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Activin A, a member of the transforming growth factor beta superfamily, acts

as a pro-inflammatory factor in acute phase response, and influences the

pathological progress of neutrophil-mediated disease. However, whether acti-

vin A can exert an effect on the activities of neutrophils remains unclear. In this

study, we found that the release of activin A was enhanced from neutrophils of

mouse when stimulated with lipopolysaccharide. Furthermore, neutrophils

were not only the source of activin A but also the target cells in response to acti-

vin A, in which canonical activin signalling components existed, and levels of

ACTRIIA, SMAD3 and p-SMAD3 proteins were elevated in activin A-treated

neutrophils. Next, the role of activin A was determined in regulation of neutro-

phils activities. Our data revealed that activin A induced O2
2 release and

reactive oxygen species production, promoted IL-6 release, and enhanced pha-

gocytosis, but failed to attract neutrophils migrating across the trans-well

membrane. Moreover, we found that effect of activin A on IL-6 release from

the peritoneal neutrophils of mouse was significantly attenuated by in vivo
Smad3 knockdown. In summary, these data demonstrate that activin A can

exert an effect on neutrophils activation in an autocrine/paracrine manner

through Smad3 signalling, suggesting that activin A is an important regulator

of neutrophils.
1. Introduction
Activins are members of the transforming growth factor beta (TGF-b) superfam-

ily, and have pleiotropic roles in physiological and pathological processes

including regulation of embryogenesis, induction of mesoderm, protection of

neurons, tumorigenesis and control of immune response [1–7]. So far, at least

three different forms of activin have been identified, including activin A, activin

B and activin AB [8,9]. Activin A has received the most attention until now, in

part because it may play a crucial role in regulation of immune cells function [10].

Like most other TGF-b family members, activins share homology and canoni-

cal Smad-mediated signalling pathway with TGF-b. They conduce signalling by

binding to type II activin receptor (ACTRII), forming a ligand/ACTRII complex,

then the complex recruits type I activin receptor (ACTRI) to phosphorylates the

recruited receptor-SMADs (SMAD2 and SMAD3) [11,12]. Once phosphorylated,

SMAD2/3 dissociate from the receptor, bind to SMAD4, then the complex

transmits the signal into the nucleus and promotes gene transcription [13–15].

Neutrophils are the most abundant white cell type in circulation that is

recruited to the inflammatory sites rapidly in response to infection, injury

and repair [16–18]. They have been established as the key mediator of multiple

disease such as sepsis, acute respiratory distress syndrome (ARDS), rheumatoid

arthritis, inflammatory bowel disease and different types of tissue injury

[19,20]. Coincidentally, the strong expression of activin A has also been found

in these diseases [6,21,22]. Several studies have demonstrated that activin A

levels are elevated during sepsis, and serum concentrations of activin A in

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.160342&domain=pdf&date_stamp=2017-05-17
mailto:cxl@jlu.edu.cn
mailto:liuzh@jlu.edu.cn
http://orcid.org/
http://orcid.org/0000-0001-5551-7603
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


pe
ri

to
ne

al

FSC 

SS
C

 

Ly-6G 

C
D

11
b 

(a)

(b)

ac
tiv

in
 A

 (
pg

m
l–1

) 

0

100

200

300

400

*

* 
* 

*

0

400

800

1200

1600

2 4 8 12 2 4 8 12 

*

* 

* 

1K

1K

800
105

104

103

102

102 103 104 105

0

105

104

103

102

0

0

102 103 104 1050

600

400

200

0

1K

800

600

400

200

0

0 200 400 600 800

1K0 200 400 600 800

bl
oo

d 

time (h) time (h)

T
N

F-
a 

(p
g

m
l–1

) 

Figure 1. Release of activin A from mouse neutrophils treated with LPS. (a) CD11bþLy-6Gþ cells in peritoneal and peripheral blood cells of mouse were sorted by
FACS, respectively, and assessed by cytology following diff-quick staining. (b) The levels of activin A and TNF-a in the supernatant of the cultured peritoneal
neutrophils treated with 200 ng ml21 LPS were examined by ELISA. Open bar, culture medium control; filled bar, LPS.

Table 1. Primer sequences.

target primers sequences products size (bp) GenBank no.

Gapdh sense 50-GACTTCAACAGCAACTCCCACTC-30 107 BC083149

antisense 30-TAGCCGTATTCATTGTCATACCAG-50

Activin bA sense 50-GAGAGGAGTGAACTGTTGCT-30 514 NM_008380

antisense 30-ATGACTGTTGAGTGGAAGGA-50

ActRIIA sense 50-ATTGGCCAGCATCCATCTCTTG-30 296 XM_123799

antisense 30-GCCACCATCATAGACTAGATTC-50

ActRIIB sense 50-TGCTGAAGAGCGACCTCAC-30 544 NM_007397

antisense 30-AGCAGGTCCACATTGGTGAC-50

Smad3 sense 50-CCAGCACACAATAACTTGGA-30 574 NM_016769

antisense 30-AGACACACTGGAACAGCGGA-50
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the patients who died from sepsis are higher than the survi-

vors [23–25]. Additionally, the upregulated activin A is a

pathogenic factor in the murine lung that causes a phenotype

similar to ARDS [26]. Mounting evidence suggests that
activin A may influence the pathological progress of neutro-

phil-mediated disease [22,27].

Thus, it is meaningful to perform a search to investigate the

relationship between neutrophils and activin A. However, we
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Figure 2. Expression of activin signalling components in mouse neutrophils. (a) Expression of ActRIIA on peritoneal or peripheral blood neutrophils was examined by dual
immunofluorescent staining with anti-Ly-6G antibody (red) and anti-ActRIIA antibody (green). The yellow represented the superposition of ActRIIA and Ly-6G on neu-
trophils (merge). (b) The expression of Activin bA, ActRIIA, ActRIIB and Smad3 mRNA in the peritoneal nertrophils of mouse was examined by RT-PCR. M, molecular weight
marker (bp); lane 1, Gapdh (107 bp); lane 2, Activin bA (514 bp); lane 3, ActRIIA (296 bp); lane 4, ActRIIB (544 bp); lane 5, Smad3 (574 bp). *p , 0.01, compared with
control group.
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know nothing about whether activin A can exert an effect on

the activities of neutrophils until now. This study demon-

strated for the first time that activin A could regulate

neutrophil activities in an autocrine/paracrine manner.
2. Material and methods
2.1. Animals
Male C57BL/6 mice from 8 to 10 weeks were provided by the

animal centre of Jilin University.

2.2. Reagents and antibodies
Activin A and APC-labelled mouse anti-ACTRIIA antibody

were purchased from R&D Company. PE-labelled rat anti-

Gr-1 antibody and FITC-conjugated mouse anti-CD11b anti-

body were provided by eBioscience Company. The

fluoSpheres carboxylate-modified red fluorescent microspheres

(1 mm diameter) were supplied by Invitrogen. Superoxide

detection kits and reactive oxygen species (ROS) assay kits

were obtained from Beyotime Company.

2.3. Isolation of the neutrophils
Peripheral blood neutrophils of mouse were isolated by fluor-

escence-activated cell sorting analysis (FACS). Briefly, fresh

blood of mice was incubated with 6% dextran T-70 (1 : 4) at

room temperature for 20 min, and then the leucocyte-rich

upper fraction was collected. The cells were stained with

PE-conjugated anti-Ly-6G and FITC-conjugated anti-CD11b

antibodies or with appropriate fluorochrome-conjugated
isotype IgG as control for 30 min. Neutrophils (CD11bþLy-

6Gþ) were sorted by FACS on BD FACSAria II.

The peritoneal neutrophils were prepared as described

previously [23]. Briefly, 1 ml of 9% casein was injected into the

peritoneal cavity per mouse, and after 24 h the same volume of

casein was injected. Three hours later, peritoneal cells were col-

lected and cultured in 10% fetal calf serum (FCS)-RPMI 1640

medium in 5% CO2 at 378C to remove the peritoneal macro-

phages [24]. One hour later, suspending cells were collected,

and neutrophils (CD11bþLy-6Gþ) were sorted by FACS. Neutro-

phils were evaluated by cytology following diff-quick staining.
2.4. Immunofluorescent staining
The type IIA receptor of activin (ACTRIIA) and Ly-6G, a marker

of mouse neutrophils, on neutrophils was examined by the dual

imunofluorescent staining. In brief, the isolated neutrophils were

incubated with rabbit anti-ACTRIIA antibody for 60 min. After

being washed with phosphate-buffered saline (PBS) three

times, the cells were also incubated with FITC-conjugated goat

anti-rabbit IgG antibody for 30 min, and then incubated with

PE-conjugated anti-Ly-6G antibody for 30 min. Finally, the cells

were observed under a fluorescence microscope.
2.5. RT-PCR
Total RNA from neutrophils was extracted using the TRIzol

reagent according to the manufacturer’s protocol (Invitro-

gen). PCR was performed using the one-step RT-PCR kit

according to the manufacturer’s instructions (Takara Biotech-

nology Co). PCR products were subjected to 1.5% agarose

gel electrophoresis, and the specific bands were analysed
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Figure 3. Effects of activin A on respiratory burst and IL-6 release of mouse neutrophils. (a) The peritoneal neutrophils of mouse were incubated for 30 min in the
absence or presence of activin A and LPS, and then the intracellular ROS was detected using fluorescence probe DCFH-DA. Each bar represented the fluorescence
mean from three independent experiments. *p , 0.05, **p , 0.01, compared with control group. (b) O�2 production was detected with superoxide detection kits.
(c) The levels of IL-6 and TNF-a in the supernatant of the cultured neutrophils were assayed by ELISA. All values were presented as mean+ s.d. of three inde-
pendent experiments (n ¼ 6). *p , 0.05, **p , 0.01, compared with control group.
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using ImageMaster VDS (Pharmacia Biotech Company).

Primer sequences are available in table 1.

2.6. Detection of activin A
The peritoneal neutrophils of 1 � 106/well were incubated in

the absence or the presence of 200 ng ml21 lipopolysacchar-

ide (LPS) for 2–12 h. The supernatants of the cultured

neutrophils were collected, and activin A levels were detected

using enzyme-linked immunosorbent assay (ELISA) kit

according to the manufacturer’s protocol (R&D).

2.7. Western blotting
The neutrophils of 2 � 106/well were incubated in the absence

or the presence of activin A for 2 h. The cells were lysed in
protein lysis buffer, and the lysate was cleared by centrifugation

at 10 000 r.p.m. min21 for 20 min. The proteins in the super-

natant were separated by SDS-PAGE and transferred onto a

polyvinylidene difluoride membrane. The membrane was

probed with anti-ACTRIIA, SMAD3, phosphorylated SMAD3

(p-SMAD3) and GAPDH antibodies, respectively. Finally,

the labelled proteins were detected by chemiluminescence

(ECL-Plus; Amersham Pharmacia Biotech).

2.8. Analysis of intracellular ROS
Intracellular ROS was detected by fluorescence probe DCFH-

DA. DCFH-DA itself is without fluorescence, which can be

hydrolysed by ester hydrolysis enzyme to DCFH inside the

cells. ROS can oxidize DCFH without fluorescence into DCF

with fluorescence. So the levels of intracellular ROS can be
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Figure 4. Effects of activin A on phagocytosis of mouse neutrophils. The peritoneal neutrophils of mouse were incubated in the absence or the presence of activin A
and LPS for 12 h, and the phagocytic abilities of neutrophils to microspheres with red fluorescence were evaluated by flow cytometry. A representative experiment of
the three performed is shown with (a) culture medium control, (b) 200 ng ml21 LPS, (c) 2.5 ng ml21 activin A and (d ) 5 ng ml21 activin A. The graph represents
the phagocytic capabilities of neutrophils to microspheres with red fluorescence from three independent experiments. *p , 0.05, **p , 0.01, compared with
control group.

rsob.royalsocietypublishing.org
Open

Biol.7:160342

5

detected by measuring fluorescence intensity of DCF. The iso-

lated neutrophils were incubating with DCFH-DA in a

humidified incubator containing 5% CO2 at 378C for 20 min.

After incubation, 0–10 ng ml21 activin A or 200 ng ml21 LPS

were added, and the increase of fluorescence was measured

by flow cytometry.

2.9. Detection of superoxide
Superoxide (O�2 ) that can decompose water-soluble tetrazo-

lium salt WST-1 was detected with superoxide detection kits

(Beyotime, China). Briefly, the neutrophils were stimulated

with activin A or LPS in 5% CO2 at 378C for 12 h. After discard-

ing the supernatant, the cells were incubated with WST-1 in

dark at 378C for 5 min. Absorbance was detected at 450 nm

by an automated microtitre plate reader.

2.10. Detection of IL-6 and TNF-a
The supernatants of the cultured neutrophils in the presence

or absence of activin A were collected, and levels of inter-

leukin-6 (IL-6) and tumour necrosis factor-a (TNF-a) were

detected by ELISA kit according to the manufacturer’s

protocol (eBioscience).

2.11. Analysis of phagocytosis of neutrophils
The neutrophils of 1 � 106/well were treated with activin A or

LPS in 5% FCS/RPMI 1640 medium in 5% CO2 at 378C for 12 h,

and then carboxylate-modified fluorescent microspheres with
red fluorescence were added for 1 h. Neutrophils were rinsed

with PBS, and then the ratio of phagocytosis was examined

with flow cytometry.
2.12. Neutrophil chemotaxis assay
Neutrophil chemotaxis was determined using trans-well

chambers (3 mm pore size, Corning). Briefly, the neutrophils

were incubated with 1 mmol l21 CFSE at 378C for 10 min. The

neutrophils (1 � 106/well) labelled by CFSE with green fluor-

escence were loaded into the upper chamber and the lower

chamber was full of 5% FCS–RPMI 1640 medium containing

activin A or FMLP (Sigma) as positive control. The cells were

cultured at 378C in 5% CO2 for 45 min. The number of cells

that migrated to the underside of the membrane was counted

under inverted fluorescence microscope.
2.13. Smad3 knockdown
Smad3 was knocked down in vivo with pGCsi-U6/Neo-Smad3
shRNA as described previously [28]. Briefly, 1 ml of 9% casein

was injected into peritoneal cavity per mouse. After 24 h, the

equivalent volume of casein was injected. 2 h later, each

mouse was injected intraperitoneally with 3 mg pGCsi-U6/

Neo-Smad3 shRNA-lipofectamine 2000 reagent complex in

accordance with the manufacturer’s protocol (Invitrogen) or

with 3 mg pGCsi-U6/Neo-lipofectamine 2000 reagent complex

as empty plasmid control. After 12 h, neutrophils were isolated

from peritoneal cells and incubated in the presence or absence
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of activin A for 12 h, and then the supernatants were collected

and IL-6 levels were examined by ELISA.

2.14. Statistical analysis
All data are expressed as means+ s.d. The data were ana-

lysed using a Student’s t-test, and values of p , 0.05 were

considered statistically significant.
3. Results
3.1. LPS promotes the release of activin A from

neutrophils
CD11b and Ly-6G are often used in combination to identify

mouse neutrophils, thus we sorted CD11bþLy-6Gþ cells

from peritoneal or peripheral blood cells with greater than

99.5% purity by FACS. The isolated cells which stained

with diff-quick staining reagent had the typical neutrophil

feature of the ring- and lobe-shaped nuclei (figure 1a). We
know that LPS can induce neutrophil activation, and TNF-a

can stimulate human neutrophils to release activin A

[29,30]. In this study, neutrophils were stimulated with LPS

as agonist, and TNF-a and actvin A production were

measured by ELISA. The result showed that LPS not only

promoted the release of TNF-a from neutrophils, but also

enhanced the production of activin A (figure 1b).

3.2. Canonical activin signalling components exist
in mouse neutrophils

To investigate whether neutrophils are able to sense activin

A, we examined the expression of activin receptor by immu-

nofluorescent staining. The results showed that Ly-6G and

ACTRIIA were co-expressed on the isolated peritoneal and

peripheral blood neutrophils (figure 2a). Next, the mRNA

expressions of activin signalling components were measured

in peritoneal neutrophils by RT-PCR. The results revealed

that not only Activin bA, but also ActRIIA, ActRIIB and

Smad3 mRNA were expressed in peritoneal neutrophils of

mouse (figure 2b). Thus, canonical activin signalling
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components exist in mouse neutrophils, indicating that acti-

vin A may act on neutrophils.

3.3. Activin A modulates activities of mouse neutrophils
Neutrophils play a critical role in innate defence via their

primary functions, such as respiratory burst and the release

of the pro-inflammatory cytokines [31,32]. To investigate

whether neutrophils can change their behaviour in response

to activin A, we first assessed the effects of activin A on res-

piratory burst of neutrophils. The respiratory burst generates

ROS from neutrophils, which is responsible for killing the

invading microbes. In this study, we found that activin A

induced O�2 release and ROS production (figure 3a,b). Then,

we evaluated the effects of activin A on IL-6 and TNF-a

release from neutrophils. As shown in figure 3c, activin A

promoted production of IL-6 in mouse neutrophils, but did

not alter levels of TNF-a.

Neutrophils also have phagocytic activities to kill the

invading bacteria and other foreign matter. Thus, the ability

of phagocytosis of neutrophils was examined by flow cyto-

metry. Our data revealed that LPS as positive control could

obviously promote phagocytosis of neutrophils to micro-

spheres with red fluorescence, compared with a control

group, and activin A also significantly enhanced phagocytic

ability of neutrophils to microspheres with red fluorescence

(figure 4).

Finally, chemokines are known to regulate neutro-

phil recruitment to sites of infection or injury [26,27].

Two-dimensional trans-well chambers were used to examine

whether activin A could affect neutrophil chemotaxis in vitro.

We found that the chemoattractant FMLP attract neutrophils

migrating to the lower chamber, whereas addition of activin

A to the lower chamber reduced the number of neutrophils

that migrated through the membrane (figure 5). Collectively,

these data suggest that activin A is an important mediator in

the regulation of neutrophil activation, but is not a potential

chemoattractant for neutrophils.

3.4. Activin A enhanced phosphorylation of SMAD3
in neutrophils

Activin A combines activin receptors and activates the down-

stream signalling molecules SMAD3. In this study, the results

revealed that ACTRIIA, SMAD3 and p-SMAD3 levels

increased obviously in nertrophils stimulated by activin A

(figure 6), suggesting that activin A may act as a regulator

of neutrophils via ACTRIIA-SMAD3 signalling.

3.5. Smad3 knockdown attenuated the effect of activin
A on IL-6 release

To confirm Smad3 signalling mediated activin A action, the

peritoneal neutrophils were transfected with pGCsi-U6/

Neo-GFP-Smad3 shRNA in vivo to knock down Smad3 gene

expression (figure 7a,b). Additionally, the results of this study

revealed that the effect of activin A on IL-6 release was signi-

ficantly weakened after knockdown of Smad3 gene in

neutrophils (figure 7c). These findings further demonstrated

that activin A as regulator could activate neutrophils through

Smad3 signalling.
4. Discussion
In this study, we found that activin A could be produced

by LPS-stimulated neutrophils. More than that, activin A

was able to regulate the functions of neutrophils, such as

respiratory burst, IL-6 release, phagocytosis and migration.

Furthermore, the effect of activin A on IL-6 release was signifi-

cantly weakened after knockdown of Smad3 in neutrophils.

These data provide the evidence that activin A can regulate

neutrophil activation in an autocrine/paracrine manner via

Smad3 signalling.

Upregulated expression of activin A has been observed in

various acute and chronic inflammations. The production of

activin A can be stimulated by pro-inflammatory cytokines

such as LPS, TNF-a and IL-1b [33–35]. The main source of acti-

vin A under inflammatory stimuli remains indeterminate, but

various immune cells including monocytes, macrophages,

mastocytes and neutrophils may be potential candidates

[29,34,36–38]. These previous studies have reported that the

cultured neutrophils secreted activin A in vitro when stimu-

lated by TNF-a. Although it has also been claimed that LPS

itself is insufficient to elicit activin A release from neutrophils

in vitro, it significantly induced activin A mRNA expression

[29,34]. In this study, we found that LPS were able to promote

the release of activin A from neutrophils, further confirming

that inflammatory stimuli, such as LPS and TNF-a can

induce the release of activin A from neutrophils [29,34].

To investigate whether neutrophils are able to respond

to activin A, we first examined the expression of activin
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signalling components. The results showed that not only

activin receptor, but also other canonical activin signalling

components, exist in mouse neutrophils. In addition,

expressions of ACTRIIA, SMAD3 and p-SMAD3 proteins

were elevated in activin A-treated neutrophils. Taken together,

these data demonstrate that neutrophils not only produced

activin A, but also were the target cells in response to activin A.

Next, to determine the role of activin A in regulation of

neutrophil activities, respiratory burst, release of the pro-

inflammatory cytokines and phagocytic ability of neutro-

phils were further analysed. We found that activin A

induced O2
2 release and ROS production, enhanced phago-

cytosis, and promoted IL-6 release in mouse neutrophils.

Moreover, Smad3 knockdown significantly attenuated

effect of activin A on IL-6 release in neutrophil. These data

indicate that activin A may induce neutrophil priming

and play an important role in neutrophil activation via

Smad3 signalling.

Interestingly, activin A is not a potential chemoattractant

for neutrophils and addition of activin A to the lower
chamber reduced the number of neutrophils that migrated

through the membrane. Neutrophils migrate from the blood-

stream to sites of infection or injury to kill the invading

bacteria and other foreign matter, but the highly destructive

capacity of neutrophils can also raise the potential to

damage the host is healthy tissues [39,40]. Activin A has

been generally accepted as a pro- and anti-inflammatory

mediator depending on both cellular context and stage of dis-

ease [36,41–44]. It is possible that activin A plays a dual role

in regulating neutrophil functions. We suppose that, on the

one hand, activin A may induce the activation of neutrophils

in the early phase of inflammation; on the other hand, the

high level of activin A enriched at inflammatory sites might

stop the development of inflammation by restricting the

migration of neutrophils in the late phase of inflammation.

But our study was limited to knowing the effects of activin

A in vivo, so more comprehensive scrutiny of the effect of acti-

vin A in neutrophil-mediated disease, such as sepsis, ARDS,

rheumatoid arthritis and different types of tissue injury, is

highly warranted.
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In summary, these data demonstrate that activin A can

exert an effect on neutrophil activation in an autocrine/

paracrine manner through Smad3 signalling, suggesting

that activin A is an important regulator of neutrophils.
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