 
organic matrix in the wine. 

The aim of the work is to authenticate by geographical origin according to the data of the ICP-spectrometric and chemometric 
analysis of elemental "images" of wines produced from white grape varieties Chardonnay, Riesling and Muscat grown in four regions of 
the Krasnodar Territory, Russia. 

To achieve this goal, we have substantiated the optimal scheme for analyzing research objects, identified marker elements, and 
established the relationship between the elemental composition of wine and the soil in the region where it was grown. The data was 
obtained using ICP spectrometry and machine learning techniques, which made it possible to differentiate between regions with a high 
degree of confidence. After identifying the marker elements and understanding the relationship between wine, grape, and soil, we 
considered the possibility of establishing the varietal and regional origins of wines. 

2. Materials and methods 

2.1. Research objects 

To determine the quality and regional affiliation, we studied 153 samples of dry white wines from the names Riesling (49), 
Chardonnay (56) and Muscat (48), produced on the territories of the main wineries in the geographical zones of the Krasnodar 
Territory: ZAO Zaporizhskoye, OOO Kuban-Vino, APF “Fanagoria”, APK “Milstrim-Chernomorskie Vina”, AF “Caucasus”, “Abrau- 
Durso”, APK “Gelendzhik”, AF “Myskhako”, “Sommelier Firm”, AF “Sauk-Dere”, “Soyuz-Vino”. Wine producers belong to different 
geographical zones (subzones) of the Krasnodar Territory - South Foothill and Black Sea zones, Anapa and Taman subzones (Fig. 1). 

The wine was supplied directly from the producers or purchased from retail chains. It was bottled in dark green bottles with cork 
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closures, and stored at temperatures up to 10 ◦C. According to the producers, the alcohol content of the wine ranged between 9 and 13 
% by volume, and the acidity was between 4 and 7 g/L. 

2.2. ICP-spectrometric analysis of wines 

Elemental analysis of wine materials was determined by ICP-OES on an iCAP 7400 spectrometer (Thermo Scientific, Waltham, MA, 
USA) and ICP-MS on an iCAP RQ spectrometer (Thermo Scientific, Waltham, MA, USA). The use of two methods is due to the need to 
determine both medium concentrations of elements (ICP-OES) - Zn, Ni, Mn, Fe, Mg, Cu, Al, Sr, Ca, Ba, Na, K, Rb and low concentrations 
of elements (ICP-MS) - Li, Ti, V, Co, As, Mo, Cd и Pb [32,40,41,53]. Optimized analysis conditions and spectrometer operation pa-
rameters are summarized in Table 1. 

2.3. Preparing wines for analysis 

When choosing the method of sample preparation of wines for multi-element analysis, the methods of "dry", microwave acid 
mineralization, as well as dilution with nitric acid were used. 

"Dry" mineralization was carried out taking into account the recommendations [56]. 25 mL of the analyzed wine sample was added 
to porcelain crucibles, which were placed in a muffle furnace and kept at 50 ◦C for 12 h. Wine samples were burned at 450 ◦C according 
to the program: temperature rise of 50 ◦C/h and holding at 450 ◦C for 18–24 h. The resulting white ash was dissolved with 5 % nitric 
acid to a volume of 25 mL. 

Microwave acid mineralization was performed according to a multistage process: stage 1 – heating to 180 ◦C and 450W for 10 min, 
stage 2 – maintaining the reaction mixture at 180 ◦C and 1100W for an additional 20 min, and stage 3 – cooling to room temperature. 
Nitric acid was used as an oxidizing agent (2.5 mL of concentrated HNO3 was added to 2.5 mL of wine sample) [57]. 

The preparation of wines for analysis by preliminary dilution by 15 times with 2 % nitric acid was carried out taking into account 
the data [51,53,54], as well as the capabilities of the measuring spectrometer used. 

2.4. Data analysis 

Predictive models for identifying the geographical origin of white wines were built using machine learning methods of the Data 
mining STATISTICA package: Decision trees, Machine learning procedures, automated neural networks (Automated neural networks). 
Decision trees are represented by General classification and regression trees (C&RT), Chi-square automatic interaction detection 
(CHAID), Boosted trees classifications and regression (Boosted Trees), Random Forest. Machine learning is represented by Support 
vector machine (SVM), k-nearest neighbor (KNN). Independent variables (predictors) of classification models were concentrations of 
15 metals - Li, Na, Mg, Al, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Ba and wine grade. As a dependent (target) variable, the regions of grape 
sort represented by the subzone South Foothill and Black Sea, subzones Anapa and Taman were used. The accuracy of the classification 
models of machine learning methods was compared with the data of the traditional classification method General discriminant 

Fig. 1. Geographical zones for grape growing in the Krasnodar Region, Russia.  
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analysis (GDA), which allows the use of categorical variables and the use of a test sample to evaluate the predictive properties of the 
model. 

3. Results and discussion 

3.1. ICP-spectrometric analysis of wines 

3.1.1. Optimization of sample preparation conditions for analysis 
During the implementation of wine sample preparation and subsequent ICP-spectrometric analysis, special attention was paid to 

ensuring the completeness and accuracy of sample preparation. The established levels of analytes in wine, using sample preparation 
techniques such as "dry" ashing, microwave acid mineralization, and dilution with nitric acid, showed satisfactory agreement between 
the results within the limits of error of the measurement (Table 2). 

Data on the ICP determination of metals in wines are given for three parallel measurements for each method. The measurement 
accuracy level was monitored using the introduced-found method. The ANalysis Of VAriance (ANOVA) analysis shows that the dif-
ference in the metal content after opening the same samples by all the above methods was within the measurement error. 

The difference between the methods of mineralization of samples was in the time factor. The differences in the methods of 
mineralization of samples were in the timing factor. The time it takes to open wines by "dry" ashing is more than 30 h. Microwave 
mineralization of wine using the oxidizing agents HNO3 and HCl is taking around 1.5–2 h. Preliminary dilution of wine with 2 % nitric 
acid 15 times was found to be the fastest and least labor-intensive method, with a simultaneous preparation time of 30–35 min for ten 
samples. 

3.1.2. Effect of metal concentrations on wine quality 
The influence of the mineral composition on the quality of wines was assessed considering the regulatory restrictions on the content 

of metals in them, as well as the recommendations of researchers when assessing their consumer properties. The International Or-
ganization of Viticulture and Winemaking (OIV) [58] has established the maximum permissible concentrations of the following el-
ements in wines: As - 0.20 mg/L; Cd - 0.01 mg/L; Cu - 1.00 mg/L; Pb - 0.15 mg/L and Zn - 5.00 mg/L [58]. In the EU countries, the 
concentration of Na is also standardized, and should not exceed 60 mg/L, because its high content impairs the harmony of taste - the 
wine acquires "soapy tones" [59]. 

Mineral components, interacting with amino acids and phenolic compounds, determine mainly the taste properties of wines [7]. 
The content of Al above 5 mg/L in wine leads to the appearance of a metallic taste and the smell of hydrogen sulfide, and the con-
centration of Zn above 5 mg/L gives an unpleasant odor, rough, astringent-bitter taste [59,60]. Cu and Fe concentrations of more than 
1 and 7 mg/L, in addition to a bitter metallic taste, affect the aroma of wine [7]. Elevated concentrations of Al, Fe and Zn (more than 5 
mg/L), Cu and Ni (more than 1 mg/L) can cause the formation of metal-cass and colloidal opacities [7]. 

Data from ICP-spectrometric analysis of the wines under study indicates that in all samples, the content of regulated elements by the 
OIV is below the established maximum limit (Table 3). 

The established ranges of metal content in wine samples of various groups depended on the variety and region of grape cultivation. 
The average metal content in wines from different grape varieties differed significantly by group. Thus, in the Taman subzone for 
Riesling and Chardonnay wines, the content of all elements turned out to be higher than in other regions. For Muscat wine, the 
maximum content of elements was observed in the Black Sea zone. The highest content of Li, Mg, Ni and Rb in Chardonnay wines was 
found in the Taman subzone, in the Black Sea zone - Al, Ba, Ca, K, Ti and Zn; in the Southern foothill zone there are Cu, Fe and Sr, and in 
the Anapa subzone Mn and Na. Riesling wines from the Taman subzone had the highest concentrations of Ca, Cu, Li, Mg, Mn, Na, Ni, 

Table 1 
Instruments operating parameters and elements limits of determination.  

ICP-MS (iCAP RQ) ICP-OES (iCAP 7400) 

Plasma gas flowrate, L/min 15.0 Plasma gas flowrate, L/min 12 
Nebulizer gas flowrate, L/min 1.0 Nebulizer gas flowrate, L/min 0.5 
Applied power, W 1550 Applied power, W 1200 
Replicates 5 Replicates 5 
Auxiliary gas flowrate, L/min 0.8 

0.01 
Auxiliary gas flowrate, L/min 0,5 

Integration time, s 

Isotopes, (LOD, μg/L) Spectral lines, (LOD, μg/L) 
7Li, (0.001) 

49Ti, (0.081) 
51V, (0.014) 
59Co,(0.008) 

75As, (0.015) 
98Mo,(0.006) 
111Cd,(0.002) 
208Pb, (0.009) 

Zn 213.856 (I), (0.35) 
Ni 231.604 (II), (0.26) 
Mn 257.610 (II), (0.15) 
Fe 259.940 (II), (1.6) 
Mg 280.270 (II), (8) 
Cu 324.754 (I), (0.11) 

Al 396.152 (I), (1.23) 
Sr 421.552 (II), (0.57) 
Ca 422.673 (I), (14) 
Ba 455.403 (II), (0.41) 
Na 588.995 (I), (2.4) 
K 766.490 (I), (5) 
Rb 780.023 (I) (0.46) 

I – neutral atom, 
II – singly ionized atom  
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Table 2 
The results of the determination of metals in wines after various methods of sample preparation.  

Element "Dry" mineralization Microwave acid mineralization Dilution 1:15 

Measured, mg/L Added, mg/L Found, mg/L Rec., 
% 

Measured, mg/L Added, mg/L Found, mg/L Rec., 
% 

Measured, mg/L Added, mg/L Found, mg/L Rec., 
% 

Al 0.800 1.0 1.733 92 % 0.733 1.0 1.751 103 % 0.746 1.0 1.728 98 % 
Ba 0.090 0.10 0.176 84 % 0.077 0.10 0.177 100 % 0.077 0.10 0.177 100 % 
Ca 80 100 174 93 % 74 100 176 102 % 75 100 174 99 % 
Cu 0.540 0.50 0.992 91 % 0.534 0.50 0.986 91 % 0.489 0.50 1.015 105 % 
Fe 7.280 7.0 13.6 91 % 6.659 7.0 13.6 99 % 6.599 7.0 13.7 101 % 
K 630 500 1105 96 % 605 500 1100 99 % 599 500 1104 101 % 
Li 0.015 0.02 0.031 71 % 0.014 0.02 0.031 79 % 0.012 0.02 0.032 100 % 
Mg 55 50 102 95 % 52 50 102 100 % 53 50 102 100 % 
Mn 0.620 0.50 1.093 96 % 0.608 0.50 1.090 97 % 0.587 0.50 1.105 103 % 
Na 35 50 80.3 87 % 33 50 81.1 94 % 31 50 83.7 106 % 
Ni 0.024 0.02 0.045 103 % 0.023 0.02 0.044 108 % 0.025 0.02 0.043 93 % 
Rb 0.220 0.20 0.387 85 % 0.178 0.20 0.359 90 % 0.162 0.20 0.365 102 % 
Sr 1.310 1.0 2.242 95 % 1.228 1.0 2.222 100 % 1.221 1.0 2.227 101 % 
Ti 0.020 0.02 0.039 96 % 0.019 0.02 0.039 100 % 0.019 0.02 0.039 100 % 
Zn 0.410 0.50 0.877 92 % 0.390 0.50 0.881 98 % 0.383 0.50 0.893 102 % 

Content As, Cd, Co, Mo, Pb and V < LOD. 
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Table 3 
Ranges of elements in wines by grape varieties and regions of origin, mg/L (except Ca, K, Mg, Na – g/L).  

Element Taman subzones Anapa subzones South Foothill zones Black Sea zones 

Chardonnay Riesling Muscat Chardonnay Muscat Chardonnay Riesling Muscat Chardonnay Riesling Muscat 

Al 0.167–1.238 0.755–2.683 0.376–1.562 0.468–0.566 0.616–2.026 1.040–1.718 1.692–2.261 1.056–1.956 0.347–1.250 0.661–2.618 1.941–8.735 
Ba 0.041–0.183 0.119–0.246 0.053–0.290 0.054–0.111 0.087–0.121 0.093–0.284 0.129–0.460 0.089–0.186 0.059–0.200 0.085–0.177 0.076–0.157 
Ca 0.019–0.082 0.073–0.100 0.058–0.111 0.034–0.039 0.065–0.095 0.040–0.066 0.068–0.099 0.069–0.083 0.037–0.080 0.066–0.091 0.075–0.088 
Cu 0.003–0.910 0.008–0.059 0.026–0.196 0.029–0.035 0.533–0.669 0.022–0.040 0.026–0.073 0.029–0.062 0.044–0.065 0.029–0.463 0.284–1.049 
Fe 0.468–7.928 1.073–6.393 0.964–7.081 2.377–3.153 7.254–8.974 4.594–5.758 3.489–5.696 3.255–4.697 0.681–3.087 0.514–6.550 5.250–6.331 
K 0.490–1.055 0.301–0.950 0.395–1.249 0.687–0.784 0.580–0.717 0.355–0.964 0.548–1.079 0.749–0.888 0.490–0.999 0.195–0.552 0.555–0.125 
Li 0.013–0.065 0.015–0.035 0.020–0.039 0.008–0.015 0.014–0.017 0.009–0.013 0.011–0.015 0.013–0.023 0.006–0.037 0.003–0.038 0.010–0.032 
Mg 0.025–0.173 0.045–0.214 0.055–0.153 0.051–0.055 0.050–0.064 0.041–0.065 0.059–0.086 0.066–0.091 0.045–0.056 0.037–0.074 0.061–0.093 
Mn 0.094–2.811 0.775–3.006 0.828–1.782 0.758–0.815 0.581–0.735 0.511–1.110 0.366–0.650 0.787–1.127 0.646–1.981 0.580–1.691 0.778–1.599 
Na 0.021–0.082 0.021–0.134 0.022–0.104 0.021–0.025 0.032–0.040 0.048–0.065 0.021–0.065 0.041–0.053 0.023–0.057 0.015–0.106 0.066–0.076 
Ni 0.007–0.132 0.005–0.076 0.019–0.053 0.007–0.016 0.012–0.045 0.016–0.041 0.017–0.052 0.028–0.045 0.029–0.058 0.009–0.126 0.026–0.184 
Rb 0.109–6.088 0.293–1.296 0.431–0.847 0.580–0.647 0.176–0.293 0.204–0.810 0.494–0.700 0.507–0.764 0.865–2.352 0.462–0.737 0.278–0.839 
Sr 0.411–1.284 0.665–1.744 0.541–1.040 0.865–0.907 1.270–1.441 0.381–0.596 0.577–0.712 0.611–0.998 0.508–1.469 0.489–1.193 0.762–1.093 
Ti 0.005–0.028 0.009–0.035 0.007–0.028 0.011–0.017 0.003–0.043 0.017–0.026 0.018–0.047 0.015–0.018 0.018–0.026 0.013–0.051 0.021–0.032 
Zn <LOD-1.439 <LOD-1.492 0.241–0.546 0.338–0.404 0.329–0.707 0.278–0.666 0.213–0.939 0.513–0.759 0.543–0.849 0.289–1.457 0.291–1.182 

Content As, Cd, Co, Mo, Pb and V < LOD. 
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Table 4 
Content of elements in white wines produced in different regions.  

N◦ Manufacturer country Average element content, mg/L References 

Al Ba Ca Cu Fe K Li Mg Mn Na Ni Rb Sr Ti Zn 

1 Italy 0.56 0.07 84 0.08 0.87 786 0.004 73 0.67 18 0.02 0.71 0.31 0.004 0.84 [61] 
2 Argentine – 0.06 – 0.21 – – 0.67 – 1.50 – 0.22 0.75 0.85 – – [62] 
3 Portugal 0.07 – 77 0.004 0.12 716 0.001 57 0.08 32 0.001 0.14 0.03 – 0.03 [63] 
4 China 0.39 0.10 69 0.20 4.68 1506 0.03 212 0.67 17 0.08 1.23 1.42 – 0.67 [42] 
5 Spain 0.07 0.04 55 0.10 0.38 568 – 92 0.65 17 0.01 – 1.29 – 0.31 [64] 
6 South Africa 0.27 0.13 45 0.33 0.71 – 0.01 168 1.07 14 0.02 1.36 0.53 0.02 1.65 [65] 
7 Germany – – 107 – 1.98 – 0.01 77 1.00 – – 0.40 0.38 – 0.93 [66] 
8 Croatia – 0.02 49 0.15 0.86 441 – – 0.64 – 0.01 1.12 0.15 – 0.58 [67] 
9 Russia 1.34 0.13 70 0.20 3.62 602 0.02 71 0.99 54 0.07 0.89 0.82 0.02 0.55 This work  
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Rb, Sr and Zn, and Al, Ba, Fe and Ti in the Southern Foothill subzone. For the Muscat variety, the highest average contents of Li, Mg, 
Mn, Na and Rb were typical in wine from the Taman subzone; Al, Ni and Zn – from the Black Sea subzone; Ba, Ca, Cu, K and Ti – from 
the Southern Foothill zone, and Fe and Sr – from the Anapa subzone. The contents of Li, Mg and Rb in all the studied varieties of wines 
from the Taman subzone turned out to be the highest compared to others. 

A significant difference was observed in the concentrations of Al, Ba, Ca and Rb was observed between different wine varieties, and 
Al, Ba, Rb, Fe and Li – between growing regions. At the same time, the concentrations of metals varied in different groups of wines, with 
the magnitude of these variations relative to the average. For some elements, these deviations were small, with standard deviations less 
than half the average, such as Ba, Ca, K, etc. Others were high, such as Al, Cu, Ni, etc. The similarity of the average concentrations in 
different groups indicated their internal homogeneity. This allowed modern chemometric techniques to establish the geographical 
origin of wine by its authenticity. 

According to various authors [42,61–67], we tried to conduct a comparative analysis of the average element contents in white 
wines produced in different regions of grape growth and production (Table 4). Unfortunately, the publications did not fully indicate 
information about the climate, the chemical composition of the soils on which grapes were cultivated, the forming elemental 
composition of berries and wine, the technology of processing wine materials, and the timing of harvest. From these data, we can state 
that, depending on the region of origin, the average concentration of Al in white wines varies depending on the region of production 
from 0.07 to 1.34, Ba – from 0.02 to 0.13, Cu – from 0.004 to 0.33, Fe – from 0.12 to 4.68, Na – from 14 to 54, Sr - from 0.03 to 1.42 
mg/L, which can significantly affect their consumer properties [7,59,60]. 

3.2. General discriminant analysis (GDA) 

The classification of wines is determined by a cluster structure describing its indicators, depending on their uniformity within and 
heterogeneity between classes, represented by the distances between them as points of multidimensional space in the coordinate 
system. We visualized classes by transferring objects into a lower-dimensional space while maintaining the order of distances using 
discriminant analysis and constructing scatterplots of canonical values. 

For the studied wine samples, the scatter diagram of the canonical values is presented in Fig. 2 in the coordinate system with the 
canonical roots Root 1, Root 2. The concentrations of 15 metals were used as predictors in the discrimination model, and the grape 
growing region was the target grouping variable. Samples of wines from the same group (class) are depicted with identical geometric 
figures – squares, diamonds, rectangles and triangles of different colors. From the diagram we can see that the samples of each region 
are mainly localized in “their” specific part of the plane, forming groups of similar objects - clusters. Samples of the Taman and Anapa 
subzones are located in lower right and left parts of the plane, and those from the South Foothill and Black Sea zones were localized 
above and below the central part of the plane. It can be assumed that the studied wine samples, based on the content of 15 metals, have 
a cluster structure relative to the region where the grapes grow, which allows for the construction of models for establishing their 
geographical origin. 

An important difference between machine learning methods and other methods for constructing predictive models is their ability to 
learn in the course of solving the given problems. The classification model allows us to identify all objects in the source data although 

Fig. 2. Scatterplot of canonical values.  
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for other objects its prognostic abilities are limited. An effective way to prevent the overfitting of the model is to divide the data into 
training and test sets. The model is trained on the first set, and its predictive properties are checked (tested) on the second. We divided 
the wine samples using a random number sensor into training and test sets of 111 (73 %) and 42 (27 %) samples, respectively. The 
regional and varietal structures of the training and test sets are presented in Table 5. All the considered methods, when solving the 
classification problem, allow us to use along with continuous predictors, the categorical predictors. Classification models were built 
using 15 continuous predictors—concentrations of 15 metals-and a categorical predictor-wine variety. 

The GDA provides 6 different procedures for building a classification model - « All effects», «Forward stepwise», «Backward stepwise», 
«Forward entry», «Backward removal», «Best subsets». The « All effects » procedure involves including all predictors in the discrimination 
model under construction. The next 4 procedures are based on step-by-step inclusion/exclusion of predictors into the model depending 
on the values of the Fisher criterion parameters – F to enter, F to remove. The Best subsets procedure selects the subset with the best 
predictive properties among all valid predictor subsets. Using step-by-step discrimination procedures, we obtained identical classi-
fication accuracies on the training (93.69 %) and testing (92.86 %) sets. The « All effects» and «Best subsets » procedures showed a 
higher quality of classification - the accuracies on the training and test sets reached 94.59 and 95.24 %, respectively. Next, we 
considered the classification model of the «All effects » procedure, which uses all predictors when constructing the model. 

The model was built with the prior probabilities of classifications parameter Estimated and enabled Cross-validation. The following 
training set contained 6 erroneous classifications out of 111. The program classified two samples from the South Foothill zone as 
samples from the Black Sea zone, and 4 samples from the Black Sea zone as ones from the Taman subzone (Table 6). There were 2 
erroneous classifications in the test set (Table 6) - the sample from the Black Sea zone was defined as a sample from the Taman subzone, 
and the sample from the South Foothill zone was assigned to the Black Sea zone. Classification accuracies, determined by the ratio 
between the number of correct classifications and the total number of samples, were 94.6 and 95.24 % on the training and test sets, 
with the overall accuracy of the entire set of samples being 94.77 %. 

The GDA provides an assessment of the statistical significance and importance of predictors in the classification model (Table 7). At 
a significance level p of the Fisher test less than 0.05, the predictor in the classification model is considered statistically significant. Ba, 
Ti, Rb and Na will be statistically insignificant according to this criterion. With a smaller Wilks statistic and a larger F value of the 
Fisher test, the contribution (importance) of the predictor to the classification model becomes greater. The most important contri-
bution to the model is made by Li, then Sr, Fe, Mg, …, less important by – Na. 

3.3. Data mining machine learning methods 

3.3.1. Decision trees 
The C&RT method includes various algorithms for growth and pruning of trees. A wine classification tree with the best predictive 

properties was built using the following parameters: Misclassification costs – equal, agreement criterion – Gini measure; Prior prob-
abilities – estimated; stopping rule – Fact style direct stopping; stopping parameter – Minimum n of cases = 1; Fractional of objects 
0.01; v-fold cross validation enabled at v = 10. The constructed tree (Fig. 3) contains 21 vertices, of which 11 are terminal (have no 
branches), and has good predictive properties. In the training set (Table 8) there were 2 erroneous classifications - 2 samples of the 
Taman subzone were assigned to the Black Sea zone. There were also 2 erroneous classifications in the test set (Table 8) - one sample 
from the South Foothill zone was assigned to the Taman and Anapa subzones. The classification accuracies on the training and test sets 
were 98.2 % and 95.24 %, the overall accuracy was 97.39 %. 

In some decision tree methods, it is possible to assess the importance of predictors in determining whether objects belong to given 
classes. Fig. 4 shows a diagram illustrating the significance of predictors in the classification model using the C&RT method. Analysis 
of the graph shows that the most important of the predictors in the model is Sr, followed by Al, Na, Fe, …, the least important are Rb 
and the categorical predictor Sort. 

The idea behind the CHAID algorithm is to select combinations of predictors that define the dependent variable in such a way that 
some nodes can have more than two branches. The tree with the best predictive properties was built with the following parameters: 
Minimum n = 1, Prob. for splitting = 0.3; Prob. for merging = 0.3; Bonferroni correction is disabled, v-fold cross validation is enabled. 

Table 5 
Frequency distribution of wine samples by varietal and regional affiliation for test and training samples.  

Summary Frequency Table (White wines) Marked cells have counts >10 
(Marginal summaries are not marked) 

Identifier Sort Region 
Taman 

Region 
Anapa 

Region 
South Foothill 

Region 
Black Sea 

Row 
Totals 

test Chardonnay 7 2 5 4 18 
test Riesling 5 0 4 2 11 
test Muscat 7 4 1 1 13 
Total  19 6 10 7 42 
training Chardonnay 22 4 8 4 38 
training Riesling 14 0 8 16 38 
training Muscat 18 8 4 5 35 
Total  54 12 20 25 111 
Column Total  73 18 30 32 153  
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The constructed tree has 34 vertices, of which 22 are terminal (Fig. 5). There are no misclassifications in the training set. There are 3 
erroneous classifications in the test set - one sample of the Taman subzone is identified as a sample of the Black Sea zone; one sample of 
the South Foothill zone is assigned to samples of the Taman subzone and another one to the Black Sea zone. The classification ac-
curacies of the training and test sets were 100 % and 95.24 %, the overall accuracy was 98.69 %. A disadvantage of the CHAID method 
is the lack of ability to assess the importance of predictors in the classification model. 

Boosted Trees is a data mining method that uses the boosting technique and involves constructing a sequence of “simple” trees, in 
which each subsequent one is formed by taking into account the errors of the previous one, trying to reduce them. We built an 
optimized wine classification model with high predictive properties with the following parameters: Subsample proportion = 0.5; 
Learning rate = 0.12; Number of additive terms = 200; Minimum n of cases = 5; Maximum n of levels = 12, Minimum n in child node 
= 1; Maximum n of nodes = 3. As a result, 118 simple trees were built by the model, which together cannot be graphically depicted. 
There are no erroneous classifications on the training set. There were 2 erroneous classifications on the test set - one sample from the 
South Foothill and Black Sea zones were classified as samples from the Taman subzone. The classification accuracies on the training 
and test sets reached 100 % and 95.24 %, the overall accuracy was 98.69 %. The most significant predictors of the classification model 
were Li, followed by K, Al, Fe, …, Sort. 

Random Forest as Boosted Trees uses a technique that involves building simple independent models and choosing a solution by 
voting. The main feature of the method is that the solution of each tree depends on a random set of predictor values, chosen inde-
pendently and with the same distribution for all trees in the forest, which is a subset of the predictor values of the original data set. The 
basic principle of constructing trees using a random forest lies in the complete independence of the obtained models from each other. 
An acceptable classification forest of 70 random trees with the best predictive properties was built with the following parameters: 
Number of predictors = 5; Number of trees = 70; Subsample proportion = 0.5; Minimum n of cases = 2; Maximum n of levels = 10; 
Minimum n in child node = 1; Maximum n of nodes = 100. There were no erroneous classifications on the training set. In the test 
sample, one sample from the Taman subzone was erroneously identified as a sample from the South Foothill and one as a sample from 

Table 6 
Classification of the training and test sample by GDA method.  

Class Classification Matrix (White wines) Rows: Observed classifications 
Columns: Predicted classifications) 
Percent 
Correct 

Taman p = 0.496 Anapa p = 0.111 South Foothill p = 0.185 Black Sea p = 0.207  

Training Sample 

Taman 100.00 54 0 0 0 
Anapa 100.00 0 12 0 0 
South Foothill 90.00 0 0 18 2 
Black Sea 84.00 4 0 0 21 
Total 94.60 58 12 18 23  

Test Sample 

Taman 100.00 19 0 0 0 
Anapa 100.00 0 6 0 0 
South Foothill 90.00 0 0 0 1 
Black Sea 85.71 1 0 9 6 
Total 95.24 20 6 9 7  

Table 7 
Multivariate tests of significance.   

Effect 
Multivariate Tests of Significance (White wines). Sigma-restricted parameterization. Effective hypothesis decomposition 

Test Value F Effect df Error df p-level 

Li Wilks 0.278 78.747 3 91 0.000 
Sr 0.329 61.917 3 91 0.000 
Fe 0.583 21.663 3 91 0.000 
Mg 0.620 18.582 3 91 0.000 
Ca 0.682 14.142 3 91 0.000 
Intercept 0.706 12.657 3 91 0.000 
Cu 0.717 11.987 3 91 0.000 
Al 0.732 11.085 3 91 0.000 
Sort 0.776 4.111 6 182 0.001 
K 0.800 7.597 3 91 0.000 
Ni 0.872 4.457 3 91 0.006 
Zn 0.883 4.031 3 91 0.010 
Mn 0.886 3.909 3 91 0.011 
Ba 0.949 1.634 3 91 0.187 
Ti 0.951 1.558 3 91 0.205 
Rb 0.956 1.385 3 91 0.252 
Na 0.987 0.397 3 91 0.756  
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the Black Sea zones. The classification accuracies on the training and test sets were 100 % and 95.24 %, the overall accuracy was 98.69 
%. The most important predictor in the classification model is Sr, followed by Li, Al, Rb, …, Sort. 

3.3.2. Machine learning methods 
For building classification models with high predictive properties machine learning methods provide v-fold cross validation, in 

which the set is randomly divided into v parts, after which the model is trained v times and the resulting solutions are averaged. In this 
case, training is carried out on the v-1 part, and control is carried out on one part of the data. The importance of predictors is not 
assessed in Machine learning classification models. 

The SVM method is based on the concept of hyperplanes, which define the boundaries of hypersurfaces separating a set of objects 
from different classes. At the same time most classification problems are not that simple, and often require more complex structures 
than hyperplanes for optimal separation. The main idea of SVM is to reorder objects with sets of mathematical functions such that the 
objects become linearly separable. The STATISTICA package provides such kernel transformation functions as linear, polynomial, 
exponential (RBF radial basis function) and sigmoid. The best classifier, consisting of 74 vectors, was built with the following 

Fig. 3. Decision Tree Graph constructed by the C&RT method.  

Table 8 
Classification of the Training and Test Sample by the C&RT method.   

Classification matrix 1 (White wines) 
Dependent variable: Region 
Options: Categorical response, Tree number 1, Test sample 

Observed 
Taman 

Observed 
Anapa 

Observed 
South Foothill 

Observed 
Black Sea 

Training Sample 
Predicted Taman 52 0 0 0 
Predicted Anapa 0 12 0 0 
Predicted South Foothill 0 0 20 0 
Predicted Black Sea 2 0 0 25 
Test Sample 
Predicted Taman 19 0 1 0 
Predicted Anapa 0 6 1 0 
Predicted South Foothill 0 0 8 0 
Predicted Black Sea 0 0 0 7  

Z. Temerdashev et al.                                                                                                                                                                                                 



Heliyon 10 (2024) e29607

12

parameters: classification error function - Classification SVM, Type 1; Capacity = 10; RBF kernel transformation function; Gamma =
1.5; Cross-validation enabled; other parameters are accepted by default. There are no erroneous classifications on the training set. 
There were 2 erroneous classifications on the test set - 2 samples of the Taman zone were identified as samples of the South Foothill 
zone. The classification accuracy on the training set was 100 %, on the test set – 95.24 %, overall accuracy – 98.69 %. 

Estimating the similarity between objects using distances is the basis of the KNN method. The object being classified belongs to the 
same class as the closest to it objects in the training set Therefore, the classification accuracy on the training set is not assessed, since it 
is used to select the nearest neighbors when classifying objects in the test set. This method is quite simple to implement; the key 
parameter is the number of nearest neighbors, the optimal value of which k = 1 was found by cross-validation when changing k values 
in the range from 1 to 10. There are no erroneous classifications on the training set. There were 2 erroneous classifications on the test 
set - 2 samples from the South Foothill zone were classified as samples from the Black Sea zone. The classification accuracy on the test 
sample is 95.24 %. 

Fig. 4. Diagram showing the importance of predictors using C&RT method.  

Fig. 5. Decision Tree Graph constructed by the CHAID Method.  

Z. Temerdashev et al.                                                                                                                                                                                                 



Heliyon 10 (2024) e29607

13

3.4. Automated neural networks (ANN) 

The ANN method is intuitively appealing and humanly understandable because many of its principles are based on crude and low- 
level models of biological information processing systems. The input signals of a neural network (NN) are converted into weighted 
output signals through a mathematical activation function. The ability to learn from training samples is one of the features of NN, 
which allows the user to set rules governing the underlying relationships between various data attributes. A collection of singular 
artificial neural systems NN allows you to model complex functions and non-linear relationships of variables, extracting patterns in the 
form of knowledge, rules and trends from the data. Such patterns are difficult, and often impossible, to model using analytical or 
parametric methods. The problem of overfitting, as in other machine learning methods, is one of the main problems of NN. When a 
network is fitted to the training data in a way that reproduces even the random noise in a particular data set, it is difficult for the 
network to make accurate predictions using the new data. Therefore, to solve such problem, we used the Identifier variable to divide 
the data into training and test sets. We built networks using the Automated Neural Networks method with the following parameter 
settings: neural network type – multilayer perceptron (MLP), Min. hidden units = 5; Max. hidden units = 16; Networks to train = 20; 
Network to retain = 5. The training algorithm, the number of iterations during training, error functions, activation of hidden and 
output neurons were selected by the program automatically. The program built 200 neural networks, from which the MLP 18-9-4 
network was selected with the best predictive properties - network performance on both samples, i.e. classification accuracy on the 
training and test sets was 100 %. 

In the MLP 18-9-4 network, the abbreviation MLP stands for multilayer perceptron, 18 is the number of input neurons, which is 
equal to the sum of the number for continuous predictors (15) and the number of values for the categorical independent variable Sort 
(3); 9 – number of hidden neurons, 4 – number of output neurons, determined by the number of regions. During training, we used an 
iterative algorithm for numerical optimization of weights - BFGS with a number of iterations equal to 49, error function - SOS (Sum of 
squares), activation functions for hidden and output neurons - Tanh and Identity. Fig. 6 shows the architecture of the MLP 18-9-4 
neural network. 

The importance of predictors in a neural network classification model is determined by the sensitivity coefficient. The ordered 
sequence of model predictors in descending order of their sensitivity coefficients is as follows: Sort, K, Sr, Li, Fe, Mg, Mn, Ca, Na, Al, Ba, 
Ti, Cu, Rb, Zn and Ni. 

The results of the comparative analysis of the implemented methods are given in Table 9. The ANN method achieved the maximum 
possible accuracy of 100 % on the test and training sample. The other methods, including GDA, obtained the same result on the test 
sample, the accuracy is 95.24, which corresponds to 2 erroneous classifications out of 42 samples. The C&RT, CHAID, Boosted Trees, 
Random Forest, SVM methods achieved 100 % accuracy on the training sample; the classification accuracy of the C&RT and GDA 
methods are 98.2 % and 94.6 %, which corresponds to 2 and 6 classification errors out of 111 wine samples. According to the general 
classification accuracy, ANN took the first place (100 %), the second place was shared by 4 C&RT, CHAID, Boosted Trees, Random 
Forest (98.69), the third place by C&RT (97.39 %) and the last fourth place by GDA (94.77 %). When predicting the geographical 
origin of wines, the concentrations of Sr, Li, Fe, and Al dominated in importance in the constructed models. 

4. Conclusion 

Elemental composition of 153 samples of Chardonnay, Riesling and Muscat white wines grown and produced in four regions of 
Krasnodar Territory were measured by ICP-OES and ICP-MS techniques. Correlations between the elemental composition of the soils, 
grapes and wines were found which allowed to distinguish the areas of the grapes growth and wine varieties with high accuracy. 
Inspite of the close location of the regions the found mean elemental concentrations in different wine varieties varied significantly. 
Concentrations of all elements in Risling and Chardonnay wines produced in Taman region were higher comparing to other regions. 
The highest element concentrations were measured in Muscat wines produced in Black Sea zone. It was found that Al, Ba, Ca and Rb are 

Fig. 6. Neural network architecture.  
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good precursors of the white wines variety, while concentrations of Al, Ba, Rb, Fe and Li define the area of the grape growth. 
Similarity of the average values of metal concentrations in different groups of wines indicates homogeneity within the groups, 

while the cluster structure established by discriminant analysis made it possible to construct predictive models for the of white wines 
by geographic origin. Data mining machine learning methods and General discriminant analysis were tested for data processing. The 
predictors of the classification models were metal concentrations and wine variety. 

The quality of the constructed predictive models was determined by the accuracy of classification – the percentage of correctly 
identified wine samples. The neural network method has achieved the highest classification accuracy on test and training samples. The 
rest of the used machine learning methods in the test sample gave similar results with a classification accuracy of 95.24 %. The C&RT, 
CHAID, Boosted Trees, Random Forest, and SVM methods achieved 100 % accuracy on the training sample; C&RT (98.2 %) and GDA 
(94.6 %) provided slightly lower accuracy. ANN (100 %) had the highest classification accuracy for the entire set of 153 wine samples, 
followed by CHAID, Boosted Trees, Random Forest, SVM (98.69), C&RT (97.39 %) and GDA (94.77 %). 

The significance of the predictors in the neural network classification model is determined by the value of the sensitivity coefficient. 
The descending sequence ordered of the element sensitivity coefficients is as follows: Variety, K, Sr, Li, Fe, Mg, Mn, Ca, Na, Al, Ba, Ti, 
Cu, Rb, Zn and Ni. In predicting the geographical origin of wines, the significance of metal concentrations in the constructed models 
was mainly dominated by metals Sr, Li, Fe, Al. 

It should be noted that Data Mining machine learning methods focused on large-dimensional data, in combination with IСP 
spectrometric analysis, successfully solved small-dimensional problems of the definition of the authenticity of wines by their 
geographical origin, component composition and variety. 
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Table 9 
Results of comparative analysis of implemented methods.   

Samples 
Decision trees Machine 

learning 
ANN Multivariate 

Techniques 

C&RT CHAID Boosted Trees Random 
Forest 

SVM KNN GDA 

Classification accuracy, % 
Train 98.2 100 100 100 100 – 100 94.6 
Test 95.24 95.24 95.24 95.24 95.24 95.24 100 95.24 
Total 97.39 98.69 98.69 98.69 98.69 – 100 94.77 
Assessing the importance of model predictors  

Sr, Al, Na, Fe, 
Mn 

the possibility of 
evaluation 
is not provided 

Li, K, Al, Fe, 
Mg 

Sr, Li, Al, Rb, 
K 

the possibility 
of evaluation 
is not provided 

K, Sr, Li, Fe, 
Sort 

Li, Sr, Fe, Mg, Ca  
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Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e29607. 
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