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Abstract

Non-alcoholic fatty liver disease (NAFLD) is a complex heterogeneous disease which affects more 

than 20% of the population worldwide. Some subtypes of NAFLD have been clinically identified 

using hypothesis-driven methods. In this study, we used data mining techniques to search for 

subtypes in an unbiased fashion. Using electronic signatures of the disease, we identified a cohort 

of 13,290 patients with NAFLD from a hospital database. We gathered clinical data from multiple 

sources and applied unsupervised clustering to identify five subtypes among this cohort. 

Descriptive statistics and survival analysis showed that the subtypes were clinically distinct and 

were associated with different rates of death, cirrhosis, hepatocellular carcinoma, chronic kidney 

disease, cardiovascular disease, and myocardial infarction. Novel disease subtypes identified in 

this manner could be used to risk-stratify patients and guide management.

Keywords

clustering; subtypes definition; survival analysis; NAFLD

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 25% of the global 

population.1 NAFLD is a chronic liver disease associated with the metabolic syndrome that 

can progress to cirrhosis and hepatocellular carcinoma (HCC). In the United States, 

NAFLD-related liver failure has become the second most common indication for liver 

transplants, after chronic hepatitis C.2,3 This trend is expected to continue, with NAFLD 
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prevalence rising to 33.5% of the adult US population by 2030, and driving increases in both 

cirrhosis and HCC.4

NAFLD is a heterogeneous disease which has been associated with a variety of adverse 

outcomes. Besides cirrhosis and HCC, NAFLD has also been associated with cardiovascular 

disease (CVD)5,6 and chronic kidney disease (CKD).7 In some cohorts, CVD is the leading 

cause of death among NAFLD patients, followed by malignancy and liver-related mortality.
8–10

Some NAFLD subtypes and prognostic factors have been identified. Patients with both 

steatosis and inflammation (i.e. nonalcoholic steatohepatitis, NASH) have worse outcomes 

than those with bland steatosis.11,12 Similarly, patients with NAFLD-associated cirrhosis 

have worse outcomes than those who do not.8 Interestingly, although cirrhosis strongly 

predicts HCC, some NAFLD patients develop HCC in the absence of cirrhosis.13 Hispanic 

populations tend to have higher rates of NAFLD;14 a variant in PNPLA3 associated with 

hepatic steatosis and NASH has been identified and is more common among Hispanic 

individuals.15

Given the clinical variability among NAFLD patients, we hypothesized that there may be 

clinically relevant patient subtypes which could be identified using unbiased machine 

learning algorithms. The identification of such subtypes could enable more precise 

prognostication and management for NAFLD patients.

2. Methods

2.1. NAFLD definition

In order to define NAFLD, we developed an algorithm based on two published electronic 

medical record (EMR)-based algorithms.16,17 First, we identified patients with liver disease 

based on persistent ALT elevation or ICD codes for chronic non-specific or non-alcoholic 

liver disease (ICD-9: 571.5, 571.8, 571.9; ICD-10: K75.81, K76.0, K76.9). Persistent ALT 

elevation was defined as two or more instances of ALT ≥ 40 IU/mL for men, or ≥ 31 IU/mL 

for women in the ambulatory setting, more than 6 months apart. Then, we excluded patients 

with viral hepatitis, alcoholic liver disease, or other chronic liver disease. These conditions 

were identified via ICD codes, as enumerated in the eMerge algorithm. Viral hepatitis cases 

were also identified using lab values (HBV surface antigen, HCV RNA). Next, we excluded 

patients on steatogenic medications (defined in eMerge). Finally, patients must have had 

evidence of hepatic steatosis on imaging, biopsy, or documented in a clinical note. These 

instances were identified using natural language processing (NLP) to identify mentions of 

hepatic steatosis and related terms.

2.2. Natural language processing

The eMerge algorithm requires mention of hepatic steatosis in a free-form text document 

(imagery or biopsy result, or clinical note). We developed a tool to get this information from 

the database, using the following steps:

• build a list of synonyms for the term of interest, e.g. steatohepatitis, fatty liver
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• query the SQL database for documents containing any of these terms

• parse the documents to remove negative results (e.g. absence of steatohepatitis), 

occurrences in family and other false positive patterns

This process was adapted to look for mentions of deceased patients (see Section 2.4), to find 

patients with cirrhosis (see Section 2.6), and to gather MELD scores (see Table 1).

2.3. Data collection

The cohort for this study was created using the criteria defined in Section 2.1. These EMR 

data were obtained from the database of a large metropolitan hospital in New York City. We 

choose to only consider patients who met the criteria for NAFLD after December 31, 2012, 

up to January 31, 2019. We called NAFLD diagnosis date the earliest such date for each 

patient.

13,290 patients matching these criteria were found in the database. In the rest of this section, 

we describe, for different types of information, the data collection and pre-processing steps 

that were taken. In order to build a dataset usable by machine learning algorithms, we 

transformed the information contained in the database into binary features. When possible, 

we reduced the number of resulting features. Feature selection has been shown to improve 

the quality of results in machine learning applications.18 This process is usually done using 

statistics- or heuristics-based algorithms. However, in the case of practical applications, we 

can use domain knowledge instead. We took advantage of established knowledge to reduce 

the number of features by mapping to higher-level concepts, or discarding infrequent 

features.

2.4. Clinical feature standardization and quality control

2.4.1. Demographic data

• Age: ten mutually exclusive binary attributes corresponding to the following age 

groups:

[18–20],[21–30],[31–40],[41–50],[51–60],[61–70],[71–80],[81–90],[91–100],

[101 and more].

• Race: Asian, Black, Indian/Native, Pacific Islander, White, Hispanic, Other, 

Unknown

• Ethnicity: Hispanic or not

• Deceased: obtained through patient records and parsing clinical notes for 

mentions of death

2.4.2. Diagnoses, procedures, medications—A large proportion of clinical data 

overall can be described through standardized coding systems: diagnoses, procedures, 

medications. We applied the following preprocessing steps:

• Diagnoses used the International Classification of Diseases, versions 9 and 10 

(ICD-9 and ICD-10) systems. These systems contain a tens of thousands of 

different codes, often describing the same disease with minor variations. In order 
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to reduce the number of features, we used the phecode system from the Phenome 

Wide Association Studies (PheWAS).19 We kept only phecodes with at least 

0.1% prevalence, which left 148 features for ICD codes.

• Procedures used the Current Procedural Terminology (CPT) coding system. We 

mapped the CPT codes to their respective second-level group code. For example, 

the group containing all CPT codes from 33010 to 37799 describes surgeries of 

the cardiovascular system. This process grouped the codes into 115 categories 

that translated directly into features.

• Medication prescriptions or administrations. We mapped the medication names 

to the corresponding RxNorm drug concepts, and again kept those that occurred 

in at least 0.1% of the cohort. We only considered drugs which had at least two 

prescriptions separated by 6 months or more, in order to discard drugs only used 

acutely (e.g. post-surgery) which do not reflect a patient’s regular medications. 

Using this process, we obtained 293 clinical drugs.

2.4.3. Laboratory tests—As opposed to the previous data types, which were well-

formatted and standardized, laboratory tests could be either qualitative or quantitative, and 

were often reported in free-text form. For qualitative tests, we parsed the result and searched 

for terms that indicated if it was abnormal, such as abnormal, low, below average, reactive. 

For quantitative tests, we searched the results for numeric values that fell outside the normal 

range.

We obtained 533 distinct laboratory tests, which translated to as many binary features. For 

example, feature platelets means abnormal result for platelets test. A shortcoming of this 

approach is that abnormally low and high values are grouped in the same feature, even 

though they have different medical significance. However, since one laboratory test can use 

different units, and thus different normal ranges (e.g. normal and log scales), automatically 

assigning a value to low or high is not always reliably doable.

2.4.4. Vital signs—Similar to laboratory tests, we searched for abnormal values for the 

standard vital signs collected in clinical settings, using the following criteria:

• body temperature: > 39°C (Celsius) or 102◦F (Fahrenheit).

• blood pressure: systolic/diastolic blood pressure (SBP/DBP) > 130/80

• heart rate: > 130 bpm.

• respiratory rate: > 40 bpm.

• pain: values of 9 or 10 on a [1–10] pain scale.

2.5. Patient pairwise distance and clustering

In order to identify different subtypes, we computed the patient distance matrix and applied 

an algorithm of unsupervised clustering to the data obtained. Unsupervised clustering is 

well-suited for exploratory tasks in applied research.20 First, validation of the results 

obtained using expert knowledge is possible. In the present study, the findings were 
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reviewed and interpreted by medical experts. Second, the “unsupervised” aspect allows 

discovery of new, potentially unexpected insight from the analysis of a large number of 

features.

Many clustering algorithms have been developed. Finding the “best one” remains an open 

problem,21 since unsupervised learning tasks lack objective measures to assess their 

performance. Several measures have been proposed to evaluate the quality of a set of 

clusters,22 but the general guideline is that the best algorithm and parameters are different 

for each data set.

We chose a hierarchical clustering algorithm using the Manhattan distance for pairwise 

similarity of patients, and minimizing the increase in variance during cluster merging as 

linkage criterion (also known as Ward’s criterion). Hierarchical clustering is a standard 

algorithm, and it has been used previously in a study looking for comorbidity clusters in 

autism disorders.23 We used the R hclust implementation of this algorithm, with ward.D2 as 

parameter for agglomeration criterion.24 We chose to have 5 subtypes (clusters) as a balance 

between granularity and size. These parameters were chosen empirically, after qualitative 

validation of the results obtained with various combinations.

2.6. Statistical analysis

2.6.1. Descriptive statistics—Categorical features were summarized as proportions 

and compared using the chi-squared test. Continuous features were summarized as means ± 

standard deviation and compared using ANOVA, or as medians and interquartile ranges 

compared using the Wilcoxon rank-sum test. Comparisons for each subtype were made 

against patients in all remaining subtypes. Significance was defined as a false discovery rate 

<0.001.

2.6.2. Survival analysis—The primary outcome was overall survival. Secondary 

outcomes were HCC, cirrhosis, CKD, CVD, and acute myocardial infarction (MI). In all 

cases survival was defined as the time from NAFLD diagnosis to the earliest evidence of the 

outcome. HCC cases were first identified using ICD codes (ICD-9 155.0,155.2; ICD-10 

C22.0,C22.7-C22.9), then confirmed through chart review. Cirrhosis was defined using 

natural language processing looking for mentions of cirrhosis in clinical notes, imaging 

reports or biopsy reports. Chronic kidney disease was defined using corresponding ICD 

codes (ICD-9 585–586; ICD-10 N18-N19) and CPT codes for dialysis (90935 to 90999). 

Cardiovascular disease was defined using ICD codes for any ischemic heart disease (ICD-9 

410–414; ICD-10 I20-I25). Acute MI was a subset of the CVD outcome (ICD-9 410; 

ICD-10 I21-I22).

The primary predictor in survival analyses was subtype. Secondary predictors included age, 

gender, race and FIB-4 category. Race and ethnicity were combined for the purposes of this 

analysis, with Hispanic ethnicity given precedence and mapped to the Hispanic race 

category. The primary outcome was overall survival. Secondary outcomes were onset of 

cirrhosis, HCC, CVD, MI, and CKD. All survival analyses were done in R 3.6.0. For the 

outcome of overall survival, Kaplan-Meier curves were created using the ggplot225 and 

survminer26 packages; univariate and multivariate Cox proportional hazards models were 
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constructed using the survival package.27 For non-death outcomes, only incident cases were 

included in the analysis. Cases diagnosed prior to or within 6 months of NAFLD diagnosis 

were treated as prevalent. Death was treated as competing hazard. The cumulative incidence 

function was calculated for each outcome using the cmprsk package28 and plotted using 

ggplot2. The cmprsk package was also used to fit univariate and multivariate Fine-Gray 

proportional subdistribution hazards regression models for the non-death outcomes.

This study was reviewed and approved by the Mount Sinai Hospital institutional review 

board (GCO 10–0032 and 16–1437).

3. Results

3.1. Descriptive statistics for the cohort

Merging the data from the different sources described above, we obtained a data set 

containing 13,290 patients with NAFLD, described by 1,145 binary features (Table 1). The 

mean age at NAFLD diagnosis is 53 ± 14.7 (median = 53.9), with 50.6% female patients. 

The cohort was racially and ethnically diverse: 41.4% Caucasian, 17% Hispanic ethnicity, 

9.6% African American, 5.9% Asian, and 27.3% unknown/other. Metabolic comorbidities 

such as obesity (53.8%), diabetes (32.9%), and hypertension (53.5%) were common. Median 

length of follow up was 1.6 years (IQR 0.6–2.9).

3.2. Identification of NAFLD subtypes

The two largest subtypes (1 and 3) encompassed 87% of patients, while the remaining 

patients are divided among 3 smaller subtypes (Table 1). All findings reported below were 

for the comparison of subtype members versus all other patients, and were significant after 

correction for multiple hypothesis testing at a level of p<0.001. Values associated with 

medications are omitted for concision.

Patients in subtype 1 were more likely to be female and either Hispanic or African 

American. Obesity, hypertension, and hyperlipidemia (30.05 vs 24.8%) were more common 

among subtype 1 patients, while diabetes was less common. Subtype 1 patients had low 

MELD and FIB-4 scores at NAFLD diagnosis. Other diagnoses more common in subtype 1 

patients included: vitamin D deficiency (14.2% vs 9.2%), asthma (11.4 vs 7.5%), 

gastroesophageal reflux (18.7% vs 12.7%). Medications that were more common in this 

subtype included: omeprazole, metformin, atorvastatin, and fluticasone. Overall, subtype 1 

patients had metabolic comorbidities, with some evidence of liver inflammation, but 

minimal liver fibrosis.

Patients in subtype 2 were more likely to be Hispanic or African American. They did not 

have significantly higher MELD or FIB-4 scores at baseline, but they were more likely than 

other patients to have labs suggestive of liver inflammation and dysfunction, such as 

elevated ALT, low platelets, elevated bilirubin, elevated INR and low albumin. Notable 

comorbidities included: diabetes, hypertension, hyperlipidemia (37.2% vs 27.8%), 

obstructive sleep apnea (11.9% vs 6.0%), gastroesophageal reflux (27.2% vs 16.1%), 

tobacco use (19.5% vs 4.8%), asthma (22.1 vs 9.5%), anxiety (13.0% vs 5.6%), depression 

(17.0% vs 6.8%), urinary tract infection (11.5% vs 3.9%), and respiratory infection (10.6% 
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vs 3.6%). Medications more commonly prescribed in this subtype included cardiac 

medications such as aspirin, lisinopril, amlodipine, metoprolol, and atorvastatin; diabetes 

medications such as metformin and insulin; pain medications such as acetaminophen, 

gabapentin, oxycodone, and morphine; respiratory medications such as albuterol and 

fluticasone; antacid medications such as omeprazole and famotidine, and also vitamin D. 

Subtype 2 patients were also more likely to have had digestive surgery (40.1% vs. 16.8%). 

Overall, subtype 2 patients had metabolic syndrome with signs of developing liver 

dysfunction and were high healthcare utilizers.

Patients in subtype 3 tended to be younger, Caucasian and had the fewest inpatient 

admissions and the fewest prescriptions on average. Subtype 3 patients had fewer 

comorbidities than other patients, and were unlikely to have abnormal lab values associated 

with liver dysfunction. Subtype 3 patients were relatively healthy compared to the rest of the 

cohort.

Patients in subtype 4 were more likely to be older, male and Caucasian. They had high FIB-4 

scores at baseline and were likely to have abnormal labs suggesting liver synthetic 

dysfunction. These patients were less likely to be obese or to have hyperlipidemia (20.8% vs 

28.7%), though diabetes and hypertension were common. Overall, subtype 4 patients likely 

had liver fibrosis at baseline and had labs suggesting progression to cirrhosis.

Patients in subtype 5 were more likely to be older, and Hispanic or African American. They 

had high FIB-4 and MELD scores at baseline, and had high rates of abnormal lab values 

consistent with liver inflammation and dysfunction. Obesity was less common in this group, 

but diabetes and hypertension were prevalent. Other comorbidities included: malignancy 

(15.2% vs 2.0%), atrial fibrillation (11.4% vs 1.6%), tobacco use (28.7% vs 4.7%), 

depression (17.1% vs 6.9%), urinary tract infection (16.8% vs 3.8%), pneumonia (10.3% vs 

1.9%), and sepsis (25.2% vs 0.3%). Commonly prescribed medications included: cardiac 

medications such as aspirin, metoprolol, and furosemide; pain medications such as 

acetaminophen, oxycodone, hydromorphone, fentanyl, and morphine; antacid medications 

such as pantoprazole and famotidine; and insulin. Subtype 5 patients were also more likely 

to have had cardiovascular (31.4% vs 7.4%), respiratory (16.5% vs 4.6%) or digestive 

surgery (50.0% vs 16.9%). Overall, subtype 5 patients had significant liver disease at 

baseline, had significant cardiac, infectious and neoplastic comorbidities, and were high 

healthcare utilizers.

3.3. Identification of distinct outcomes by NAFLD subtype

Univariate analyses showed that risk of outcomes varied by subtype membership (Figures 1 

and 2). Subtype 1 was chosen as the reference group since it was the largest. Compared to 

subtype 1, subtype 5 was significantly and strongly associated with an increased risk of all 

outcomes; risk of death was particularly high (HR 139; 95% CI 86–226, p<0.001). Subtype 

4 was strongly associated with both cirrhosis (HR 42; 95% CI 12–154, p<0.001) and HCC 

(HR 91; 95% CI 27–302, p<0.001). Subtype 2 was associated with MI (HR 6.6; 95% CI 

3.3–13.3, p<0.001) and CKD (HR 3.4; 95% CI 2.3–5.1, p<0.001). Subtype 3 was associated 

with a lower risk of CVD (HR 0.19; 95% CI 0.10–0.37, p<0.001), and CKD (HR 0.51; 95% 

CI 0.31–0.86, p=0.01). There were no incident cirrhosis or HCC events in group 3.

Vandromme et al. Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2020 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In multivariate analyses accounting for age, gender, race and baseline FIB-4, subtype 

membership remained an independent predictor of outcomes (Figure 3). With subtype 1 as 

the reference, Subtype 5 was independently associated with the highest risks for death (HR 

46.7; 95% CI 33.3–65.3, p<0.001), CKD (HR 4.3; 95% CI 2.7–6.7, p<0.001), CVD (HR 

2.2; 95% CI 1.1–4.1, p=0.02 ), MI (HR 5.9; 95% CI 2.3–15.0, p<0.001) and cirrhosis (HR 

36.2; 95% CI 5.8–224.4, p<0.001) among all subtypes, while subtype 4 was independently 

associated with a high risk for cirrhosis (HR 14.0; 95% CI 1.9–105.6, p=0.01) and the 

highest risk for HCC (HR 28.0; 95% CI 4.8–164.8, p<0.001). Subtype 2 was also 

independently associated with an elevated risk of death (HR3.7; 95% CI 2.4–5.6, p<0.001), 

MI (HR 4.7; 95% CI 1.8–12.1, p<0.001) and CKD (HR 2.5; 95% CI 1.6–3.7, p<0.001). 

Subtype 2 was the only other subtype aside from subtype 5 to be independently associated 

with MI and CKD.

3.4. Internal cross-validation of the subtypes discovered

Formal validation of the results is inherently complicated for unsupervised clustering, where 

no “true label” exist for any patient. In order to assess the robustness of our results, we have 

performed internal cross-validation on our dataset, as we have no access to EMR in other 

medical centers. We have randomly selected 90% of samples, run the clustering process on 

this new training set, and repeated the process 10 times. We have identified similar enriched 

clinical features and disease comorbidities in the subtypes that we have discovered 

previously. We reported the full results in the supplementary table 1 hosted at https://

github.com/mv50/psb20_mat.

4. Conclusion

In this study, we combined two existing signatures of NAFLD and used them to gather a 

cohort of 13,290 patients with confirmed NAFLD. We used unsupervised clustering to 

identify five subtypes of patients. These subtypes had different clinical characteristics and 

different outcomes: the two larger groups had fewer comorbidities and more positive 

outcomes, while a minority of the cohort (in the three smaller subtypes) had more serious 

comorbidities and worse outcomes. To our knowledge, this study is the first to use an 

artificial intelligence approach to delineate clinically relevant subtypes of NAFLD.

Our findings are consistent with prior studies reporting higher rates of NAFLD among 

Hispanic patients.14 In addition, the subtypes reveal that Hispanic patients with NAFLD are 

on a continuum of risk, with some exhibiting the metabolic syndrome but having good 

outcomes (subtype 1), others experiencing predominantly non-liver adverse outcomes 

(subtype 2) and some with severe liver disease and at risk for multiple adverse outcomes 

(subtype 5).

Our study of heterogeneity among NAFLD patients was strengthened by the diverse patient 

population within Mount Sinai’s catchment area and the comprehensive use of EMR 

records. We gathered data from various sources to build the features: vital signs, diagnoses, 

procedures, prescriptions, laboratory results, radiology and pathology reports. Our approach 

is generalizable and could be applied by local or regional healthcare systems to define 

disease subtypes within their own patient populations. Such efforts could help guide 
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resource allocation at the local level, in contrast to national or international guidelines which 

may not be relevant to all localities and patient populations.

The limitations of our study are common to EMR-based projects. ICD codes are prone to 

miscoding and may not accurately represent a patient’s medical condition. We used 

phecodes to map ICD codes to higher-level disease concepts in order to improve power and 

simplify instances where there are multiple related ICD codes. The pre-processing and 

cleaning of the data remains open to improvements. Additionally, more systematic 

incorporation of data from unstructured clinical notes could bring valuable new information.

In conclusion, we defined an EMR-based algorithm for identifying NAFLD patients and 

showed that unsupervised clustering can be used to identify clinically relevant disease 

subtypes with distinct patterns of adverse outcomes. If prospectively validated, these disease 

subtypes could help guide patient management and screening initiatives.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Survival and hazard curves for outcomes of interest, 5 by subtypes. (A) Overall survival, (B) 

Chronic kidney disease, (C) Cirrhosis, (D) Hepatocellular carcinoma, (E) Cardiovascular 

disease, (F) Myocardial infarction.

Vandromme et al. Page 11

Pac Symp Biocomput. Author manuscript; available in PMC 2020 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Univariate hazard ratios for outcomes of interest, by 5 subtypes
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Fig. 3. 
Multivariate analyses for outcomes of interest. Darker shades of red correlate with increased 

risk of the outcome, while darker shades of green indicate reduced risk of the outcome. Only 

hazard ratios with p<0.05 are color coded. Non-significant findings are in grey.

Vandromme et al. Page 13

Pac Symp Biocomput. Author manuscript; available in PMC 2020 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vandromme et al. Page 14

Table 1.

Baseline characteristics, selected features of interest, and outcomes by subtype
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