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Abstract: Regular dry dock maintenance work on ship hulls is essential for maintaining the efficiency
and sustainability of the shipping industry. Hydro blasting is one of the major processes of dry
dock maintenance work, where human labor is extensively used. The conventional methods of
maintenance work suffer from many shortcomings, and hence robotized solutions have been
developed. This paper proposes a novel robotic system that can synthesize a benchmarking map for
a previously blasted ship hull. A Self-Organizing Fuzzy logic (SOF) classifier has been developed
to benchmark the blasting quality of a ship hull similar to blasting quality categorization done by
human experts. Hornbill, a multipurpose inspection and maintenance robot intended for hydro
blasting, benchmarking, and painting, has been developed by integrating the proposed SOF classifier.
Moreover, an integrated system solution has been developed to improve dry dock maintenance of
ship hulls. The proposed SOF classifier can achieve a mean accuracy of 0.9942 with an execution
time of 8.42 µs. Realtime experimenting with the proposed robotic system has been conducted on
a ship hull. This experiment confirms the ability of the proposed robotic system in synthesizing
a benchmarking map that reveals the benchmarking quality of different areas of a previously blasted
ship hull. This sort of a benchmarking map would be useful for ensuring the blasting quality as well
as performing efficient spot wise reblasting before the painting. Therefore, the proposed robotic
system could be utilized for improving the efficiency and quality of hydro blasting work on the ship
hull maintenance industry.

Keywords: self-organizing fuzzy logic classifier; benchmarking blasting quality; hydro blasting;
ship hull maintenance; robotics for ship maintenance industry

1. Introduction

Routine dry dock maintenance on the outer hull of ships is essential for the efficient and
sustainable operation of shipping [1,2]. Improper maintenance of ship hulls may lead to an increase of
the fuel consumption due to the surface roughness [2,3]. In addition to that, safety issues can also be
aroused due to the improper hull maintenance. Typically, maintenance work on ship hulls needs to be
carried out every 4–5 years [4]. One of the major maintenance work on ship hull is the blasting work
carried out for removing rust and adherence [2]. Hydro blasting or abrasive blasting is commonly
used for this purpose. In most of the typical cases, these blasting works are carried out by human
workers with the aid of semi-automatic devices [2]. Furthermore, inspections of hull surfaces are done
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by humans to identify the areas that need to be blasted as well as to evaluate the quality of a blasting
work [2]. Thereby, the conventional ship hull maintenance work suffers from concerns in accuracy,
efficiency, cost, and safety.

Many robotic solutions have been emerged for resolving the issues associated with
conventional maintenance work that requires extensive human labor in diverse domains [5–8].
Similarly, many robots and devices have been developed for inspection and maintenance work of
ship hulls to resolve the shortcoming of the conventional methods discussed above [9]. In this
regard, many ground-based robots and robotic systems have been introduced with the intention of
automating dry dock maintenance work of ships hulls [10–13]. These robots require the support
of external structures such as rail mechanisms, gantry cranes, and cherry pickers for facilitating
the movements along a ship hull. A system that uses a set of stationary lidars and cameras for
detecting corrosion spots in a ship hull has been proposed in [14]. However, these ground robots
have limited access to ship hulls due to hindrances caused by geometric constraints and occultations.
Furthermore, it is required to deploy either a set of systems or facilitates the movement of the structures
around a ship for covering an entire ship hull. Possibility of using Unmanned Area Vehicles (UAV)
such as quadcopters and hexacopters for inspection of ship hulls has also been investigated since UAVs
have proven the ability to inspect confined and limited access areas in other application domains [9,15].
Nevertheless, the usability of UAVs is limited in inspection of ship hulls due to the lack of operation
for a longer time and distance as well as low accuracies in positioning.

Robots that can climb on ship hulls are preferred for inspection and maintenance work of ship
hulls due to their performance benefits [16,17]. A climbing robot based on magnetic adhesion has been
developed for inspecting long welding lines on ship hulls [18]. MIRA [19] is another climbing robot
developed for the inspection of ship hulls. The wheels of this robot are integrated with permanent
magnets fixed on a flexible strip to provide the climbing ability. A mobile robot with a novel design
of magnetic wheels based on Halbach array has been introduced in [20] for dry dock inspections.
A tracked mobile robot that is capable of adapting to the uneven surfaces has been developed
for ship hull inspection [21]. The self-adaptability of the robot allows it to move through uneven
surfaces. Since magnetic wheels are often used for inspection robots intended for ship hulls, in depth
analysis on magnetic flux distribution of wheels for climbing robot has also been conducted [22].
Furthermore, optimization of a magnetic wheel for a grit blasting robot has been investigated [23].
Apart from the climbing robot with magnetic adhesion, robots based on negative pressure adhesion
have also been developed [17,24]. The work [24] analyzed the variation of required negative pressure
in different conditions such as in wet conditions. Nevertheless, the scope of the work cited above is
limited to the design and development of climbing robots or their adhesion mechanisms for inspection
of ship hulls; the methods for automatic inspection and maintenance such as vision-based corrosion
detection, are not discussed within the scope of the work.

A magnetic crawler robot with a monocular-camera based vision processing method for inspecting
ship hulls has been developed [25]. The vision processing method is capable of constructing a mosaic
image, which can produce a metric representation of the areas inspected by the robot, from the multiple
images captured from different positions of the robot. Many computer-vision based methods for
detecting corrosion in metal structures, including ship hulls and steel bridges, have been developed [26].
According to the outcomes of the survey [26], the color is the principal representative feature for
identifying the corroded areas. Furthermore, the cited survey concludes that learning-based methods
could perform better than the non-learning methods in detecting corrosion through vision. A method
for a surface corrosion grade classification of metals has been proposed using a deep convolution
neural network [27]. However, the method was developed to detect the correction grade based on
microscopic images of the surface. A microscopic image could cover only a minimal area of the
environment to be inspected due to the constraints of magnification. If microscopic images were taken
to cover a ship hull, a considerably large number of images would need to be taken for covering the
whole surface. The vision system has to be directed toward very near proximity areas many times
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in this regard. Therefore, the inspection process would be prolonged, hindering the feasibility of
adopting the method proposed in [27] for a robot intended for inspecting the corrosion grade of ship
hulls. A vision-based defect detection method based on statistical approaches built upon circular
histograms entropy analysis has been introduced to identify the rusted regions of ship hulls [28].
Nevertheless, the proposed method has been verified merely using offline images and have not been
validated in the real-world application context.

The ability to detect corrode areas of ship hulls from a set of stationary cameras by using
histogram-based background detection and adaptive thresholding methods have been investigated
in [14]. According to the outcomes, these methods are effective only when the inspected zones have
a majority of non-corroded areas. The work [29] proposed an aerial robot equipped with a feedforward
neural network trained for corrosion detection of ship hulls. The proposed neural network is capable
of detecting the areas of corrosions/coating breakdowns of ship hulls. An automated visual inspection
method that can detect defected areas for automated spot blasting has been proposed in [30]. The cited
work proposes a wavelet transformation combined with an entropy-based method for detecting the
corrode spots. The proposed method has been implemented on a crane-based ground robotic system
and verified the abilities.

Nevertheless, all the vision-based methods discussed above are intended for detecting corroded
areas on a surface. The blasting quality needs to be classified into a few categories for benchmarking
a hydro blasting work. Furthermore, the surface appearance becomes different after a blasting process.
Hence, the methods discussed above could not be adopted for benchmarking the performance of
a hydro blasting process. In addition to that, much of the work is limited to the development of
vision-based detection mechanisms for robots, and the ways for utilizing the detection outcomes as
a fully integrated system for synthesizing a benchmarking map for an already blasted ship hull are
not considered within the scopes. Therefore, this paper proposes a novel vision-based benchmarking
method for hydro blasting. The proposed benchmarking method can classify the hydro blasting
quality into three categories, good, medium, and bad. A Self-Organizing Fuzzy logic (SOF) classifier is
proposed to realize the classification into the benchmarking categories. In addition to that, a hydro
blasting robotic system consists of a hydro blasting robot and a benchmarking robot has been designed
and developed. An overview of the proposed robotic system is given in Section 2. Section 3 presents
the theoretical backgrounds of the proposed SOF classifier. Particulars on experimental validation are
discussed in Section 4. Concluding remarks are given in Section 5.

2. System Overview

2.1. Context of Application

The context of the application of the proposed robotic system is explained with the aid of Figure 1.
The application context is to remove the layer of rust in a ship hull through hydro blasting for applying
a new painting. Initially, a robot equipped with hydro blasting capability is sent on the ship hull
in a zig-zag path to cover the entire area to be blasted (as shown in Figure 1a). While navigating in
the given path, the robot is expected to continuously and uniformly perform the hydro blasting in
the area. Typically, a hydro blasting robot is capable of removing the rust layer to a greater extent.
Nevertheless, the rust removal would not always be uniform throughout a given area, and there
would be partially removed areas or completely unremoved areas. Thus, the blasting quality is
usually inspected by human experts after performing a blasting cycle. ISO 8501-1 standard is used as
a guideline in this regard. A blasted surface with either SA 2.5 or SA 3 standard quality (according to
ISO 8501-1) is considered as “good” in the work presented in the paper, where the blasting quality is
adequate for processing with painting. Typical appearance of a ship after a good blasting is shown
in Figure 2a. According to the standard, a blasted surface free from visible oil, grease, and dirt and
from mill scale, rust, paint coatings, and foreign matters, when the surface is inspected without
magnification, can be considered as at least SA 2.5 quality. Slight traces of contamination in the
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form of spots or stripes are allowed in SA 2.5 while the surface should have uniform metallic color
without any traces to be considered as SA 3 quality. Areas with standard blasting quality SA 1 and
SA 2, where poorly adhering rust, paint coatings, and foreign matters could be observed without
magnification, are considered as medium quality in the work presented in this paper. Appearances of
areas with medium blasting quality are given in Figure 2b. The medium quality areas are expected
to have a light reblasting on it. If a surface blasting quality is below the quality definition of SA 2
(e.g., an area with a completely unremoved coat), it is considered bad quality blasting. The areas
identified as bad quality blasting are expected to have a full reblasting on them. Examples for areas
categorized as bad quality blasting is given in Figure 2c. If the new painting was applied on top of
a ship hull with existing rust particles, then it would not last for a long time. Thereby, it is necessary to
ensure that a ship hull is completely blasted before applying the paint.

(a) (b) (c)

(a)

(b)

Figure 1. The overall sequence of the application context of the proposed robotic system. (a) Blasting
robot is sent in a zig-zag path for uniformly blasting the area; (b) The benchmarking robot is sent in the
previously blasted area to benchmark the blasting quality; (c) The benchmarking map that represents
the quality of blasting in different areas.

(a)

(b)

(c)

Figure 2. Categorization of the blasting quality considered for benchmarking. (a) Appearances of good
areas; (b) Appearances of medium quality areas; (c) Appearances of bad quality areas.

To ensure that a ship hull is uniformly blasted in good condition, a second robot is sent on the ship
hull in a zig-zag path as shown in Figure 1b, to benchmark the work done by the blasting robot. After
completion of the inspection by the robot, a benchmarking map for the hull area is developed as shown
in Figure 1c, where it indicates the quality of blasting in different segments of areas. The areas shown in
green represent the areas with good quality blasting (areas where the appearance is similar to Figure 2a).
The areas given in yellow represent the areas where the quality of blasting is medium (areas where
the appearance is similar to Figure 2b). The areas where the blasting quality is bad (areas where the
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appearance is similar to Figure 2c) is represented in red. After generating the benchmarking map
of the hull area, it is expected to resend the blasting robot to perform selective blasting on medium
and bad quality areas. This benchmarking map would be useful in improving the efficiency of the
robot by planning an efficient navigation plan for the blasting robot and performing selective blasting
with different blasting parameters (for medium areas low pressure, for bad areas high pressure, etc.).
Therefore, the robotic system proposed in this paper would be highly beneficial in improving the
automated ship hull blasting and inspection work.

2.2. Functional Overview

The functional overview of the proposed robotic system is depicted in Figure 3. An operator can
control the navigation path of the benchmarking robot through the user interface. The navigation
controller of the benchmarking robot is responsible for performing the low-level functionalities
related to navigation in a given trajectory such as localization and locomotion motor controlling.
For localization, the robot uses a beacon-based off the shelf localization system. The vision feedback
from the camera attached to the robot is processed by the vision processing module to extract
the features.

Navigation
controller

Vision
processing

Benchmarking
Classifier

Benchmarking
Map 

generator

U
se

r 
In

te
rf

ac
e

Benchmarking robot

Blasting robot

Figure 3. Functional overview.

The main steps within the vision processing module are explained in Figure 4. The vision
processing module captures image frames from the incoming vision feed. This capturing is done in
600 × 600 size. Then, the image information of each frame is separated into R, G, and B components.
Then, for each color component, a histogram is generated. The bin size of a histogram is configured to
10. Hence, there are 10 parameters for each color component yielding to 30 parameters as the output of
the vision processing module (for altogether for R, G, and B components 30 parameters). This data set
is denoted as x, and it is a row vector with 30 elements. The output of the vision processing module,
x is fed to the benchmarking classifier for each captured frame.

𝑥 = [ ]1×30

[600 × 600] × 3 600 × 600

Decompose to RGB 
channels

Capture image 
frame in RGB

Generate histogram for 
each channel

Bin size = 10

Figure 4. Steps of image processing for feature extraction.
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The benchmarking classifier labeled each image frame to either of the considered
benchmarking categories, good, medium, and bad. The benchmarking classifier has been developed
using a Self-Organizing Fuzzy logic (SOF) classifier (A detailled description is given in Section 3).
The classification results of the incoming image frames are then sent to the benchmarking map
generator. The corresponding location of a captured image is retrieved from the navigation controller.
Then the corresponding location is tagged with the classified results to generate the benchmarking
map. The created benchmarking map could be accessible through the user interface. In addition to that,
the generated benchmark map could be transferred to the blasting robot through the user interface for
reblasting the areas identified as medium and bad.

2.3. Robot Platform

Hornbill is a differential drive robot designed for ship hull maintenance. The robot uses magnets
as principal support to adhere and navigate across the metallic surface of the vessel, besides it
incorporates custom design wheels for water displacement to maximize the traction in the presence of
water. The robot’s architecture incorporates a multipurpose arm that can be used for hydro blasting,
painting, and surface benchmarking. Figure 5 depicts the robot’s design.

Figure 5. Hornbill Design.

A complete part diagram of the robot is shown in Figure 6 for reference. The robot dimensions are
535 × 785 × 480 mm including the multipurpose arm. At the front axis, it has 2 DC motors coupled to
a gear head that transmits 55 Nm of torque each to the surface by using 2 rubber wheels of 200 mm of
diameter (FW). The robot’s frame is made of Aluminium 6061 Alloy to minimize any possible hazard
to occur due to the presence of high magnetic forces. The frame also has a safety handler (SH) to easy
its deployment on a ship’s hull. The robot’s design also includes a waterproof cover (C1, C2) to isolate
the electric components from the liquids.

The robot is designed to carry 300 kg of payload including its weight, for this purpose the robot
includes 10 grade N50 Neodymium squared magnets of 200 × 25 × 25 mm, 8 magnets are located at
the front axis using 4 magnet holder (MHF) and 2 at the rear (MHR) right next to 2 castor wheels (CW).
The magnets are placed at 5 mm from the surface, and they provide a combined pull force of 300 kg.

Figure 6. Part Diagram.

Hornbill has been designed to be reconfigurable in terms of the task that needs to perform.
Therefore, the robot has attached a multipurpose arm (MA) made of a hollow aluminum tube, at one
end it is coupled a DC motor of 25 Nm of torque that allows the arm to swing, and at the other
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end it has a bracket (MAB) that can be used to link diverse tools depending on what is the robot
needed to perform between hydro blasting, painting, and surface benchmarking. To perform surface
benchmarking, a camera has to be attached to the arm bracket (MAB) oriented parallel to the hull
surface. Situations, where Hornbill is used as a benchmarking robot and a hydro blasting robot,
are shown in Figure 7.

(a) (b) (b)

(a)

(b)

Figure 7. (a) Hornbbill is used as the bechmarking robot; (b) Hornbill is performing hydro blasting.

A set of beacons have to be placed along the section of the ship’s hull where the robot operates.
The communication of a beacon placed on the robot with the surface beacons is used to determine
the robot’s absolute position and orientation. In addition to the information from the beacons,
the information from wheel encoders and inertia measurement unit is fused together to improve
the accuracy of the localization within the workspace. This localization facilitates the autonomous
navigation of the robot in a given trajectory.

3. Self-Organizing Fuzzy Logic (SOF) Classifier

A Self-Organizing Fuzzy logic (SOF) classifier [31] is proposed for the benchmarking classifier.
The architecture of the SOF classifier was originally proposed by Gu and Angelov [31] in 2018.
The underlying theoretical rationales and mathematical proving of the architecture, such as analysis
of convergence, have been analyzed in the cited work. Furthermore, the performance of the SOF
classifier has been compared against the other method using well-known offline testing data such as
data set for optical character recognition. Nevertheless, a SOF classifier has not been proposed for
benchmarking the quality of hydro blasting. A SOF classifier was selected for this application based
on the following reasons.

• The benchmarking statuses are defined based on human expert knowledge, and the benchmarking
categorization is performed based on the three fuzzy linguistic descriptors, good, medium,
and bad. Moreover, the benchmarking classifier should emulate the human expert knowledge
in the classification process. Fuzzy logic has been proven to be well suited for replicating
the human expert knowledge that can be represented through linguistic expressions [32–34].
Furthermore, fuzzy logic has the ability to cope with imprecise sensor information [35–37].
Therefore, a method based on fuzzy concepts would be expected to perform well in this
specific application.
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• A human interpretable and explainable set of rules is generated after the training of a SOF classifier.
Explainable intelligent techniques are preferred for ensuring transparency and trust of safety in
this sort of industrial application, which might become hazardous from undesired control actions
that might be performed by a robot [38]. Furthermore, the set of rules can be tailored based on
expert knowledge.

• A SOF classifier is a highly efficient model with high classification accuracy [31,39].
Therefore, it requires lower computational power with respect to the other existing models.
In addition to that, a SOF classifier does not require dedicated optimized hardware such as
GPU cores for the computation. Moreover, a SOF model is comparatively lightweight.

• Many existing classification models rely heavily on prior assumptions on data generation models
and user-defined trial and error parameters such as learning rate and the size of the network.
In most of the practical cases, the assumptions on data generation are often too tough to be
sustained, and user-defined parameters are often troublesome to define due to the insufficient
prior knowledge of the problem. In contrast, a SOF classifier is nonparametric, and it does not
require an assumption on data generation models and parameter knowledge about the problem
of interest [31].

The architecture of the SOF classifier is depicted in Figure 8. It is designed to assign a class
label to a given data sample, x based on trained knowledge. It should be noted that x can be a row
vector with any dimension. The trained knowledge is stored as a set of zeroth-order AnYa type
fuzzy rules [40]. An AnYa type fuzzy rule has the form given in (1). The antecedent of an AnYa
type fuzzy rule is in a nonparametric vector form, and it does not require membership functions.
Here, the symbol, ∼ denotes the similarity between a data sample and a data cloud. This similarity is
similar to the concept of degree of membership in the Mamdani type or Sugeno type fuzzy inference
system. {p}c = {pc

1, pc
2, ..., pc

Nc} is the set of prototypes belonging to cth class, and Nc is the number
of prototype in {p}c. These prototypes are the centers of the data clouds. The data clouds and the
corresponding fuzzy rules are formed during the training phase of the SOF classifier.

IF (x ∼ pc
1)OR(x ∼ pc

2)OR...OR(x ∼ pc
Nc) THEN (class c) (1)

To identify the class corresponding to an input data sample (i.e., x), the firing strength of
cth fuzzy rule, λc(x) is evaluated as in (2) by the local decision-maker where d(x, p) denotes
distance/dissimilarity between the two data points. Common distance/dissimilarity measures such
as Euclidean, Mahalanobis, and Cosine distance can be used in this purpose. Then, the class label of
the data sample is assigned by the overall decision-maker using the winner-takes-all method as in (3).
For c = 1, 2, ..., C.

λc(x) = max
p∈{p}c

(e−d2(x,p)) (2)

label = arg max
c=1,2,...,C

(λc(x)) (3)

The classifier identifies the prototypes from each class and forms the data clouds. A zeroth-order
AnYa type fuzzy rule for each class is then formulated. The training process is independent for different
classes, and there is no influence from the training of one class to another class. Thereby, the training
process can be explained based on cth class such that c = 1, 2, ..., C. Suppose data sample set of cth class
is denoted by {x}c

Kc = {xc
1, xc

2, ..., xc
Kc} such that {x}c

Kc ⊂ {x}K, where Kc is the number of data samples
belonging to cth class and K is the total number of data samples in the dataset. All the data in a training
data sample may not be unique and the same data sample may be repeated. The corresponding unique
data sample set and their frequency of appearance are considered as {u}c

Uc
K
= {uc

1, uc
2, ..., uc

Uc
K
} and

{ f }c
f c
K
= { f c

1 , f c
2 , ..., f c

Uc
K
} respectively, where Uc

K is the number of unique data sample belonging to cth
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class, and UK is the total number of unique samples in the dataset. Moreover, this definitions lead to
∑C

c=1 Kc = K and ∑C
c=1 Uc

K = UK. The main steps of the training of SOF classifier are given below.

𝑝1
1

𝑝2
1

𝑝𝑁1
1

Local
Decision 
Maker

𝑝1
2

𝑝2
2

𝑝𝑁2
2

Local
Decision 
Maker

𝑝1
𝑐

𝑝2
𝑐

𝑝𝑁𝑐
1

Local
Decision 
Maker

𝑝1
𝐶

𝑝2
𝐶

𝑝
𝑁𝐶
1

Local
Decision 
Maker

O
ve

ra
ll 

D
ec

is
io

n
 M

ak
er

Class label

x

𝜆1

𝜆2

𝜆𝑐

𝜆𝐶

Figure 8. Architecture of Self-Organizing Fuzzy Logic (SOF) classifier.

Step 1: The multimodal density [41] of ith unique data sample of cth class, DMM
Kc (uc

i ) is calculated as
in (4) where i = 1, 2, ..., Uc

K and d(xi, xj) denotes distance/dissimilarity between the two data points.

DMM
Kc (uc

i ) = f c
i

∑Kc

l=1 ∑Kc

j=1 d2(xc
l , xc

j )

2Kc ∑Kc
j=1 d2(uc

i , xc
j )

(4)

Step 2: The sample {u}c
Uc

K
is sorted according to the multimodal density and mutual distances

calculated in step 1. The sorted sample set is denoted by {r} = {r1, r2, ..., rUc
K
}, where r1 is given in (5)

and the rest are obtained as in (6). It should be notated that uc
i corresponding to rk is excluded in each

run of (6), and the process is repeated for all the data in the sample.

r1 = arg max
i=1,2,...,Uc

K

(DMM
Kc (uc

i )) (5)
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rj = arg min
uc

i∈{u}
c
Uc

K

(d(rk, uc
i )) for j = 2, 3, ..., Uc

K (6)

Step 3: The multimodal density set after the sorting in step 2 is taken as {DMM
Kc (r)}. The initial set of

prototypes, {p}0 is generated by considering the condition given in (7). Moreover, the local maxima of
{DMM

Kc (r)} are taken for {p}0.

IF (DMM
Kc (ri) > DMM

Kc (ri+1) AND (DMM
Kc (ri) > DMM

Kc (ri−1) THEN (ri ∈ {p}0) (7)

Step 4: The nearby data samples are attracted to form data clouds resembling Voronoi tesselation [42].
The assignment of a data sample to a cloud is determined based on the winning prototype obtained as
in (8).

Winning Prototype = arg min
p∈{p0},xi∈{x}c

Kc

(d(xi, p)) (8)

Step 5: The set of centers of the formed data clouds, {ϕ0} are identified. {ϕ0} is equivalent to {p0}.
The multimodal density at the center of ith cloud is calculated as in (9) where Si is the number of
members in ith cloud, and n is the number of clouds formed.

DMM
Kc (ϕi) = Si

∑n
l=1 ∑n

j=1 d2(ϕl , ϕj)

2n ∑n
j=1 d2(ϕi, ϕj)

(9)

Step 6: The set of centers of neighboring data clouds of ith data cloud, {ϕ}neighbor
i is identified for each

i based on the condition given in (10) such that ϕj ∈ {ϕ}0 and ϕj 6= ϕi. Here, Gc,L
Kc defines the average

radius of local influential area around each data sample. This parameter is calculated iteratively as
given in (11) based on the granularity level L ∈ Z+ defined by user. Here, Qc,L

Kc is the number of pairs
of data samples where the distance between a pair is less than Gc,L

Kc for L 6== 1. When L = 1, Qc,L
Kc

is the number of pairs of data samples where the distance between a pair is less than the average
distance, d̄c

Kc .

IF (d2(ϕi, ϕj) ≤ Gc,L
Kc THEN (ϕi ∈ {ϕ}neighbor

i ) (10)

Gc,L
Kc =


∑x,y∈{x}c

KC ,x 6=y,d2(x,y)≤d̄c
Kc

d2(x,y)

Qc,L
Kc

if L = 1

∑
x,y∈{x}c

KC ,x 6=y,d2(x,y)≤Gc,L−1
Kc

d2(x,y)

Qc,L
Kc

otherwise

(11)

Step 7: The set of representative prototypes of cth class, {p}c are identified by evaluating the condition
given in (12).

IF (DMM
Kc (ϕi) > max

ϕ∈{ϕ}neighbor
i

(DMM
Kc (ϕ))) THEN (ϕi ∈ {p}c) (12)

Step 8: A zeroth order AnYa type fuzzy rule is created for cth class in the format given in (1),
where Nc is the number of representative prototypes.

4. Results and Discussion

4.1. Data Collection and Training, and Classification Performance

The data set required for the training and testing was prepared by capturing images of blasted
ship hulls through the robot’s camera. The captured images were manually labeled to benchmarking
categories with support of expert knowledge. For each benchmarking class, 1850 images were gathered,
yielding the total size of the data set to 5550 images. Geometrical transformations, such as rotation,
were applied to the data set to prevent the possible overfitting. The data set was randomly divided
into two subsets for training and testing in the ratio of 80:20.
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The variation of the classification accuracy of the proposed Self-Organizing Fuzzy logic (SOF)
classifier for the testing data was obtained by varying the granularity level (i.e., L) and the type
of distance/dissimilarity measure. Furthermore, the variation of the execution time (i.e., t) of the
classifier was also examined. The variation of the mean accuracy and the mean execution time
with granularity level and distance type is given in Table 1. The mean accuracy was calculated by
considering 10 different trained classifiers (10 randomly selected data set for training) for each case.
The mean execution time was obtained by running the classifier 100 times for each case in a laptop
with the Intel Core i7-9750H processor and 16 GB memory. It should be noted that the execution time
represents only the time taken by the classifier when assigning the class of a given input, and it does
not include the time taken by the vision processing module for extracting the inputs for the classifier.

Table 1. Performance of the SOF classifier in different configurations.

Distance Measure Euclidean Cosine

L 4 8 12 4 8 12

Accuracy 0.9744 0.9942 0.9928 0.9779 0.9915 0.9933
t (µs) 2.86 8.67 23.8 6.56 10.31 11.04

Improvement in the accuracy with increasing L could be observed when the cosine distance was
used. In contrast, a reduction in accuracy could be observed when L changed from 8 to 12 when
Euclidean distance was used. The overfitting of the classifier was the reason for this behavior since
L controls the generalization of the classifier. An increase in execution time could be observed with
increasing L irrespective of the distance type. Nevertheless, the execution times are in the order of
microseconds (highest 23.8 ms), implying a trivial computational overhead for the realtime operation
of the robot.

The highest mean accuracy of 0.9942 was observed when Euclidean distance and granularity
level of 8 were considered for the SOF classifier. The mean execution time for this configuration was
8.67 µs. Therefore, a trained case of Euclidean distance and granularity level of 8 was considered
for the real-time experimenting with the robotic system. The confusion matrix corresponding to this
trained SOF classifier is given in Table 2 for conveying insights of the classification performance.

Table 2. Confusion matrix.

Actual

Good Medium Bad

Good 370 4 0

Medium 0 366 1Predicted

Bad 0 0 369

4.2. Realtime Operation on the Robot

The proposed overall system has been implemented, and a benchmarking map generation has
been tested on a ship hull. The benchmarking robot was placed in a ship hull, as shown in Figure 9.
The ship hull had been blasted by the blasting robot previous to this experiment. The blasting robot
would work usually covering the ship hull with more or less even blasting quality in most situations.
However, areas with different blasting qualities could be observed due to the operational issues of the
robot, such as interruptions of pressurized water supply and sudden variations in navigation speed,
during the real operation for a long time. For the sake of better demonstration of the benchmarking
ability, such interruptions had been intentionally created during the blasting. Intentionally interrupting
the blasting robot for making different blasting performances would not detract the experimental
condition from the spontaneity of typical operating conditions. After placing the benchmarking robot
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on the ship hull, the robot was moved in a horizontal path. The SOF classifier analyzed the visual
feedback of the robot in realtime. A video (Supplementary Materials: Video S1) of this segment of the
experiment is attached as a supplementary multimedia attachment.

(a)

1        20        40        60        80      100      120      140     160      180

(b)

Figure 9. (a) Experimental setup; (b) The resulted benchmarking map. The benchmarking map is
overlaid on the hull surface for better comparison. The areas predicted with good blasting quality
by the system are given in green. The medium and bad quality areas are given in yellow and red,
respectively. The corresponding frame number is annotated below the synthesized benchmarking map.

The robot could achieve a frame rate of 14.66 frames per second (fps). However, the frame rate
was intentionally limited to 7 fps to avoid unnecessarily higher overlapping of the areas inspected by
the robot in each frame. The corresponding benchmarking map generated by the system is overlaid
on top of the ship hull, as shown in Figure 10. Here, the areas in green represent the good blasting
quality, while the areas in yellow and red represent the areas with medium and bad blasting qualities.
Altogether 195 captured frames were analyzed by the robot during this run, and the corresponding
frame number is annotated in this overlaid map. The captured frames from the robot’s camera in
intervals of 20 frames are given in Fig as samples for conveying the corresponding appearance and
condition of the surface.

1 20 40 60 80

100 120 140 160 180

Figure 10. The image frames captured during the robot’s run with an interval of 20 frames.
The corresponding frame number annotated in each image.

The area represented from frame 1 can be benchmarked as bad quality blasting based on expert
knowledge. The corresponding color of the benchmarking map for the area represented by this frame is
red, which indicates that the benchmarking method correctly identifies this frame. Similarly, the frames
20 and 40 were benchmarked as bad by the system as expected. The frames 60, 80, and 100 were
benchmarked as good by the system as similar to human expert knowledge. However, frame 120
was benchmarked as good by the system, where the frame should not have been tagged as good
per the human expert. The possible cause for this miss classification is that this image represents
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a combination of a good segment and a bad segment. The frames 140, 160, and 180 were tagged as bad
in the benchmark map similar to the expert recommendation. Overall, the benchmarking robot was
capable of correctly benchmarking the blasting quality to a greater extent. Nevertheless, few failure
situations could be observed when the captured frames involve segments of different blasting qualities.
Based on these observations, it can be concluded that the proposed benchmarking robotic system is
capable of benchmarking the hydro blasting with adequate accuracy in realtime. Furthermore, it is
capable of synthesizing a benchmarking map for a previously conducted hydro blasting.

The benchmarking map generated by the robot can be used to ensure the quality of a blasted
ship hull before starting the painting. If the paint were applied to a ship hull that was not adequately
blasted, the new paint would not last long, which degrades the quality of the maintenance work.
Thereby, the proposed method for synthesizing a benchmarking map for hydro blasting would be
useful to identify the areas that were not adequately blasted, and subsequently, selective spot blasting
could be carried out on those areas. The benchmarking map would be useful in planning an efficient
path for the blasting robot for the reblasting process in such cases. Furthermore, the representation of
blasting quality categories in the map could be used to decide the amount of pressure required for the
reblasting of the corresponding area. For example, if the benchmarking category is medium, a medium
level of pressure can be used. In contrast, if the benchmarking category of an area is bad, then a high
level of pressure can be applied for the corresponding area. Moreover, the categorical representation
of the blasting quality in the benchmarking map would help to improve the overall efficiency of the
blasting work. Therefore, the ability to synthesize the benchmarking map for hydro blasting work on
a ship hull is widely useful for improving the efficiency and quality of ship hull maintenance.

A few miss classification was observed during the realtime operation with the robotic system.
However, the accuracy of the proposed classifier is 99%, which is highly adequate for the application
context. In addition to miss classification errors, the navigation errors of the robot due to poor
localization cause errors to a synthesizing of a benchmarking map. Moreover, the accuracy of
navigation and localization of the benchmarking robot should be maintained at a higher level to
minimize the induce of errors. Nevertheless, solely relying on the beacon-based localization system
is challenging in the working environment due to the high-frequency noises generated from the
surrounding heavy-duty machinery. Therefore, the position estimations from the beacon system,
inertial measurement unit, and wheel encoders are fused using the Kalman filter to improve the
accuracy of the localization to an acceptable level.

The scope of this paper is limited to the design and development of a robotic benchmarking system
for a robot-aided ship hull hydro blasting process. The proposed system is capable of synthesizing
a benchmarking map for a previously blasted ship hull. Therefore, the work presented in this paper
could contribute to improving the dry dock maintenance industry. Investigations on the development
of methods for efficient path planning for a blasting robot and determination of optimum pressure for
a selective blasting based on the information of a synthesized benchmarking map are proposed for
future work.

In the current practice, the blasting quality is inspected by human experts for the decision making
process. The blasting quality is determined based on qualitative factors of a blasted surface. This paper
proposed a method to automate the inspection process. Nevertheless, the expert knowledge has to be
captured for labeling the data set since a labeled data set is required for the training of the proposed
classifier. Manual labeling of a large data set is a time-consuming task and would compromise the
accuracy of the classifier if the expert knowledge was not captured accurately. During the labeling
process, two human experts were asked to label the images independently. The label of an image is
determined based on the unanimous decision of the human experts. Thus, this strategy ensures the
correctness of the captured expert knowledge through manual labeling of the data set. The usage of
unsupervised learning methods for the classification would alleviate the requirement of a labeled data
set. The investigation on the possibility of using unsupervised learning methods for the classification
is proposed for future work.
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5. Conclusions

Routine dry dock maintenance work on ship hulls is essential for the efficient and sustainable
operation of the shipping industry. In this regard, hydro blasting is one of the major maintenance work
on ship hulls. Robots and systems have been developed for the dry dock maintenance industry to
overcome the shortcoming of conventional methods.

This paper proposed a novel robotic system for benchmarking the robot-aided hydro blasting
on ship hulls. The proposed robotic system is capable of synthesizing a benchmarking map that
indicates the quality of a previously conducted hydro blasting in area wise. A novel Self-Organizing
Fuzzy logic (SOF) classifier has been developed to realize the classification of blasting quality similar
to human expert knowledge. A multipurpose inspection and maintenance robot called Hornbill,
which can perform hydro blasting, benchmarking, and painting, has also been developed to facilitate
a fully integrated system.

The SOF classifier has been trained and tested with a set of image data collected from the robot’s
camera and labeled based on expert knowledge. The variation of the classification accuracy and the
execution time of the SOF classifier with granularity level and distance/dissimilarity measure type
has been studied to evaluate the classification performance. The highest achieved mean classification
accuracy was 0.9942. The mean execution time of the classifier in the corresponding case was 8.67 µs,
which indicates a trivial computational overhead to the system.

Real-time experimenting with the proposed robotic system has been conducted on a ship hull by
navigating the benchmarking robot on a given path. According to the results, the proposed robotic
system is capable of synthesizing a benchmarking map for a previously conducted hydro blasting
process. A synthesized benchmarking map can represent the blasting quality of different areas in
multilevel as similar to human expert categorization.

This benchmarking map can be used for planning an efficient navigation path for a blasting robot
(for reblasting if a surface was not properly blasted) and by facilitating the spot blasting with different
parameter settings based on identified blasting quality of the corresponding area. In addition to that,
it can be used to verify whether the area of interest is adequality blasted before starting the painting.
Therefore, the proposed robotic system would be highly beneficial in improving the quality and
efficiency of hydro blasting work on the ship hull maintenance industry. Developments of methods for
optimizing a reblasting process (robot-aided) based on a synthesized benchmarking map are proposed
for future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/11/3215/s1,
Video S1: sensors-808937 supplementary.v3.

Author Contributions: Conceptualization, M.A.V.J.M., A.V.L. and M.R.E.; methodology, M.A.V.J.M.; software,
M.A.V.J.M. and A.V.L.; validation, M.A.V.J.M., A.V.L. and P.V.; formal analysis, M.A.V.J.M.; investigation,
M.A.V.J.M.; resources, M.K.; data curation, A.V.L. and P.V.; writing—original draft preparation, M.A.V.J.M.
and E.S.C.; writing—review and editing, M.A.V.J.M. and M.R.E.; supervision, M.R.E.; project administration,
M.R.E.; funding acquisition, M.R.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the National Robotics Programme under its Robotics Enabling Capabilities
and Technologies (Funding Agency Project No. 192 25 00051) and administered by the Agency for Science,
Technology and Research.

Acknowledgments: The authors would like to thank Brightsun Marine Pte Ltd., Singapore, for facilitating the
experiments of the proposed robotic system in ship hulls.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Garbatov, Y.; Sisci, F.; Ventura, M. Risk-based framework for ship and structural design accounting for
maintenance planning. Ocean Eng. 2018, 166, 12–25. [CrossRef]

http://www.mdpi.com/1424-8220/20/11/3215/s1
http://dx.doi.org/10.1016/j.oceaneng.2018.07.058


Sensors 2020, 20, 3215 15 of 16

2. Adland, R.; Cariou, P.; Jia, H.; Wolff, F.C. The energy efficiency effects of periodic ship hull cleaning.
J. Clean. Prod. 2018, 178, 1–13. [CrossRef]

3. Swain, G.; Lund, G. Dry-Dock Inspection Methods for Improved Fouling Control Coating Performance.
J. Ship Prod. Des. 2016, 32, 186–193. [CrossRef]

4. Gong, C.; Frangopol, D.M.; Cheng, M. Risk-based life-cycle optimal dry-docking inspection of corroding
ship hull tankers. Eng. Struct. 2019, 195, 559–567. [CrossRef]

5. Muthugala, M.A.V.J.; Vega-Heredia, M.; Vengadesh, A.; Sriharsha, G.; Elara, M.R. Design of
an Adhesion-Aware Façade Cleaning Robot. In Proceedings of the 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 1441–1447.

6. Le, A.V.; Nhan, N.H.K.; Mohan, R.E. Evolutionary Algorithm-Based Complete Coverage Path Planning for
Tetriamond Tiling Robots. Sensors 2020, 20, 445. [CrossRef]

7. Samarakoon, S.M.B.P.; Muthugala, M.A.V.J.; Le, A.V.; Elara, M.R. hTetro-Infi: A Reconfigurable Floor
Cleaning Robot With Infinite Morphologies. IEEE Access 2020, 8, 69816–69828. [CrossRef]

8. Muthugala, M.A.V.J.; Vega-Heredia, M.; Mohan, R.E.; Vishaal, S.R. Design and Control of a Wall Cleaning
Robot with Adhesion-Awareness. Symmetry 2020, 12, 122. [CrossRef]

9. Bonnin-Pascual, F.; Ortiz, A. On the use of robots and vision technologies for the inspection of vessels:
A survey on recent advances. Ocean Eng. 2019, 190, 106420. [CrossRef]

10. Hachicha, S.; Nejim, S.; Zaoui, C.; Maalej, A.; Dallagi, H. Study and modeling of a hull cleaning station with
an arm manipulator. In Proceedings of the 2018 International Conference on Advanced Systems and Electric
Technologies (IC_ASET), Hammamet, Tunisia, 22–25 March 2018; pp. 132–137.

11. Zheng, X.; Lan, G.; Chew, C.M.; Lu, W.F. Design of a semi-automatic robotic system for ship hull surface
blasting. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and
Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–4.

12. Navarro, P.J.; Muro, J.S.; Alcover, P.M.; Fernández-Isla, C. Sensors systems for the automation of operations
in the ship repair industry. Sensors 2013, 13, 12345–12374. [CrossRef] [PubMed]

13. Li, X.; Alexander, A.A.; Liu, N.; Wang, S.; Sulaimee, N.H.B.; Wong, F.S.; Lu, W.F.; Chew, C.M.
A Semi-Automatic System for Grit-Blasting Operation in Shipyard. In Proceedings of the 2018 IEEE
23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy,
4–7 September 2018; Volume 1, pp. 1133–1136.

14. Aijazi, A.; Malaterre, L.; Tazir, M.; Trassoudaine, L.; Checchin, P. Detecting and Analyzing Corrosion Spots
on the Hull of Large Marine Vessels Using Colored 3d Lidar Point Clouds. ISPRS Ann. Photogramm. Remote
Sens. Spat. Inf. Sci. 2016, 3, 153–160. [CrossRef]

15. Caldwell, R. Hull inspection techniques and strategy-remote inspection developments. In SPE Offshore
Europe Conference & Exhibition; Society of Petroleum Engineers: Richardson, TX, USA, 2017.

16. Schmidt, D.; Berns, K. Climbing robots for maintenance and inspections of vertical structures—A survey of
design aspects and technologies. Robot. Auton. Syst. 2013, 61, 1288–1305. [CrossRef]

17. Brusell, A.; Andrikopoulos, G.; Nikolakopoulos, G. A survey on pneumatic wall-climbing robots for
inspection. In Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED),
Athens, Greece, 21–24 June 2016; pp. 220–225.

18. Garrido, G.G.; Sattar, T.; Corsar, M.; James, R.; Seghier, D. Towards safe inspection of long weld lines on
ship hulls using an autonomous robot. In Proceedings of the 21st International Conference on Climbing and
Walking Robots (CLAWAR 2018), Panamá, Panama, 10–12 September 2018.

19. Ahmed, M.; Eich, M.; Bernhard, F. Design and Control of MIRA: A Lightweight Climbing Robot for Ship
Inspection. In International Letters of Chemistry, Physics and Astronomy; Sci Press: Bach, Switzerland, 2015;
Volume 55, pp. 128–135. [CrossRef]

20. Stepson, W.; Amarasinghe, A.; Fernando, P.; Amarasinghe, Y. Design and development of a mobile crawling
robot with novel halbach array based magnetic wheels. In Proceedings of the 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 6561–6566.

21. Huang, H.; Li, D.; Xue, Z.; Chen, X.; Liu, S.; Leng, J.; Wei, Y. Design and performance analysis of a tracked
wall-climbing robot for ship inspection in shipbuilding. Ocean Eng. 2017, 131, 224–230. [CrossRef]

22. Welch, H.; Mondal, S. Analysis of Magnetic Wheel Adhesion Force for Climbing Robot. J. Robot. Mechatron.
2019, 3, 534–541. [CrossRef]

http://dx.doi.org/10.1016/j.jclepro.2017.12.247
http://dx.doi.org/10.5957/JSPD.32.3.150038
http://dx.doi.org/10.1016/j.engstruct.2019.05.063
http://dx.doi.org/10.3390/s20020445
http://dx.doi.org/10.1109/ACCESS.2020.2986838
http://dx.doi.org/10.3390/sym12010122
http://dx.doi.org/10.1016/j.oceaneng.2019.106420
http://dx.doi.org/10.3390/s130912345
http://www.ncbi.nlm.nih.gov/pubmed/24064601
http://dx.doi.org/10.5194/isprsannals-III-3-153-2016
http://dx.doi.org/10.1016/j.robot.2013.09.002
http://dx.doi.org/10.18052/www.scipress.com/ILCPA.55.128
http://dx.doi.org/10.1016/j.oceaneng.2017.01.003
http://dx.doi.org/10.3844/jmrsp.2019.534.541


Sensors 2020, 20, 3215 16 of 16

23. Xu, Z.; Xie, Y.; Zhang, K.; Hu, Y.; Zhu, X.; Shi, H. Design and optimization of a magnetic wheel for
a grit-blasting robot for use on ship hulls. Robotica 2017, 35, 712–728. [CrossRef]

24. Zhang, M.; Zhang, H.; Song, Q. Study on Negative Pressure Adsorption Characteristics of Ship Climbing
Robot. In Proceedings of the 2017 International Conference on Computer Technology, Electronics and
Communication (ICCTEC), Dalian, China, 19–21 December 2017; pp. 1061–1067.

25. Milella, A.; Maglietta, R.; Caccia, M.; Bruzzone, G. Robotic inspection of ship hull surfaces using a magnetic
crawler and a monocular camera. Sens. Rev. 2017, 37, 425–435. [CrossRef]

26. Ahuja, S.K.; Shukla, M.K. A survey of computer vision based corrosion detection approaches. In International
Conference on Information and Communication Technology for Intelligent Systems; Springer: Berlin, Germany,
2017; pp. 55–63.

27. Kumar, M.; Satyanarayana, K.V.V.; Ramesh, A.P. Surface Corrosion Grade Classification using Convolution
Neural Network. Int. J. Recent Technol. Eng. 2019, 8, 7645–7649.

28. Jalalian, A.; Lu, W.; Wong, F.; Ahmed, S.; Chew, C.M. An Automatic Visual Inspection Method
based on Statistical Approach for Defect Detection of Ship Hull Surfaces. In Proceedings of the 2018
IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany,
20–24 August 2018; pp. 445–450.

29. Ortiz, A.; Bonnin-Pascual, F.; Garcia-Fidalgo, E. Visual inspection of vessels by means of a micro-aerial
vehicle: An artificial neural network approach for corrosion detection. In Robot 2015: Second Iberian Robotics
Conference; Springer: Berlin, Germany, 2016; pp. 223–234.

30. Fernández-Isla, C.; Navarro, P.J.; Alcover, P.M. Automated visual inspection of ship hull surfaces using the
wavelet transform. Math. Probl. Eng. 2013, 2013. [CrossRef]

31. Gu, X.; Angelov, P.P. Self-organising fuzzy logic classifier. Inf. Sci. 2018, 447, 36–51. [CrossRef]
32. De Silva, C.W. Intelligent Control: Fuzzy Logic Applications; CRC Press: Boca Raton, FL, USA, 2018.
33. Zadeh, L.A. Is there a need for fuzzy logic? Inf. Sci. 2008, 178, 2751–2779. [CrossRef]
34. Muthugala, M.A.V.J.; Vengadesh, A.; Wu, X.; Elara, M.R.; Iwase, M.; Sun, L.; Hao, J. Expressing attention

requirement of a floor cleaning robot through interactive lights. Autom. Constr. 2020, 110, 103015. [CrossRef]
35. Ross, T.J. Fuzzy Logic with Engineering Applications; John Wiley & Sons: Hoboken, NJ, USA, 2005.
36. Muthugala, M.A.V.J.; Srimal, P.H.D.; Jayasekara, A.G.B.P. Enhancing interpretation of ambiguous voice

instructions based on the environment and the user’s intention for improved human-friendly robot
navigation. Appl. Sci. 2017, 7, 821. [CrossRef]

37. Muthugala, M.A.V.J.; Jayasekara, A.G.B.P. Improving the understanding of navigational commands by
adapting a robot’s directional perception based on the environment. J. Ambient Intell. Smart Environ. 2019,
11, 135–148. [CrossRef]

38. Hagras, H. Toward Human-Understandable, Explainable AI. Computer 2018, 51, 28–36. [CrossRef]
39. Du, W.; Guo, X.; Wang, Z.; Wang, J.; Yu, M.; Li, C.; Wang, G.; Wang, L.; Guo, H.; Zhou, J.; et al. A New Fuzzy

Logic Classifier Based on Multiscale Permutation Entropy and Its Application in Bearing Fault Diagnosis.
Entropy 2020, 22, 27. [CrossRef]

40. Angelov, P.; Yager, R. A new type of simplified fuzzy rule-based system. Int. J. Gen. Syst. 2012, 41, 163–185.
[CrossRef]

41. Angelov, P.P.; Gu, X.; Príncipe, J.C. A generalized methodology for data analysis. IEEE Trans. Cybern. 2017,
48, 2981–2993. [CrossRef]

42. Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams;
John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 501.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/S0263574715000788
http://dx.doi.org/10.1108/SR-02-2017-0021
http://dx.doi.org/10.1155/2013/101837
http://dx.doi.org/10.1016/j.ins.2018.03.004
http://dx.doi.org/10.1016/j.ins.2008.02.012
http://dx.doi.org/10.1016/j.autcon.2019.103015
http://dx.doi.org/10.3390/app7080821
http://dx.doi.org/10.3233/AIS-190517
http://dx.doi.org/10.1109/MC.2018.3620965
http://dx.doi.org/10.3390/e22010027
http://dx.doi.org/10.1080/03081079.2011.634807
http://dx.doi.org/10.1109/TCYB.2017.2753880
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Overview
	Context of Application
	Functional Overview
	Robot Platform

	Self-Organizing Fuzzy Logic (SOF) Classifier 
	Results and Discussion
	Data Collection and Training, and Classification Performance
	Realtime Operation on the Robot

	Conclusions
	References

