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Abstract

Many computational classifiers have been developed to predict different types of post-trans-

lational modification sites. Their performances are measured using cross-validation or inde-

pendent test, in which experimental data from different sources are mixed and randomly

split into training and test sets. However, the self-reported performances of most classifiers

based on this measure are generally higher than their performances in the application of

new experimental data. It suggests that the cross-validation method overestimates the gen-

eralization ability of a classifier. Here, we proposed a generalization estimate method,

dubbed experiment-split test, where the experimental sources for the training set are differ-

ent from those for the test set that simulate the data derived from a new experiment. We

took the prediction of lysine methylome (Kme) as an example and developed a deep learn-

ing-based Kme site predictor (called DeepKme) with outstanding performance. We

assessed the experiment-split test by comparing it with the cross-validation method. We

found that the performance measured using the experiment-split test is lower than that mea-

sured in terms of cross-validation. As the test data of the experiment-split method were

derived from an independent experimental source, this method could reflect the generaliza-

tion of the predictor. Therefore, we believe that the experiment-split method can be applied

to benchmark the practical performance of a given PTM model. DeepKme is free accessible

via https://github.com/guoyangzou/DeepKme.

Author summary

The performance of a model for predicting post-translational modification sites is com-

monly evaluated using the cross-validation method, where the data derived from different

experimental sources are mixed and randomly separated into the training dataset and vali-

dation dataset. However, the performance measured through cross-validation is generally
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higher than the performance in the application of new experimental data, indicating that

the cross-validation method overestimates the generalization of a model. In this study, we

proposed a generalization estimate method, dubbed experiment-split test, where the

experimental sources for the training set are different from those for the test set that simu-

late the data derived from a new experiment. We took the prediction of lysine methylome

as an example and developed a deep learning-based Kme site predictor DeepKme with

outstanding performance. We found that the performance measured by the experiment-

split method is lower than that measured in terms of cross-validation. As the test data of

the experiment-split method were derived from an independent experimental source, this

method could reflect the generalization of the prediction model. Therefore, the experi-

ment-split method can be applied to benchmark the practical prediction performance.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Protein lysine methylation, as one type of dynamic and reversible post-translational modifica-

tions (PTMs) by protein lysine methyltransferases and demethylases, plays an important role

in cell signaling and regulation [1]. This modification contains three different types: mono-,

di- and tri-methylation (i.e. Kme1, Kme2 and Kme3). The majority of Kme sites are discovered

through the combination of affinity purification and high-throughput mass spectrometry.

Besides those identified by experiments, a bunch of computational approaches were developed

for the prediction of Kme sites. A few predictors were based on Support Vector Machine

(SVM) combined with different features, such as intrinsic disorder information [2] or linear

functional motif as the feature [3]. Recently, a few predictors [4,5] were based on deep-learning

(DL) algorithms. Cross-validation is the general method to evaluate prediction models using a

limited data set. This data set is commonly composed of experimental data from different

sources and randomly split into training and validation sets. The cross-validation evaluation is

often considered the measure of the generalization ability. However, it is found that the self-

reported performance, which was documented in the original literature calculated in terms of

cross-validation and/or the independent test, overestimates the real accuracy based on newly

constructed independent datasets [6–8]. It indicates that the self-reported performance may

not be indicative of prediction quality. Therefore, experimentalists should be careful to use

PTM predictors and independent assessments are necessary to evaluate their performances in

practice [7,8].

Here, we proposed a method for generalization estimation, called the experiment-split test,

to benchmark models for their practical performances. In this method, the data of the training

and test sets are derived from different experiments and the common data between both sets

are removed from the test set so that both sets are independent. Therefore, the test set simu-

lates a newly constructed independent dataset. To evaluate this novel method, we took the pre-

diction of lysine methylome (Kme) as an example. We developed a DL-based predictor

DeepKme with superior performance to existing methods. We found that the performance

measured using cross-validation was larger than that measured using the experiment-split test.

As the test set in the experiment-split method is derived from an independent experimental

source, the experiment-split performance reflects the generalization ability of the predictor.

DeepKme is free accessible via https://github.com/guoyangzou/DeepKme.
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Methods

Dataset construction and pre-processing

The data about lysine methylation sites were collected through three approaches: database

integration, data mining, and literature curation (Fig 1A), which include GPS-MSP [9], iPTM-

net [10], PLMD [11], PhosphoSitePlus [12], dbPTM [13], UniProt [14] and literature [15]. We

initially collected 5450 Kme sites from 2989 human proteins and all the sites were annotated

with the original experimental sources (S1 and S2 Tables). We used a sequence window of 61

amino acids in length with “K” in the center to represent the site. If the central lysine residue is

located near the N-terminus or C-terminus of the protein sequence, the symbol “X” is added

at the related terminus to ensure the window sizes of the sequences are the same. After remov-

ing the replicates, 5229 Kme sequences were retained (Fig 1B). Four different labels (i.e. Kme1,

Kme2, Kme3 and Kme) were assigned to each sequence if the sequence was modified by lysine

mono-, di-, tri-methylation or methylation. Moreover, we collected 638,805 lysine sites with-

out methylation annotations from human proteome as negative samples and their related

sequences were unique and different from the positive sequences (Fig 1B and 1C).

Experiment-split method

Fig 2 illustrates the experiment-split test method. For instance, we collected data from n differ-

ent experimental sources and therefore we could make the tests n times. In test i, the PTM data

from the experimental source i were used as positives of the independent test dataset; the data

from the rest experimental sources were considered the positive samples in the training data-

set. It should be noted that the common data between the training and test sets are removed

from the test set so that both sets are independent. For convenience and the consideration of

computational cost, we randomly chose 40000 samples from all the non-PTM-containing pro-

teins as negatives and split them into half, one for training and the other for testing. We reason

that the performance estimation may be unreliable if the number of positive samples in the

test set is extremely small or few test sets are available. Therefore, we balanced these two num-

bers. In this study, we evaluated the prediction performance based on at least five test sets and

each containing at least five positive samples.

Fig 1. The working flow of data collection.

https://doi.org/10.1371/journal.pcbi.1009682.g001
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Feature encodings

One-Hot (OH) encoding. It is represented by the conversion of the 20 types of amino

acids to 20 binary bits. By considering the complemented symbol “X”, 21 (= 20+1) binary bits

are used to represent a single position in the peptide sequence (S1 Fig). For example, the

amino acid “Q” is represented by “100000000000000000000” and “H” is represented by

“000000000000000000010”.

Position-Specific Scoring Matrix (PSSM) encoding. It is generated through running the

PSI-BLAST program and described elsewhere [16,17].

Word Embedding (WE) encoding. Each item of the input sequence is encoded by One-

Hot encoding to a 21-dimension binary vector, followed by a fully connected layer without

nonlinear activation function which is used to decrease the vector to a five-dimension vector.

Model construction

The 1D-CNN Model with OH Encoding (CNNOH). This model contains four layers,

listed below (Fig 3).

1. Input layer. Each input sequence of 61 amino acids is encoded by the OH encoding to a

61×21 binary matrix.

2. Convolution layer. It consisted of two convolution sublayers, each followed by individual

max-pooling sublayers, respectively. The first convolution sublayer includes 256 different

convolution kernels with the size of 9×21. Each kernel is applied to the 61×21 matrix from

the input layer and results in a feature vector with the size of 53 (= 61–9+1). Thus, the 256

kernels output a 53×256 matrix. Next, a pooling kernel with the size of 2 is applied to the

Fig 2. Illustration of the experiment-split method. En represents the data from the nth experimental source. Test n represents that the En data is used for the

independent test and the rest experimental data for the training.

https://doi.org/10.1371/journal.pcbi.1009682.g002
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feature matrix and produces a 26×256 matrix. In the second convolution sublayer, 32 differ-

ent convolution kernels with the size 7×256 are applied to generate a 20×32 matrix, fol-

lowed by a pooling kernel with size 2 that produces a 10×32 data matrix.

3. Fully connected layer. The 10×32 data matrix generated from the convolution layer is non-

linearly transformed to 128 representative features.

4. Output layer. The modification score is calculated based on the 128 features using the ‘Sig-

moid’ function.

The 1D-CNN Model with PSSM Encoding (CNNPSSM). It is similar to CNNOH except

that the encoding approach is changed from OH to PSSM.

The 1D-CNN Model with WE layer (CNNWE). It is similar to CNNOH except that a fully

connected layer is added behind the input layer of CNNOH that converts the 21-dimension

binary vector into a five-dimension WE vector.

The LSTM Model with OH Encoding (LSTMOH). This model contains three layers

(Fig 4).

1. Input layer. The sequence is represented by a 61×21 matrix through the OH encoding.

2. LSTM layer. It includes seven LSTM sublayers. Every sublayer contains 61 sequentially con-

nected LSTM cells, corresponding to the 61 amino acids of the input sequence. Each LSTM

cell contains 32 hidden neuron units and outputs a vector with the size of 32. Every cell is

Fig 3. The graph representation of the CNNOH model. (A) The input sequence consists of 61 amino acids. (B) In the input layer, the input sequence is

represented by a binary matrix using the One-Hot encoding. (C) The convolution layer contains two convolution sublayers and two max-pooling sublayers. D)

Fully connected layer. The output matrix from the convolution layer is nonlinearly transformed to 128 representative features. E) Output layer. The modification

score is calculated based on the 128 features. The details are described in the Methods section.

https://doi.org/10.1371/journal.pcbi.1009682.g003
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used to process the information from the corresponding amino acid and the upstream

LSTM cell. Next, 61 vectors outputted from the first LSTM sublayer are fed to the next

LSTM sublayer. The same process is replicated until the last LSTM sublayer. Lastly, the vec-

tor from the 61st LSTM cell in the 7th LSTM sublayer is regarded as the output of the

LSTM layer to represent the features of the input peptide sequence.

3. Output layer. The vector of 32 features from the LSTM layer is used to calculate the modifi-

cation score through the “Sigmoid” function.

The LSTM Model with PSSM Encoding (LSTMPSSM). It is similar to LSTMOH except

that the encoding method is changed from OH to PSSM.

The LSTM Model with the WE layer (LSTMWE). It is similar to LSTMOH except that a

fully connected layer is added behind the input layer of CNNOH that converts the 21-dimen-

sion binary vector into a five-dimension WE vector.

The GRU Models with OH Encoding (GRUOH), PSSM Encoding (GRUPSSM) or the WE

layer (GRUWE). The models are similar to the corresponding LSTM models except that the

LSTM cells are replaced by the GRU cells.

The strategy of avoiding overfitting

The parameters in the DL models are trained and optimized based on binary cross-entropy

loss function using the Adam algorithm. The maximum of the training cycles is set through

the optimized number of epochs to ensure that the loss function value converged. In each

epoch, the training dataset is separated with the batch size as 512 and iterated. To avoid

Fig 4. Graph representation of the LSTMOH. A) The input sequence consists of 61 amino acids. B) In the input layer, the sequence is represented by a 61×21 matrix

through the One-Hot encoding. C) The LSTM layer includes seven LSTM sublayers. Every sublayer contains 61 sequentially connected LSTM cells, each of which

contains 32 hidden neuron units. The output data from the former LSTM sublayer are fed to the latter LSTM sublayer. D) Output layer. The output from the LSTM

layer is used to calculate the modification score.

https://doi.org/10.1371/journal.pcbi.1009682.g004
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overfitting, the early-stopping strategy is applied, where the training process is stopped early

when the training loss does not go down within 25 consecutive iterations. The model with the

smallest training loss is saved as the best model. Moreover, the dropout rates of the two CNN

layers are set at 0.5 and 0.7 respectively, which are obtained through manual hyperparameter

optimization.

Results

Existing Kme models evaluated using new data showed overestimation

Most PTM predictors are measured using cross-validation but the blind assessment are not gen-

erally performed. Here, we took lysine methylome as the study case and investigated the

reported Kme classifiers GPS-MSP and MusiteDeep [5] using multiple experimental sources as

the test sets, which were independent of the training datasets of the models. The number of

experimental sources varies according to the number of sources used for the model training.

For instance, 29 different sources were used as the test sets to estimate the performance of the

GPS-MSP Kme model whereas 49 distinct sources were selected for MusiteDeep. In addition,

the common data between the training set and the test set were discarded from the test set. As

GPS-MSP provided the predicted sensitivity value when the specificity value was set as 0.9, we

fixed the specificity value as 0.9 as well for the independent test and used the same data prepro-

cessing for the GPS-MSP construction. We performed the tests for all the four modification

models and the sensitivity values were significantly lower than the self-reported values (Tables 1

and S3 and Fig 5), suggesting that the self-reported performance of GPS-MSP was overesti-

mated. In addition, since the MusiteDeep performance was assessed using the AUC value, we

used the AUC value to estimate its performance. Our calculated mean AUC value (0.606) is sig-

nificantly smaller than the reported value (0.951; P = 0, single-sample t-test; Tables 1 and S3 and

Fig 5). These two analyses indicate that the self-reported performance fails to represent the gen-

eralization ability. This caused our interest to develop a method for generalization estimation. It

should be noted that GPS-MSP was designed to predict both lysine and arginine methylation

sites and it may have a good prediction performance for arginine methylation sites.

CNNOH and CNNPSSM performed best in the constructed models

Computational approaches for predicting PTM sites are based on different algorithms and var-

ious predefined characteristics. Generally, the RF and SVM algorithm shows comparable

Table 1. The comparison between evaluated performances of GPS-MSP and MusiteDeep and their self-reported performances.

GPS-MSP

Type Number of test datasetsa Sn (tested in this study)b Sn (reported)b P valued

Kme1 29 0.088±0.103c 0.466 [11] 0

Kme2 12 0.173±0.219c 0.422 [11] 0

Kme3 6 0.072±0.076c 0.764 [11] 0

Kme 29 0.160±0.113c 0.445 [11] 0

MusiteDeep

Type Number of test datasets AUC (tested in this study) AUC (reported) P valued

Kme 49 0.606±0.103c 0.951 [6] 0

aTest datasets are derived from different experimental sources
bSensitivity value when specificity was set 0.9
cThese values represent the average and standard deviation (SD), respectively
dP-value was calculated using a single-sample t-test.

https://doi.org/10.1371/journal.pcbi.1009682.t001
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prediction performance in traditional machine-learning (ML) algorithms [18,19]. Deep-learn-

ing algorithms have been widely used in PTMs prediction and demonstrated better perfor-

mances than traditional ML algorithms [4,20–24]. Therefore, we only constructed and

compared DL models for Kme prediction.

We collected 4423 Kme1 sites, 635 Kme2 sites, 419 Kme3 sites and 5450 Kme sites from dif-

ferent sources (Fig 1). We constructed ten different DL models with distinct DL architectures

and encoding approaches, e.g. CNNOH, LSTMWE and GRUPSSM (see Methods for details).

Here, we selected the Kme1 type as the study case with the same number of positive and nega-

tive samples and constructed the related classifiers and compared their performances in terms

of ten-fold cross-validation. The AUC values of CNNOH and CNNPSSM were similar

(AUC = 0.817, P = 0.223) and significantly larger than those of other classifiers (P<2.28×10−3)

(Fig 6). Therefore, we selected CNNOH to construct the model DeepKme for the prediction of

Kme1/Kme2/Kme3/Kme sites. The average AUC values of DeepKme for Kme1/Kme2/Kme3/

Kme were 0.8355/0.7002/0.7579/0.8062 using ten-fold cross-validation, respectively.

Evaluation of generalization ability using experiment-split test and

comparison with cross-validation

Most if not all the models developed before are assessed in terms of cross-validation and/or

independent test. The datasets of cross-validation and the independent test are a mixture of

different experimental sources. Although the validation set and the independent set are

Fig 5. Performance of GPS-MSP and MusiteDeep assessed using different experimental sources. It included the

GPS-MSP prediction performances for Kme1 (A), Kme2 (B), Kme3 (C) and Kme (D), and the MusiteDeep

performance for Kme (E).

https://doi.org/10.1371/journal.pcbi.1009682.g005
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different from the training set, they are not from the independent experimental source. This

may be the main reason why the models fail to reach the reported performances in practice.

Here, we developed the experiment-split method for estimating generalization (see Methods

for detail). This method is based on the fact that there are multiple experimental sources and

each of them can be considered the independent test set to estimate the performance. We per-

formed 27/12/9/40 independent tests for the Kme1/Kme2/Kme3/Kme models, respectively.

The mean AUC values for these models is 0.766, 0.660, 0.729 and 0.747, respectively (Table 2).

Fig 6. The performances of different DL models for the prediction of Kme1 sites using ten-fold cross-validation.

https://doi.org/10.1371/journal.pcbi.1009682.g006

Table 2. Performance comparison of CNNOH models between cross-validation and experiment-split test.

Modification type 10-fold cross-validationa Experiment-splita P valueb

Kme1 0.836±0.011 0.766±0.141 0.018

Kme2 0.700±0.026 0.660±0.088 0.16

Kme3 0.758±0.039 0.729±0.096 0.44

Kme 0.806±0.012 0.747±0.140 0.013

aAverage and SD of the AUC values
bP-value was calculated using paired t-test.

https://doi.org/10.1371/journal.pcbi.1009682.t002

PLOS COMPUTATIONAL BIOLOGY Development of an experiment-split method for benchmarking the generalization of a model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009682 December 8, 2021 9 / 14

https://doi.org/10.1371/journal.pcbi.1009682.g006
https://doi.org/10.1371/journal.pcbi.1009682.t002
https://doi.org/10.1371/journal.pcbi.1009682


Specifically, the AUC values for the Kme1/Kme models are smaller than the corresponding

AUC values calculated based on ten-fold cross-validation (P = 0.018 or 0.013), whereas the

AUC values for the Kme2/Kme3 models are similar to the AUC values in terms of cross-vali-

dation (P = 0.16 or 0.44) (Table 2). These comparisons indicate that the experiment-split

method is the better measure of the generalization for the Kme1/Kme models than cross-vali-

dation, whereas both measures are comparable for the Kme2/Kme3 models. Additionally, the

standard deviation (SD) values of the cross-validation performances are narrower than those

of the experiment-split performances (P = 1.83E-2, paired t-test; Table 2). For instance, the SD

value of the former for the Kme2 model is smaller than 0.03 while that of the latter is larger

than 0.08. It suggests that the data from different experimental sources are divergent and the

mixture of these sources in cross-validation reduces the data diversity.

We compared the performances of GPS-MSP, MusiteDeep and our CNNOH model using

the experiment-split method. As the three models are constructed using different training data

and the data from the experimental sources for testing need to be independent of each training

data, the test datasets for each model may be different and positive samples from the same

experimental sources may also be distinct. Therefore, the construction of the test sets is com-

plex compared to the construction of traditional cross-validation and independent datasets.

Despite it, we reason that their performances can be fairly compared using statistical analysis.

We collected the AUC values for the three models calculated using the experimental-split

method (S3 and S4 Tables) and summarized them in Table 3. The AUC values of the CNNOH

models are statistically larger than those of the GPS-MSP and MusiteDeep models (Table 3).

Therefore, the CNNOH models have outstanding generation ability.

Discussion and conclusions

Cross-validation is the common resampling technique to evaluate machine-learning models

constructed using a limited amount of samples. It is used to assess the generalization of a

predictive model to independent data sets and estimate the practical accuracy of a predictive

model. Nevertheless, based on newly constructed independent datasets, the cross-validation

performance is repeatedly found to overestimate the real accuracy measured on independent

datasets [6–8]. For example, 11 online programs for the prediction of four lysine PTM types

(i.e. acetylation, methylation, SUMOylation and ubiquitination) were assessed and nine of

them performed close to random [8]. To further estimate the reported performance in litera-

ture, we tested two models (GPS-MSP [9] and MusiteDeep [5]) using different experimental

sources. GPS-MSP was designed to predict lysine and arginine PTM sites based on the tradi-

tional machine-learning algorithm whereas MusiteDeep was developed to predict the sites of

Table 3. Comparison of experiment-split performances for the models.

Modification type CNNOH
a GPS-MSPa P valueb

Kme1 0.766±0.143 0.568±0.079 3.13E-8

Kme2 0.660±0.092 0.565±0.118 0.039

Kme3 0.729±0.102 0.515±0.092 4.48E-3

Kme 0.747±0.141 0.539±0.082 9.42E-10

CNNOH
a MusiteDeepa P valueb

Kme 0.747±0.141 0.606±0.103 2.11E-3

aAverage and SD of the AUC values
bP-value was calculated using the student’s t-test.

https://doi.org/10.1371/journal.pcbi.1009682.t003
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multiple PTM types based on a deep-learning algorithm. We found that the performances of

both models in terms of the independent test were lower than the self-reported performances.

This observation is consistent with the previous observations [6–8].

To find the proper measure indicative of prediction quality in practice, we developed the

experiment-split method. This method requires numerous experimental sources so that each

source can be considered the independent test dataset. We took lysine methylome as the study

case because of a variety of experimental sources available. We constructed four CNNOH mod-

els corresponding to the prediction of Kme1/Kme2/Kme3/Kme, respectively. We found that

the experiment-split performances of the Kme1/Kme models were smaller than the related

cross-validation performances, whereas the experiment-split performances for the Kme2/

Kme3 models were similar to those evaluated using the cross-validation. As the test set of the

experiment-split method is the data from an independent experimental source, the experi-

ment-split measure could reflect the generalization ability of a model.

Although the experiment-split method is suitable to assess the generation ability of a predic-

tion model, it has several disadvantages. First, it requires a variety of experimental sources.

The more the number of experimental sources, the more reliable the experiment-split perfor-

mance. Second, different experimental sources are not uniform in size and the performance of

the model built based on a small training dataset may be lower than that of the model con-

structed using a large training dataset. Therefore, the experimental sources with big PTM data

are suitable to be considered part of the training set rather than the test set. We suggest here

Fig 7. The CNNOH performances were assessed by the experiment-split method. The performances of the CNNOH

model for Kme1 (A), Kme2 (B), Kme3 (C) and Kme (D) were evaluated using various independent experimental

sources, respectively.

https://doi.org/10.1371/journal.pcbi.1009682.g007
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that the independent test data set should occupy less than 1/5 of the total collected data. Third,

the experiment-split performances are diverse for different experiment sources, suggesting the

difficulty in reliably estimating the prediction performance for a given experiment. It is true

since the PTMs in the different cells or tissues are catalyzed by different enzymes with diverse

characteristics and the PTMs identified from these cells or tissues have distinct features. If the

data set to be predicted contains the information included in the training set, the developed

model may show good prediction performance; otherwise, the performance seems poor. The

suggested solution for this disadvantage is the collection of more experimental sources for test-

ing and statistical analyses need to be used for the estimation. Although the experiment-split

method has these drawbacks, this method is reliable to estimate the generalization of a predic-

tor compared to cross-validation (Fig 7 and Table 2).
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