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1  | INTRODUC TION

Tuberculosis (TB) is a chronic infectious disease in which clinical 
manifestations appear as prolonged low fever, expectoration and 
haemoptysis.1 Mycobacterium tuberculosis (MTB) is the pathogenic 
bacterium of TB. Pulmonary TB is the most common type of TB in-
fectious. In addition to lung tissue, MTB can also infect the enteric 

canal, lymph gland, articulatio, spinal, urogenital system and other 
organs or tissues, therefore caused dysfunction and pathological 
damage of human body.2

In recent years, multidrug-resistant tuberculosis (MDR-TB) and the 
co-infection of TB and AIDS have made TB treatment approach even 
more rigorous. The WHO report on global tuberculosis shows that 1.6 
million people (including 300 000 people with HIV) and 2.3 million 
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Abstract
Tuberculosis (TB) is a severe infectious disease that seriously endangers human 
health. The immune defence mechanism of the body against TB is still unclear. The 
purpose of this study was to find the key molecules involved in the immune defence 
response during TB infection, and provide reference for the treatment of TB and 
further understanding of the immune defence mechanism of the body. Data from 
GSE83456 were downloaded from GEO data sets for analysis, and a total of 192 dif-
ferentially expressed genes were screened out. Most of these genes are enriched in 
the interferon signalling pathway and are defence response–related. We also found 
that STAT1 plays an important role in the immune defence of TB infection and it is one 
of the key genes related to interferon signalling pathway. STAT1-related molecules 
including hsa-miR-448, hsa-miR-223-3p, SAMD8_hsa_circRNA 994 and TWF1_hsa_
circRNA 9897 were therefore screened out. Furthermore, expression levels of hsa-
miR-448 and hsa-miR-223-3p were then verified by qRT-PCR. Results showed that 
both hsa-miR-448 and hsa-miR-223-3p were down-regulated in plasma from patients 
with pulmonary TB. Taken together, our data indicate that an mRNA-miRNA-circRNA 
interaction chain may play an important role in the infection of MTB, and STAT1 and 
related molecules including hsa-miR-223-3p, has-miR-448, SAMD8_hsa_circRNA994 
and TWF1_hsa_circRNA9897 were identified as potential biomarkers in the develop-
ment of active TB.

K E Y W O R D S

bioinformatic analysis, biomarkers, circRNA, miRNA, tuberculosis

www.wileyonlinelibrary.com/journal/jcmm
mailto:
https://orcid.org/0000-0001-9350-2453
mailto:
https://orcid.org/0000-0003-4013-5084
http://creativecommons.org/licenses/by/4.0/
mailto:fuyizhengjun@163.com
mailto:yifuyurong@163.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83456


     |  2867YI et al.

children died from TB (including children with HIV-related TB) in 2017. 
Meanwhile, of the 5.58 million new rifampicin-resistant cases, 82% 
were MDR-TB.3 The occurrence, development and outcome of TB are 
not only related to the toxicity and quantity of bacteria, but also closely 
related to the immune function of the body. MTB is an intracellular 
parasitic bacteria, and the body's anti-TB immunity is mainly cellular 
immunity. The synergistic effect of cytokines with various immune cell 
subtypes including CD4+, CD8+ and NK cells plays a key role in the 
immune defence of tuberculosis, the most important of which are mac-
rophages, effector CD4+ T lymphocytes and IFN-γ, which is secreted 
by Th1 cells and induces macrophage activation.4

However, MTB can hinder oxidative stress, apoptosis and auto-
phagy as well as inhibits the synthesis of histocompatibility complex 
molecules and thus affects antigen presentation. These mechanisms 
inhibit and resist the macrophages' natural immune killing and spe-
cific immune response, so as to help MTB escape from the body's 
immune killing.5 Therefore, a full understanding of the immune re-
sponse mechanism of MTB infection has important theoretical sig-
nificance for the clinical diagnosis as well as the research of new TB 
vaccine and immunotherapy.6 The immune response in the blood can 
reflect the local response of the lung to pathogens, so the changes in 
whole blood composition can be used as a sensitive indicator in TB 
infection.7 Study has shown that transcriptional signature of active 
TB reflects symptom status in pulmonary TB, the researchers have 
compared the transcriptional signature of healthy people, patients 
with pulmonary TB, patients with extrapulmonary TB and patients 
with sarcoidosis, and the meta-signature shows that it can differen-
tiate active TB from healthy controls but the results in distinguishing 
TB from extrapulmonary TB were less than ideal.8 However, in this 
study, we used bioinformatic methods to compare and analyse the 
original genetic data of the whole blood of the patients with pulmo-
nary TB and healthy people, hope to investigate potential miRNAs 
and circRNAs that may play crucial roles in TB, so as to reveal the 
pathogenesis of TB at the molecular level and excavate potential 
biomarkers of TB.

2  | MATERIAL S AND METHODS

2.1 | Acquisition of RNA information

The clinical samples of TB infection were retrieved from the GEO da-
tabase. A total of 106 blood samples were selected from GSE83456, 
including 45 pulmonary tuberculosis (PTB) samples and 61 healthy 
control (HC) samples.8 Pulmonary TB patients met the operational 
diagnosis of TB infection. Patients who are suffering from immuno-
suppressed diseases such as HIV, diabetes or autoimmune diseases, 
medication or had comorbidities that affecting the pulmonary sys-
tem were excluded. All RNA information of the selected samples 
was downloaded for further analysis. The sample's information and 
data used in this section were all downloaded from public database; 
therefore, no patient consent or ethics committee approval was 
necessary.

2.2 | Data process

The original expression matrix was normalized and processed by R. 
The limma package was used to screen out differentially expressed 
genes.9 The P-value of genes was calculated using t test method, 
and Benjamini and Hochberg's method was used to calculate the 
adjusted P-value. The differentially expressed genes were screened 
out by the following selection criteria: at least a 2.0-fold change be-
tween healthy controls and pulmonary TB patient samples and with 
adjusted P-value < .05.

2.3 | Enrichment analysis

Gene set enrichment analysis (GSEA) sequenced the genes accord-
ing to the differential expression degree of the two samples and then 
detected whether the preset gene set was enriched at the top or bot-
tom of the sequencing table.10 The analysis tests the expression of 
genomic rather than individual genes and can therefore include more 
subtle changes in expression. All genetic information of PTB and HC 
samples was uploaded to GSEA for further analysis. Database for 
annotation, visualization and integrated discovery (DAVID) v6.8 was 
used to analyse the differential expression genes in PTB, including 
molecular function (MF), biological process (BP) and cell composition 
(CC).11 In addition, differential gene pathway analysis was performed 
in Functional Enrichment analysis tool (Funrich).12 Pathway analysis 
was conducted to find out which cell pathways might be involved 
in the changes in differentially expressed genes. Therefore, crucial 
pathway related to differentially expressed genes can be identified. 
The pathway analysis was validated using IPA software.

Ingenuity Pathway Analysis (IPA) is a software which can show 
the activation level of biological pathways, and because the database 
is updated once a week, it has high credibility and accuracy, which is 
a great help for bioinformatic analysis.13 Therefore, we uploaded the 
192 differentially expressed genes to IPA to perform canonical path-
way and molecule function analysis. The statistical cut-off of the en-
riched functions or pathways was determined by Fisher's exact test 
P-value, which assesses whether correlations between meaningful 
molecules and known processes come from random matches, and 
the z-score, which evaluate the directional effects of one molecule 
on another or the effects of multiple molecular changes in the data 
set on biological processes, thus assess the match of observed and 
predicted regulatory patterns with a prediction for the activation 
state. Both P-value < .05 and absolute value of z-score > 2 are con-
sidered significant.

2.4 | Gene cluster identification and protein-protein 
interaction (PPI) network analysis

The differential genes in PTB samples were uploaded to STRING 
to obtain the protein network interaction diagram.14 The re-
sult of STRING analysis was imported into Cytoscape v.3.7.1, and 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83456


2868  |     YI et al.

cluster analysis of differential genes was conducted using Molecular 
Complex Detection (MCODE) plug-in.15 The genes contained in 
the gene cluster with the highest scores were imported into the 
STRING to draw the protein interaction network and further analyse 
which biological processes this gene cluster was participated in. The 
screened gene cluster was then uploaded to Network Analyst for 
further verification.16

2.5 | Prediction of pivotal 
miRNAs and construction of gene-miRNA interaction 
network analysis

Genes related to the crucial pathway were selected and performed 
with miRWalk 2.0 to predict its targeted miRNAs.17 To verify the ac-
curacy of the results, five databases including TargetScan, miRanda, 
miRDB, miRWalk and RNA22 were used to do intersection. The 
final result obtained from the intersection is further processed with 
Cytoscape v 3.7.1; therefore, miRNAs which targeted more than two 
genes are selected.

2.6 | Quantitative reverse transcription polymerase 
chain reaction (qRT-PCR)

Two candidate plasma biomarkers for TB disease were screened for 
further confirmation. For this, a total of 18 participants, including 11 
TB patients and 7 healthy volunteers, were recruited from Weifang 
No. 2 People's Hospital and Weifang Medical University, and there 
was no significant difference in age and gender between them (age: 
20-52). TB patients were diagnosed based on sputum smear or cul-
ture positive and clinical symptoms, who were excluded if he or she 
had the following diseases such as cancer, diabetes, HIV or HBV in-
fection, or other lung diseases. Informed consent was obtained from 
all patients prior to beginning the study.

Plasma sample was collected from each participant before ini-
tial therapy. Subsequently, total RNA was extracted from per sam-
ple using TRIzol (Invitrogen), and then, its concentration and purity 
were assessed by K5800 Micro-spectrophotometer (Kaiao). The 
reverse transcription was conducted using PrimeScript™ 1st Strand 
cDNA Synthesis Kit (Takara) at 42℃ for 60 minutes and then at 95℃ 
for 5 minutes. Next, based on LightCycler® 480 II real-time PCR 

system (Roche), PCR was performed with SYBR® Premix Ex Taq™ 
Kit (Takara) at the temperature of 95℃ for 2 minutes, followed by 38 
cycles with the temperature of 95℃ for 30 seconds, 53℃ for 30 sec-
onds and 72℃ for 30 seconds. U6 was applied as internal controls. 
The 2−ΔΔCt method was utilized to determine the relative expression 
of each selected miRNA between case and controls. Sequences of 
primers used in the study are shown in Table 1.

2.7 | miRNAs-circRNA prediction

StarBase v2.0 tool was used to predict the upstream molecules cir-
cRNAs of the selected miRNAs, and the obtained data were pro-
cessed using Cytoscape software.18 The intersection of predicted 
results of each miRNA was obtained by using the cross-linked graph 
to identify relevant circRNAs.

3  | RESULTS

3.1 | Sample information processing and screening 
of differentially expressed genes

According to the sample information and data matrix, 192 differen-
tially expressed genes were extracted from the PTB samples, among 
which 156 genes were up-regulated and 36 genes were down-regu-
lated. The screening criteria for differentially expressed genes were 
as follows: adjust P-value < .05 and log 2 fold change > 1. Based on 
the analysis of gene expression of the samples, the volcano plot was 
made as shown in Figure 1.

3.2 | The differentially expressed genes in the PTB 
samples were mainly enriched in interferon (INF) 
signalling pathway and immune response

Gene set enrichment analysis, DAVID and Fun Rich software were 
used for enrichment analysis of the samples’ genes. Firstly, all gene 
expression information in PTB and HC samples was uploaded to 
GSEA software, and the hallmark gene set database was used to ana-
lyse genes at the overall level of expression profile. The significantly 
enriched gene sets were set at a default cut-off as P-value < .05 and 

TA B L E  1   Oligonucleotides used in this study

Primer sets name Reverse transcriptase primer (5′ to 3′)
Real-time quantitative PCR primer  
(5′ to 3′)

U6 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAATA F: AGAGAAGATTAGCATGGCCCCTG

R: ATCCAGTGCAGGGTCCGAGG

hsa-mir-223-3p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGGGGT F:GCGCGTGTCAGTTTGTCAAAT

R:AGTGCAGGGTCCGAGGTATT

hsa-mir-448 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATGGGA F:GCGCGTTGCATATGTAGGATG

R:AGTGCAGGGTCCGAGGTATT
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FDR < 0.25. The enrichment analysis of gene sets revealed that the 
gene sets were significantly enriched in interferon-alpha/gamma re-
sponse, and immune-related functions were significantly enriched in 
PTB samples as shown in Figure 2.

GO and pathway enrichment analysis was conducted on 192 dif-
ferentially expressed genes in the PTB samples by using DAVID and 
Funrich software. GO enrichment analysis showed that the differen-
tially expressed genes in PTB samples were mainly related to inter-
feron signalling and immune response in the biological process. The 
top nine biological processes were screened out according to the 
P-value < .05, and the bar chart was drawn according to the enrich-
ment score. The results shown in Figure 3A indicated that the sig-
nificantly enriched biological process was type I interferon signalling 
pathway. Use Cytoscape ClueGo plug-in to visualize the interaction 
network of biological process, as shown in Figure 3B.

A total of 192 differentially expressed genes were then uploaded 
to Funrich, among which 163 genes were identified for further enrich-
ment analysis. Through Funrich analysis of the pathway enrichment 
of differentially expressed genes in PTB samples, it indicated that the 
differentially expressed genes are mainly enriched in the interferon 
signalling pathway and immune-related pathways as shown in Figure 4.

To further validate our results and to identify crucial molecules that 
involved in the progress of TB infection, a total of 192 differentially 
expressed genes were uploaded to IPA for core analysis. The canon-
ical pathway results show that a total of 8 pathways including the in-
terferon signalling pathway (P-value = 4.27E-21, z-score = 3.207), role 
of pattern recognition receptors in recognition of bacteria and viruses 
(P-value = 2.64E-09, z-score = 2.646), activation of IRF by cytosolic 
pattern recognition receptors (P-value = 6.3E-08, z-score = 2.121), 
oncostatin M signalling (P-value = 3.19E-04, z-score = 2.000), TREM1 
signalling (P-value = 2.6E-03, z-score = 2.000), death receptor sig-
nalling (P-value = 5.21E-03, z-score = 2.000), neuroinflammation 
signalling pathway(P-value = 8.48E-03, z-score = 2.449) and T cell 
exhaustion signalling pathway (P-value = 4.61E-02, z-score = 2.000) 
are highly activated (Figure 5). Among these pathways, the interferon 

signalling pathway had the highest activation scores (z-score = 3.07, 
P-value = 4.27E-21), and a total of 14 genes are related to this path-
way including STAT1, MX1, OAS1, SOCS1, STAT2, TAP1, IFI6, IFI35, 
IFIT1, IFIT3, IFITM1, IFITM3, ISG15 and JAK2. Biological function 
analysis shows that the differentially expressed genes are associ-
ated with total of 10 main functional modules, including inflamma-
tion, antiviral response, immune response, activation, antimicrobial 
response, phagocytosis, chemotaxis, cell movement, innate immune 
response and response (Figure 6). The IPA shows that among these 
ten main functional modules, the subdivision function modules that 
are highly activated are immune response of phagocytosis of cells 
(P-value = 1.05E-03, z-score = 2.941), immune response of macro-
phages (P-value = 5.59E-05, z-score = 2.621), antiviral response 
(P-value = 2.96E-35, z-score = 2.411) and innate immune response (P-
value = 2.40E-11, z-score = 2.157). The obvious inhibitory functions 
are immune response of brain (P-value = 5.06E-05, z-score=−2.399) 
and encephalitis (P-value-1.89E-04, z-score=−2.212). Upstream 
analysis shows that the top five upstream regulators are STAT1 
(P-value = 9.81E-61, z-score = 6.392), IRF7 (P-value = 2.77E-57, z-
score = 6.532), IFNL1 (P-value = 1.22E-56, z-score = 5.725), IFNG 
(P-value = 3.33E-52, z-score = 7.742) and IFNA2 (P-value = 1.99E-
48, z-score = 6.241), among which, the first two are transcription 
regulators and the last three are cytokines. In addition, interferon 
alpha also shows a high activation z-score of 5.839 and a P-value of 
7.80E-47.

3.3 | Construction of protein-protein interaction 
(PPI) network and further excavation of gene 
clusters involved in immune system–related 
biological pathway

In order to screen out the core genes from the differentially ex-
pressed genes in the PTB sample, 192 differentially expressed 
genes were uploaded to the STRING for further analysis, and 170 

F I G U R E  1   Differentially expressed 
genes in PTB and HC samples were 
shown in the volcano plot, with blue dots 
representing significantly down-regulated 
genes in PTB samples and orange dots 
representing significantly up-regulated 
genes. HC, healthy control; PT, pulmonary 
tuberculosis
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F I G U R E  2   h.all.v 6.2.symbols.gmt [Hallmarks] gene set database was used to analyse the whole gene expression value of the PTB and 
HC samples. GSEA first filtered the gene set according to the number of genes contained in the gene set, with the minimum number of 15 
genes and the maximum number of 500 genes by default. Significant gene sets were cut-off by FDR < 0.25 and P-value < .05
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nodes plus 1121 edges were obtained. Local clustering coefficient 
is 0.503 and PPI enrichment P-value < 1 × 10−16, and the data file 
was then processed with Cytoscape as shown in Figure 7. MCODE 
was used to process the network data to identify gene clusters 
(Table 2), genes in the first gene cluster with the highest score were 
selected for BP enrichment analysis, and it was found that the genes 
in this gene cluster were mainly involved in defence response and 

immune system–related function (Table 3). The 38 genes in gene 
cluster 1 were therefore analysed by STRING and Network Analyst, 
and results shown in STRING manifested that gene cluster 1 mainly 
participated in defence response to virus, interferon signalling, in-
terferon-alpha/beta signalling, cytokine signalling in immune system 
and immune system–related pathway, all of which were with high 
statistical significance according to FDR values, and the correlated 

F I G U R E  3   A, Top 9 biological processes were selected and shown in bar chart according to enrichment score. B, Use ClueGO to analyse 
the interaction networks of enriched biological processes, and multiple colour dots indicate that it revolved in multiple biological processes
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genes were then marked in STRING as shown in Figure 8A. To fur-
ther identify which cytokine also plays an important role in the 
defence of TB infection, we selected genes related to cytokine sig-
nalling in immune system in STRING and then verified the result with 
Network Analyst. Genes related to cytokine signalling in immune 
system were highlighted as shown in Figure 8B, these genes were 
intersected with the selected 26 genes in STRING, and a total of 23 
genes including GBP2, ISG15 and STAT1 were obtained for further 
analysis.

3.4 | Further miRNA mining and interaction 
network analysis

Twenty-eight genes related to the cytokine signalling in immune sys-
tem were screened out, and gene-miRNA analysis was performed 
with miRWalk 2.0 software. The intersection of miRNA results pre-
dicted by TargetScan, miRanda, miRDB, miRWalk and RNA22 data-
bases was selected as the prediction result. The selection conditions 
were set as P < .05, the minimum seed sequence length was 7 mer, 

F I G U R E  4   The Funrich software 
drew a bar chart of 10 biological 
pathways based on the P-value and 
the percentage of genes, among which 
biological pathways with P-value < .05 
are statistically significant. The results 
showed that the biological pathways 
with significantly enriched were immune 
system–related

F I G U R E  5   The canonical pathway analysis of IPA. Results show that there are total of 8 pathways were highly activated, especially the 
interferon signalling pathway which had the highest activation scores (P-value = 4.27E-21, z-score = 3.207). The remaining high activation 
pathways include the role of pattern recognition receptors in recognition of bacteria and viruses (P-value = 2.64E-09, z-score = 2.646), 
activation of IRF by cytosolic pattern recognition receptors (P-value = 6.3E-08, z-score = 2.121), oncostatin M signalling (P-value = 3.19E-
04, z-score = 2.000), TREM1 signalling (P-value = 2.6E-03, z-score = 2.000), death receptor signalling (P-value = 5.21E-03, z-score = 2.000), 
neuroinflammation signalling pathway (P-value = 8.48E-03, z-score = 2.449) and T cell exhaustion signalling pathway (P-value = 4.61E-02, 
z-score = 2.000). The depth of the colours in the bar chart is based on the z-score, and generally, an absolute z-score greater than 2 is 
considered meaningful
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and the target gene binding region was 3′UTR. Cytoscape was used 
to draw the interaction network as shown in Figure 9. miRNAs with 
high number of gene cross-links (≥2) were selected (Table 4).

3.5 | Verification of potential biomarker expression 
by qRT-PCR

Nine miRNAs were verified, and it was found that miR-223-3p and 
miR-448 had high reliability, which all target STAT1. Then, the selected 
biomarkers including miR-223-3p and miR-448 were validated in TB 
plasma samples using qRT-PCR analysis. Consistent with the predic-
tion, the results showed that the expression levels of miR-223-3p  
(P-value = .016) and miR-448 (P-value = .021) in plasma of TB patients 
were obviously lower than that of healthy controls (Figure 10).

3.6 | circRNA prediction

The corresponding circRNA of hsa-miR-223-3p and hsa-miR-448 
was predicted with StarBase 2.0. The selection threshold was the 
highest reliability (very high stringency ≥5). After cross-linking, two 
circRNAs targeting two key miRNAs were found including SAMD8_
hsa_circRNA994 and TWF1_hsa-circRNA9897.

4  | DISCUSSION

Tuberculosis is an infectious disease that seriously endangers human 
health. It is caused by MTB, which parasitizes in macrophages.19 
In this study, we screened out 192 differentially expressed genes 

including 156 up-regulated genes and 36 down-regulated genes in 
PTB patients. The genes including BATF2, AIM2, FCGR1B, HP, TLR5 
and ANKRD22, and total of 136 genes with significant differences 
were consistent with the original study.8 Then, databases including 
GSEA, DAVID, Funrich and IPA were used to do gene enrichment 
analysis, and results show that these genes are mainly involved in 
interferon signalling pathway and cytokine signalling in immune 
system. IPA activation z-score also shows that interferon signalling 
pathway has been highly activated. And STAT1 was found highly re-
lated to interferon signalling pathway as well as cytokine signalling 
in immune system.

Cytokines are small glycoproteins with biological activities se-
creted by cells, such as interleukin, interferon and tumour necro-
sis factor, which can act as signalling molecules between cells to 
mediate the interaction between immune cells and participate in 
inflammatory reactions.4 Cytokines play an important role in cell dif-
ferentiation, proliferation and immune regulation, and it binds to cell 
membrane surface receptors to activate intracellular signalling path-
ways such as the JAK-STAT signalling pathway and the p53 signal-
ling pathway. Signalling between cytokines and specific cell subsets 
is key to homeostasis in vivo. In the pathogenesis of TB, interferon 
signalling is essential for the host immune defence response, and 
interferon can increase the cell activity of native immune cells in-
cluding natural killer (NK) cell, cytotoxic lymphocyte (CTL) cell and 
macrophages. Especially, IFN-γ secreted by Th1 cells can promote 
the large secretion of macrophage inflammatory protein-1α (MIP-1α) 
and RANTES, thus chemotactic monocytes clustering around the TB 
foci to phagocytose, and eliminate MTB. However, MTB can inhibit 
the macrophage response to IFN-γ to survive in host cells, so IFN-γ 
is important in the defence of MTB infection.20,21 In the process of 
TB infection, IFN I pathway plays a crucial role in anti-TB infection, 

F I G U R E  6   The biological function analysis of IPA. Results show that there are total of 10 main functional modules were associated 
with the differentially expressed genes. The names of these 10 modules are inflammation, antiviral response, immune response, activation, 
antimicrobial response, phagocytosis, chemotaxis, cell movement, innate immune response and response. Among all the subdivision function 
modules of these 10 main function modules, the relevant functions that are significantly activated are phagocytosis of cells (P-value = 1.05E-
03, z-score = 2.941), immune response of macrophages (P-value = 5.59E-05, z-score = 2.621), antiviral response (P-value = 2.96E-35, 
z-score = 2.411) and innate immune response (P-value = 2.40E-11, z-score = 2.157). The obvious inhibitory functions are immune response 
of brain (P-value = 5.06E-05, z-score = −2.399) and encephalitis (P-value = 1.89E-04, z-score = −2.212). The biological function analysis 
shows the enrichment of differential genes in biological function classification, ranking from high to low according to the -log (P-value) value 
(ie ranking from small to large according to the P-value), and the heat map of biological function shows that the up-regulated expression of 
differential genes is related to the activation or inhibition of biological function. Orange means z-score > 0, blue means z-score < 0, and grey 
means no z-score; Z-score > 2 means that the function is significantly activated, and z-score < −2 means that the function is significantly 
inhibited
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but it is also a double-edged sword, and researches show that IFN I 
including IFN-α and IFN-β can help to promote the TB infection by 
interfering Th1 immune response and suppressing cytokines such as 
IL-1β, TNF-α and IFN-γ. However, experiment in mice shows that IFN 

I can inhibit the activation of macrophage to protect host in the ab-
sence of IFN-γ.22 Therefore, balance between IFN I and IFN-γ is es-
sential in the host immune defence against MTB. As both genes that 
related IFN I and IFN-γ are up-regulated, the detailed interaction 

F I G U R E  7   Protein-protein interaction network was processed with Cytoscape v.3.7.1, and different clusters analysed by MCODE are 
noted with different colours. The significance of P-value is shown by the size of node. The smaller the P-value is, the larger the diameter of 
node is. The colour of the edge represents the value of combined score from 0.4 to 1, light to dark

TA B L E  2   MCODE was used to process the data downloaded from the STRING to further mining gene clusters. Specific data of gene 
clusters were exported and presented in a tabular form

Cluster Score (Density*#Nodes) Nodes Edges Node IDs

1 34.973 38 647 RTP4, UBE2L6, IFI44L, PLSCRl, DDX60, IFI6, SAMD9L, 
OAS2, IFI44, XAFI, IFITM3, PARP9, EPSTil, IFITMl, IRF7, 
HERC5, GBP2, GBPl, IFIT2, TRIM22, STAT2, OASl, IFI27, 
RSAD2, IFIT5, IFI35, CMPK2, ISG15, DDX58, STATl, LY6E, 
IFIHl, IFITl,IFIT3, CXCLlO, OASL, MXl, OAS3

2 4 4 6 FCGRlA, FCGRlB, MT2A, GBP6

3 4 4 6 PLAUR, CLEC4D, GPR84, CEACAMl

4 4 4 6 SERPINGl, C2, CIQB, CIQC

5 3.333 4 5 CCR7, CCRL2, CD27, CD38

6 3 3 3 SlPRl, GPR183, P2RY14

7 3 3 3 CASP5, CARD16, CARD17
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between the two pathways is unknown, but has potential research 
value. Research also shows that interferon (IFN)-γ release assays 
(IGRAs) are probably the most accurate tests for the detection of 
latent TB infection.23

In order to validate our results, several bioinformatic analysis 
tools were used to do the enrichment analyses including gene set 
and modular enrichment analysis. Interestingly, we found that genes 
involved in interferon IFN I and IFN II signalling pathway both signifi-
cantly up-regulated in current study. GSEA of the down-regulated 
genes showed that there was no significant biological indication of 
the down-regulated genes, which may be due to too few down-regu-
lated genes. IPA core analysis also revealed that interferon pathway 
was significantly activated, and there are 14 genes related to this 
pathway including STAT1, MX1, OAS1, SOCS1, STAT2, TAP1, IFI6, 
IFI35, IFIT1, IFIT3, IFITM1, IFITM3, ISG15 and JAK2. Both STRING 

and Network Analyst show that genes related to IFN I have highest 
scores, might have inhibited the IFN-γ. We further analysed genes 
related to cytokine signalling in immune system to explore core 
genes and whether it intersects with key genes in the interferon sig-
nalling pathway according to IPA.

Meanwhile, we want to know which cytokine pathways also play 
important roles in the anti-tuberculosis process besides the inter-
feron pathway; therefore, two databases were combined to screen 
out the genes with high confidence. Finally, 28 genes were selected 
to do next step analysis. Reactome pathway analysis shows that cy-
tokine signalling in immune system consists of interferon signalling, 
signalling by interleukins, growth hormone receptor signalling and 
TNFR2 non-canonical NF-kB pathway. Further miRNA analysis shows 
that miRNA-223-3p and miRNA-448 with high reliability have a com-
mon target gene STAT1, which involved in both interferon-gamma 

Biological process Gene count
False 
discovery rate

Defence response to virus 29 8.03 × 10−45

Response to virus 30 1.44 × 10−42

Type I interferon signalling pathway 21 8.30 × 10−37

Innate immune response 31 1.67 × 10−33

Response to other organism 32 1.40 × 10−32

Defence response 35 1.6 × 10−32

Immune response 32 2.0 × 10−24

Cytokine-mediated signalling pathway 25 5.8 × 10−24

Immune system process 35 4.2 × 10−23

Response to stress 37 3.00 × 10−21

TA B L E  3   Top 10 biological processes 
enriched in cluster 1

F I G U R E  8   A, STRING analysis shows the interaction between genes in cluster 1, molecules related to interferon signalling are coloured 
in red, molecules related to interferon-alpha/beta signalling are coloured in blue, molecules related to cytokine signalling in immune system 
are coloured in green, and molecules related to interferon-gamma signalling are coloured in yellow. B, Network analysis was used to validate 
the results, and molecules involved in cytokine signalling in immune system are noted in red
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signalling and IFN I signalling. Meanwhile, IPA core analysis also shows 
that in the top upstream regulators, STAT1 plays a leading role, and has 
been highly activated, with a P-value = 9.81E-61 and z-score = 6.392. 

In fact, in the early stage of TB infection, STAT1 can promote the ac-
tivation of transcription by downstream apoptotic factors through 
phosphorylation. However, with the prolongation of infection time, 
the intracellular non-phosphorylated STAT1 protein increased, and 
these non-phosphorylated STAT1 proteins can enhance the expres-
sion of anti-apoptotic protein McL-1 and inhibit the phosphorylated 
kinase JAK1 of STAT1, and research also shows that it can inhibit the 
CD95/CD95l-mediated apoptosis in macrophages and destroy the 
stability of the pro-apoptotic complex eEF1A/IFIT1, thus causing the 
immune escape of MTB.24 Meanwhile, STAT1 is also extremely im-
portant in promoting macrophages polarization to M1-polarized mac-
rophages, which can remove MTB through infection more effectively 
than M2-polarized macrophages.25 STAT1 can bind to specific phos-
photyrosine-containing peptide segments, and when STAT is phos-
phorylated, it aggregates into homologous dimers to participate in 
the signal pathway initiated by IFN-γ. When STAT enters the nucleus, 

F I G U R E  9   Interaction network between genes involved in cytokine signalling in immune system and its targeted miRNAs. Genes are 
coloured in blue, and node size is adjusted according to number of targeted miRNAs; miRNAs are coloured in red; miRNAs targeting more 
than two genes simultaneously are coloured in green

TA B L E  4   miRNAs and its target genes

miRNA Genes targeted By miRNA Gene count

miR-130a-5p GBP1, IFIT2 2

miR-605-5p GBP1, 0AS3 2

miR-223-3p MX1, STAT1 2

miR-1231 OAS3, STAT1 2

miR-3915 IFIT2, MX1 2

miR-3918 OAS2, DDX58 2

miR-448 STAT1, 0AS2 2

miR-936 DDX58, IFIT2 2

miR-181a-2-3p STATl, OAS3 2

F I G U R E  1 0   qRT-PCR results show 
that the expression levels of miR-223-
3p (P-value = .016) and miR-448 (P-
value = .021) in plasma of TB patients 
were obviously lower than that of healthy 
controls
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the IFN-induced early gene expression is activated by the interfer-
on-gamma activation sequence bound to the promoter.26 Therefore, 
we think that STAT1 may act as a crucial part in the process of TB 
immune defence procedure. The results of our observation also indi-
cated that cytokine signalling especially the interferon signalling is the 
most important approach in host defence response of TB infection.

miRNAs are endogenous non-coding RNA molecule targeting 
the 3'UTR region of genes with a length of 18-22 nt and can regulate 
gene expression at a post-transcriptional level to degrade or inhibit 
the translation of target genes.27 However, the expression level of 
miRNAs also infected by its upstream molecular circRNAs, which are 
non-coding RNA molecules that do not have a 5' cap end and a 3' tail 
and are covalently bonded to form a ring structure, and circRNAs 
act as miRNA sponge, which contains miRNA response elements and 
can bind to miRNA, preventing miRNA from inhibiting target genes, 
therefore up-regulating corresponding gene expression.28 And due 
to its important role in cell information regulation, circRNAs have at-
tracted much attention as new molecular markers in recent years.29

In our study, we observed 9 miRNAs that target at least 2 genes 
which involved in cytokine signalling in immune system. However, 
only miRNA-223-3p and miRNA-448 can predict the corresponding 
upstream circRNAs among these selected 9 miRNAs. Low expression 
of miR-223-3p can delay the progression of pulmonary hypertension, 
whereas high expression of miR-223-3p can suppress cell proliferation 
and migration in lung squamous cell carcinoma via miR-223-3p-mutant 
p53 regulatory feedback loop.30,31 Studies of miR-223 have shown 
that it is significantly up-regulated in macrophages infected with MTB 
and affects the function of macrophages through negative regulation 
of NF-κB activation as well as inhibition of cytokine production.32 
Furthermore, miR-223 is responsible for the regulation of matrix metal-
loproteinases (MMPs), which involved in lung matrix degradation and 
bacteria dissection via MTB infection. 33miR-223 was found up-regu-
lated in active TB patients, and the high-level expression of miR-223 
can inhibit the apoptosis of macrophages and probably involved in the 
modulation of innate immune response due to its high enrichment of 
the induction of pathways in cancer together with miR-146a, miR-155, 
miR-423-3p and miR-21-5p.34,35 Another research shows that expres-
sion levels of miR-223 from both peripheral blood (PBMC) and pleu-
ral fluids (PFMC) of patients decreased significantly, therefore may 
suppress the inflammatory response.36 Our results shows that hsa-
miR-223-3p has down-regulated and the inflammatory response path-
way has been highly activated according to IPA core analysis and the 
molecule function analysis shows that in the inflammatory response 
module, although immune response and antiviral response parts are 
highly activated, the inflammation part is inhibited in an overall level. 
However, a study has shown that hsa-miR-223 is up-regulated in pa-
tients with tuberculosis (no more than 2 weeks of chemoprophylaxis), 
while there is no significant change in patients with latent tuberculo-
sis.37 It is speculated that the differential expression level of miR-223 
might be related to the differences in the infected TB strains.38 The 
specific molecular mechanism remains to be further studied. Studies 
on the role of miR-448 in TB infection are scarce, and some reports 
show it is relevant to cell proliferation and migration.39 In our study, 

the lower expression of miR-223-3p and miR-448 indicated that a mR-
NA-miRNA-circ-RNA interaction chain may be present in patients with 
pulmonary TB; therefore, with STAT1 highly expressed, the circRNA 
would have potential value of further detection.

The potential value of circRNAs as a novel biomarker for 
disease diagnosis has been confirmed, and some of these cir-
cRNAs were found up-regulated in active TB patients and are 
related to cytokine-cytokine receptor interaction and chemok-
ine signalling pathway, and yet some circRNAs including hsa_cir-
cRNA_091692, hsa_circRNA_102296, hsa_circRNA_029965 and 
hsa_circRNA_103571 were reported down-regulated in active TB 
patients.40-42 As our study has confirmed that hsa-miR-223-3p and 
hsa-miR-448 are significantly down-regulated in patients with pul-
monary TB, SAMD8_hsa_circRNA994 and TWF1_hsa_circRNA9897 
have high potential value to be used as novel biomarkers. Hence, our 
results lay a foundation for further researches.

Based on our current study, we found that cytokine signalling 
in immune system especially interferon signalling pathway is ex-
tremely important through TB infectious disease. Therefore, we 
identified molecules that have significant relevance with interferon 
signalling, and STAT1 along with its related miRNAs, and circRNAs 
including miR-223-3p, miR-448, SAMD8_hsa_circRNA994 and 
TWF1_hsa_circRNA9897 were found as potential biomolecules in 
the host defence response to TB infection. Further qRT-PCR results 
show that hsa-miR-223-3p and hsa-miR-448 both down-regulated 
in patients with pulmonary TB compared with healthy controls. We 
believe that through the regulatory networks of these molecules, 
the interferon signalling pathway of macrophage can be affected.

ACKNOWLEDG EMENTS
The current study was funded by the Natural Science Foundation 
of Shandong Province of China (Nos. ZR2018MH001 and 
ZR2018ZC1054). The funding agencies had no role in the study de-
sign, data collection, analysis or preparation of the manuscript. We 
thank Heng Li for his technical support.

CONFLIC T OF INTERE S T
All the authors declare that there are no conflicts of interest relevant 
to this article.

AUTHORS CONTRIBUTIONS
Yu-rong Fu and Xing-hao Yi designed the experiments, Zheng-jun Yi 
together with Xing-hao Yi performed the experiments, Xing-hao Yi 
wrote the manuscript and analysed the data, and Bo Zhang collected 
the samples and delivered them.

DATA AVAIL ABILIT Y S TATEMENT
Data sets used and analysed during the current study are available 
from the corresponding author on reasonable request.

ORCID
Yu-rong Fu  https://orcid.org/0000-0001-9350-2453 
Zheng-jun Yi  https://orcid.org/0000-0003-4013-5084 

https://orcid.org/0000-0001-9350-2453
https://orcid.org/0000-0001-9350-2453
https://orcid.org/0000-0003-4013-5084
https://orcid.org/0000-0003-4013-5084


2878  |     YI et al.

R E FE R E N C E S
 1. Machuca I, Vidal E, de la Torre-Cisneros J, et al. Tuberculosis in immu-

nosuppressed patients. Enferm Infecc Microbiol Clin. 2018;36:366-374.
 2. Kumar K. Spinal tuberculosis, natural history of disease, classifica-

tions and principles of management with historical perspective. Eur 
J Orthop Surg Traumatol. 2016;26:551-558.

 3. WHO. Global Tuberculosis Report 2018. 2018. Geneva, Switzerland: 
World Health Organization.

 4. Domingo-Gonzalez R, Prince O, Cooper A, et al. Cytokines and 
Chemokines in Mycobacterium tuberculosis Infection. Microbiol 
Spectr. 2016; 4(5):1-58.

 5. Saini NK, Baena A, Ng TW, et al. Suppression of autophagy and 
antigen presentation by Mycobacterium tuberculosis PE_PGRS47. 
Nat Microbiol. 2016;1:16133.

 6. Ernst JD. Antigenic variation and immune escape in the MTBC. Adv 
Exp Med Biol. 2017;1019:171-190.

 7. Wang Y, Yang Y, Li H, et al. Evaluation of a whole blood chemi-
luminescent immunoassay of interferon-gamma inducible pro-
tein 10 (IP-10) for diagnosis of tuberculosis patients. Clin Lab. 
2016;62:165-172.

 8. Bloom CI, Graham CM, Berry MP, et al. Transcriptional blood sig-
natures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, 
pneumonias and lung cancers. PLoS ONE. 2013;8:e70630.

 9. Ritchie ME, Phipson B, Wu D, et al. limma powers differential ex-
pression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43:e47.

 10. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment 
analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-15550.

 11. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. 
Nature Protoc. 2009;4(1):44-57.

 12. Pathan M, Keerthikumar S, Ang CS, et al. FunRich: an open access 
standalone functional enrichment and interaction network analysis 
tool. Proteomics. 2015;15:2597-2601.

 13. Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis ap-
proaches in ingenuity pathway analysis. Bioinformatics. 2014;30: 
523-530.

 14. Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 
2017: quality-controlled protein-protein association networks, 
made broadly accessible. Nucleic Acids Res. 2017;45:D362-D368.

 15. Bader GD, Hogue CW. An automated method for finding molecu-
lar complexes in large protein interaction networks. BMC Bioinform. 
2003;4:2.

 16. Xia J, Gill EE, Hancock RE. NetworkAnalyst for statistical, visual and 
network-based meta-analysis of gene expression data. Nat Protoc. 
2015;10:823-844.

 17. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk - database: pre-
diction of possible miRNA binding sites by "walking" the genes of 3 
genomes. J Biomed Inform. 2011;44:839-847.

 18. Li JH, Liu S, Zhou H, et al. starBase v2. 0: decoding miRNA-ceRNA, 
miRNA-ncRNA and protein-RNA interaction networks from large-
scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92-D97.

 19. Lyon SM, Rossman MD. Pulmonary tuberculosis. Microbiol Spectr. 
2017;5(1):TNMI7-0032-2016.

 20. Churchyard G, Kim P, Shah NS, et al. What we know about tubercu-
losis transmission: an overview. J Infect Dis. 2017;216:S629-S635.

 21. Wang F, Mao L, Hou H, et al. The source of Mycobacterium tuber-
culosis-specific IFN-γ production in peripheral blood mononuclear 
cells of TB patients. Int Immunopharmacol. 2016;32:39-45.

 22. Chin KL, Anis FZ, Sarmiento ME, et al. Role of interferons in the 
development of diagnostics, vaccines, and therapy for tuberculosis. 
J Immunol Res. 2017;2017:5212910.

 23. Aabye MG, Latorre I, Diaz J, et al. Dried plasma spots in the diagno-
sis of tuberculosis: IP-10 release assay on filter paper. Eur Respir J. 
2013;42:495-503.

 24. Yao K, Chen Q, Wu Y, et al. Unphosphorylated STAT1 represses 
apoptosis in macrophages during Mycobacterium tuberculosis infec-
tion. J Cell Sci. 2017;130:1740-1751.

 25. Lim YJ, Yi MH, Choi JA, et al. Roles of endoplasmic reticulum 
tress-mediated apoptosis in M1- polarized macrophages during my-
cobacterial infections. Sci Rep. 2016;6:37211.

 26. Ramana CV, Gil MP, Schreiber RD, et al. Stat1-dependent and in-
dependent pathways in IFN-gamma-dependent signaling. Trends 
Immunol. 2002;23(2):96-101.

 27. Sun KT, Chen MY, Tu MG, et al. MicroRNA-20a regulates autophagy 
related protein-ATG16L1 in hypoxia-induced osteoclast differentia-
tion. Bone. 2015;73:145-153.

 28. Panda AC. Circular RNAs act as miRNA sponges. Adv Exp Med Biol. 
2018;1087:67-79.

 29. Ojha R, Nandani R, Chatterjee N, et al. Emerging role of circular 
RNAs as potential biomarkers for the diagnosis of human diseases. 
Adv Exp Med Biol. 2018;1087:141-157.

 30. Liu A, Liu Y, Li B, et al. Role of miR-223-3p in pulmonary arterial 
hypertension via targeting ITGB3 in the ECM pathway. Cell Prolif. 
2018;3:e12550.

 31. Luo P, Wang Q, Ye Y, et al. MiR-223-3p functions as a tumor sup-
pressor in lung squamous cell carcinoma by miR-223-3p-mutant 
p53 regulatory feedback loop. J Exp Clin Cancer Res. 2019;38:74.

 32. Liu Y, Wang R, Jiang J, et al. miR-223 is upregulated in monocytes 
from patients with tuberculosis and regulates function of mono-
cyte-derived macrophages. Mol Immunol. 2015;67:475-481.

 33. Lou J, Wang Y, Zhang Z, et al. Activation of MMPs in macrophages 
by Mycobacterium tuberculosis via the miR-223-BMAL1 signaling 
pathway. J Cell Biochem. 2017;118:4804-4812.

 34. Xi X, Zhang C, Han W, et al. MicroRNA-223 is upregulated in ac-
tive tuberculosis patients and inhibits apoptosis of macrophages 
by targeting FOXO3. Genet Test Mol Biomarkers. 2015;19:650-656.

 35. Ndzi EN, Indu Viswanath AN, Adzemye NG, et al. Upregulated bo-
vine tuberculosis microRNAs trigger oncogenic pathways: an In sil-
ico perception. Int J Mycobacteriol. 2019;8:70-74.

 36. Spinelli SV, Diaz A, D'Attilio L, et al. Altered microRNA expression 
levels in mononuclear cells of patients with pulmonary and pleural 
tuberculosis and their relation with components of the immune re-
sponse. Mol Immunol. 2013;53:265-269.

 37. Latorre I, Leidinger P, Backes C, et al. A novel whole-blood miRNA 
signature for a rapid diagnosis of pulmonary tuberculosis. Eur Respir 
J. 2015;45:1173-1176.

 38. Elizabeth MC, Hernández de la Cruz ON, Mauricio CA, et al. 
Infection of J774A.1 with different Mycobacterium species in-
duces differential immune and miRNA-related responses. Microbiol 
Immunol. 2016;60:356-363.

 39. Zhang R, Sui L, Hong X, et al. MiR-448 promotes vascular smooth 
muscle cell proliferation and migration in through directly targeting 
MEF2C. Environ Sci Pollut Res Int. 2017;24:22294-22300.

 40. Zhuang ZG, Zhang JA, Luo HL, et al. The circular RNA of peripheral 
blood mononuclear cells: Hsa_circ_0005836 as a new diagnostic 
biomarker and therapeutic target of active pulmonary tuberculosis. 
Mol Immunol. 2017;90:264-272.

 41. Qian Z, Liu H, Li M, et al. Potential diagnostic power of blood circu-
lar RNA expression in active pulmonary tuberculosis. EBioMedicine. 
2018;27:18-26.

 42. Yi Z, Gao K, Li R, et al. Dysregulated circRNAs in plasma from active 
tuberculosis patients. J Cell Mol Med. 2018;22:4076-4084.

How to cite this article: Yi X-H, Zhang B, Fu Y-R, Yi Z-J. 
STAT1 and its related molecules as potential biomarkers in 
Mycobacterium tuberculosis infection. J Cell Mol Med. 
2020;24:2866–2878. https ://doi.org/10.1111/jcmm.14856 

https://doi.org/10.1111/jcmm.14856

