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Abstract

Background: Species recognition, i.e, the ability to distinguish conspecifics from heterospecifics, plays an essential
role in reproduction. The role of facial cues for species recognition has been investigated in several non-human
primate species except for lemurs. We therefore investigated the role of facial cues for species recognition in wild
red-fronted lemurs (Eulemur rufifrons) at Kirindy Forest. We presented adult red-fronted lemurs pictures of male
faces from five species including red-fronted lemurs, three closely related species, white-fronted lemurs (E. albifrons),
brown lemurs (E. fulvus), rufous brown lemurs (E. rufus), and genetically more distant red-bellied lemurs (€. rubriventer),
occurring in allopatry with the study population. We predicted that red-fronted lemurs respond stronger to conspecific
than to heterospecific pictures and that females show stronger responses than males. In addition, if genetic drift has
played a role in the evolution of facial color patterns in the members of this genus, we predicted that responses of
red-fronted lemurs correlate negatively with the genetic distance to the different species stimuli.

Results: Red-fronted lemurs looked significantly longer at pictures of their own species than at those of heterospecifics.
Females spent less time looking at pictures of white-fronted, brown and red-bellied lemurs than males did, but not to
pictures of red-bellied lemurs and a control stimulus. Individuals also exhibited sniffing behavior while looking at visual
stimuli, and the time spent sniffing was significantly longer for pictures of conspecifics compared to those of
heterospecifics. Moreover, the time spent looking and sniffing towards the pictures correlated negatively with
the genetic distance between their own species and the species presented as stimulus.

Conclusions: We conclude that red-fronted lemurs have the ability for species recognition using visual facial
cues, which may allow them to avoid costly interbreeding. If so, sexual selection might have influenced the
evolution of facial patterns in eulemurs. Since responses also correlated with genetic distance, our findings
suggest a potential role of genetic drift as well as sexual selection in influencing the evolution of facial
variation in eulemurs. Because study subjects looked and sniffed towards the presented pictures, red-fronted
lemurs might have the ability for multi-modal species recognition.
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Background

The ability to differentiate conspecifics from heterospe-
cifics plays an important role in reproduction [1-6].
Since females usually experience higher costs during
reproduction than males, heterospecific mating is more
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costly for females [7-9]. Females should therefore be
selected to recognize and discriminate against heterospe-
cific males to avoid costly interbreeding [9]. Indeed, the
ability for species recognition has been demonstrated in
several taxa, such as bats using olfactory signals [6], fish
using olfactory or visual signals [10, 11] and frogs, birds
and mammals using acoustic signals [12-15].

Visual cues have been suggested to be important for
several animal taxa as they can be used for individual as
well as species recognition [11, 16—18]. In addition, facial
color patterns are among the phenotypic traits that play a
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communicative role in many social interactions of pri-
mates [19-24]. Facial cues can contain visual information
such as shape and colors that differ across individuals or
species [25-28], and they can provide information about
social status, condition and identity of an individual [22,
23, 29, 30]. Several studies have demonstrated the ability
of non-human primates to differentiate individuals of their
own kin/group from strangers and also to discriminate
between conspecifics and heterospecifics based on visual
cues [2, 21, 31-35]. For example, chimpanzees (Pan
troglodytes) and rhesus macaques (Macaca mulatta) used
facial cues in black-and-white photographs presented on a
computer screen to discriminate between different indi-
viduals [22]. Chimpanzees are also able to discriminate
kin by means of black-and-white photographs of mothers
and their offspring, matching mother-son dyads but not
mother-daughter ones [36]. Finally, Tonkean macaques
(Macaca tonkeana) and brown capuchin monkeys (Cebus
apella) were able to discriminate between pictures of con-
specific and heterospecific individuals, as inferred by their
longer looking time towards pictures of conspecifics [25].

The lemurs of Madagascar also exhibit highly diverse
facial color patterns [37, 38], which may have a communi-
cative function in social interactions as well as in species
recognition. So far only a few studies have investigated the
potential use of visual signals for individual or species rec-
ognition in lemurs, however. For example, brown and
black lemurs (Eulemur macaco) were able to differentiate
between familiar and unfamiliar individuals by using facial
cues [39], and females of seven eulemur species differenti-
ated colorful from non-colorful conspecific male photo-
graphs [40], suggesting a potential ability for visual species
recognition as well. In contrast to visual signals, olfactory
signals are used by some species to discriminate conspe-
cifics from heterospecifics [41-43], whereas acoustic
signals, especially long-distance calls, appear to be used in
mouse lemurs (Microcebus murinus) to distinguish con-
specifics from heterospecifics [44].

Among lemurs, eulemurs are the only taxon with
sexual dichromatism, as males are particularly colorful
and show considerably more variation in facial patterns
than females [24, 38]. Eulemurs have dichromatic color
vision, except for some females that exhibit polymorphic
trichromacy [45-49], suggesting that variation in facial
coloration can be perceived by them (see also [40]).
Additional visual information used in this context may
include variation in patterns, shape and contrasts.

The ability to discriminate con- from heterospecifics
based on visual cues is particularly important for species
that live sympatrically with closely related species.
Lemur communities can consist of up to 13 different
species (e.g. in Andasibe, Ranomafana, Tsingy de Bemar-
aha [37]). Within the genus Eulemur, two congenerics
occur in sympatry at several sites in Madagascar [37].
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Additionally, eulemurs are known to form viable and
sometimes fertile hybrids in captivity, and hybrids have
been reported from a few natural contact zones [50-55].
Thus, it is biologically relevant to investigate whether
lemurs have the visual capability to distinguish con-
from heterospecifics, which can serve as one reproduct-
ive isolation mechanism to avoid costly interbreeding in
the wild. Given the limited information available about
the use of visual cues for species recognition in lemurs,
despite their high diversity in pelage coloration and
especially facial patterns, our study aimed to investigate
the role of facial variation for species recognition in this
radiation of primates. Specifically, we examined whether
wild red-fronted lemurs (Eulemur rufifrons) can discrim-
inate between different eulemur species that differ in
their facial color pattern. We studied red-fronted lemurs
in Kirindy forest, Western Madagascar [56, 57], where
they do not occur in sympatry with any other eulemur
species (see Fig. 1) [58]. We presented red-fronted
lemurs a color photo of either a conspecific or hetero-
specific male, i.e., photographs of the closely related
white-fronted, brown and rufous brown lemurs, which
occur in allopatry, and the more distantly related red-
bellied lemurs, which also occur in allopatry with the
study population, but in sympatry with the eastern
population of red-fronted lemurs (Table 1).

If variation in facial color patterns is used for species
recognition in eulemurs, we predicted that red-fronted le-
murs should respond stronger to pictures of faces of their
own species than to pictures of faces of heterospecifics.
Additionally, if sexual selection has played a role in the
evolution of facial color pattern variation, we predicted
that females should show stronger responses than males.
Finally, as the species used as stimuli differ in phylogenetic
distance to the test species, we predicted that if genetic
drift has played a role in the evolution of facial color pat-
terns in eulemurs, the response of red-fronted lemurs
should correlate negatively with their respective genetic
distance to the different species used as stimuli.

Results

Time spent looking towards the picture

Red-fronted lemurs looked significantly longer towards
pictures of their own species than towards pictures of
heterospecifics (Table 2, Fig. 2, LMM, X =15.94, p <0.01).
Females spent significantly less time looking at pictures of
white-fronted, brown and red-bellied lemurs than males
did, but not at pictures of rufous brown lemurs, which are
very similar in facial patterns, and the control (Fig. 2).
Additionally, the percentage of time spent looking towards
the pictures was significantly correlated with the genetic
distance between red-fronted lemurs and the species
providing the stimuli, but did not differ between the sexes.
Red-fronted lemurs looked significantly longer at pictures of
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Fig. 1 Map of Madagascar showing the distribution of Eulemur species used as stimuli during the experiments. The pictures depict drawings of
the male faces of the different species used as stimuli. Eulemur illustrations provided by S. Nash

White-fronted lemur

Red-bellied lemur

J

genetically more closely related congeners (Table 2, LMM,
X2 =21.69, p <0.001).

Duration of sniffing

Red-fronted lemurs also spent significantly more time
sniffing towards pictures of their own species compared
to those of all heterospecific stimuli. Sex did not
influence the time spent sniffing towards the pictures
(Table 2, Fig. 3, LMM, X*>=3292, p<0.001). The
percentage of time sniffing was also significantly corre-
lated with genetic distance, with red-fronted lemurs
sniffing significantly longer during presentation of pho-
tos of closely related congeners (Table 2, Fig. 3, LMM,
X?=11.41, p<0.01).

Discussion

This study provides the first investigation of wild lemurs’
ability to discriminate between photographs of their own
and closely related species. Our results indicate that red-
fronted lemurs can use facial cues to discriminate
between conspecifics and heterospecifics. Interestingly,
test subjects also spent more time sniffing during
presentation of conspecific pictures, indicating that they

also may use olfactory cues in this context. Hence, they
might simultaneously process olfactory and visual infor-
mation to differentiate conspecifics from heterospecifics,
suggesting that multi-modal communication might play
a role in species recognition in these animals. Moreover,
males and females differed in time spent looking towards
the pictures of some heterospecifics, which may suggest
a potential role of sexual selection in the evolution of
facial variation in this species. Since the time spent look-
ing as well as sniffing at the pictures were negatively
correlated with genetic distances between red-fronted
lemurs and the stimuli species, genetic drift may have
also influenced the evolution of facial color patterns in
this species. Finally, our study showed that the experi-
mental use of photographs is feasible to test the ability
of wild non-human primates for species recognition,
which has been so far studied only in captive settings [2,
22, 34, 36, 39]. We discuss these key results in more
detail below.

The variation in time spent looking at the pictures
indicates that red-fronted lemurs are able to discrimin-
ate between the pictures of conspecifics and heterospeci-
fics. Looking duration also appeared to correspond to
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Table 1 Genetic distance and description of facial color
patterns for the different species (species are listed according to
their genetic distance between red-fronted lemurs and the
respective species)

Red-fronted
lemurs

Dark red crown, black muzzle, golden-red
cheek beard, creamy-white patches above
the eyes.

Genetic distance: 0.35

Allopatric heterospecific and very similar to
red-fronted lemurs in facial color patterns:
brick-red crown, golden-red cheek beard,
black muzzle and black midfacial stripe
extending from crown to nose.

Rufous brown
lemurs

White-fronted
lemurs

Genetic distance: 0.72

Occurs in allopatry with red-fronted lemurs

and facial color variation differs strongly from
red-fronted lemurs. Black muzzle and white beard,
cheeks and crown.

Genetic distance: 0.72

Occurs in allopatry with red-fronted lemurs and is
slightly different in facial color patterns. Dark-brown
to almost black muzzle and crown, light grey beard
and variable patches of light fur above the eyes.

Brown lemurs

Red-bellied
lemurs

Genetic distance: 4.57

Occurs in sympatry with red-fronted lemurs in the
eastern parts of Madagascar but not at the study

site in the West and is very different in facial color
patterns. Black muzzle, face shading to black; patches
of white skin form characteristic “tear-drops” beneath
the eyes, no bushy beard.

the similarity of facial patterns between red-fronted
lemurs and the other species: rufous brown lemurs are
very similar in facial appearance to red-fronted lemurs,
and these two species are also difficult for humans to
distinguish (Fig. 1, Table 1), whereas white-fronted,
brown and red-bellied lemurs are gradually more differ-
ent in facial appearance. In addition, females spent less
time looking towards pictures of white-fronted, brown
and red-bellied lemurs than males, thus exhibiting a
more pronounced differentiated response. Since we
adjusted the size of the pictures to the average head size
of the respective species, we cannot completely rule out
the possibility that the responses of red-fronted lemurs
were influenced by the slight differences in size of the
pictures. However, if the size of the stimulus per se has
influenced their responses, they should have responded
more strongly to the control, which was adjusted to the
average size of all stimuli, but they looked only briefly at
this stimulus.

As interbreeding can occur in non-human primates
(e.g. in macaques [59], eulemurs [50-55], sexual se-
lection may act on species to avoid potentially costly
heterospecific mating. Pronounced sexual dichroma-
tism and striking differences in male patterning and
coloration may provide a substrate for species recog-
nition in the context of mate choice, and our experi-
ments indicate that females perceive and respond to
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this variation. For example, red-bellied lemurs occur
in sympatry with red-fronted, brown and white-
fronted lemurs in the east of Madagascar [58].
Because these three species are visually very different
from its sympatric congener, facial color variation
might have played a role in creating reproductive
barriers among these species during their recent
divergence [60]. Because some eulemur species
hybridize in their natural contact zones, future experi-
ments in hybrid zones could investigate whether indi-
viduals in these zones discriminate potential mates
based on variation in facial patterns.

Sex differences in responses towards the pictures
might also reflect differences in color vision between
sexes. Females can have polymorphic trichromacy or
be dichromatic, whereas males are all dichromatic.
Hence, eulemur females exhibiting a polymorphic tri-
chromacy have the ability to perceive red and orange
colors [61], and may therefore have shown a more
pronounced differentiated response than males. How-
ever, the genetic tests required to test this assumption
have not been performed. Interestingly, males payed
more attention to stimuli of white-fronted, brown and
red-bellied lemurs than females. Indeed, facial colors
of these three species are dominated by a dark face
with light (white or light gray) patches (Fig. 1). As
red-fronted lemur males exhibit only dichromatic
color vision [24, 62], contrasting dark and light areas
might be more salient stimuli to them than to potentially
trichromatic females.

The degree of phenotypic differences between red-
fronted lemurs and white-fronted, brown, rufous brown
and red-bellied lemurs also corresponds both to the
genetic distance between them, as well as to the time
red-fronted lemurs spent looking at the various stimuli.
Similarly, the looking duration of macaques towards
pictures of several heterospecific species also correlated
with their morphological similarity in facial patterns as
well as the genetic distance between them [2, 34].
Genetic differentiation as a result of drift during and
following recent speciation events may therefore also
have played a role in the evolution of facial color pattern
in eulemurs.

Finally, multiple studies demonstrated that animals
can process and use signals of different modalities for
species recognition [63—-65]. For example, male
blackcaps (Sylvia atricapilla) are able to associate
acoustic and visual sensory modalities in matching
species-specific songs and species-specific plumage to
distinguish their own species from sympatric hetero-
specifics (Sylvia borin) during playback experiments
presented in combination with stuffed models of con-
specifics and heterospecifics [64]. In non-human pri-
mates, for instance, tufted capuchin monkeys (Cebus
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Table 2 Parameter estimated for the Linear Mixed Models (LMM) on the influence of (a) the species of the presented picture and
(b) the genetic distance between species on the percentage of time spent looking towards the pictures. The influence (c) of species
of the presented picture and (d) the genetic distance between species on the percentage of time spent sniffing the pictures

Model Response variable Random factors Fixed factors Estimate SE P-value
a LMM Percentage of time spent Individual identity intercept 0.64 0.04 <0.001
looking towards the pictures rufous brown lemurs -0.16 0.05 <001
brown lemurs —-0.30 0.05 <0.001
white-fronted lemurs —-0.30 0.05 <0.001
red-bellied lemurs -035 0.05 < 0.001
control —-0.35 0.05 <0.001
sex —-0.05 0.06 047
rufous brown lemurs-sex male 0.10 0.07 0.18
brown lemurs- sex male 0.15 0.07 0.03
white-fronted lemurs-sex male 0.26 0.07 < 0.001
red-bellied lemurs-sex male 0.18 0.07 0.01
control-sex male 0.09 0.07 0.21
b LMM Percentage of time spent looking Individual identity intercept 047 0.03 <0.001
towards the pictures genetic distance —-0.04 0.009 <0.001
sex 0.09 0.04 0.06
c LMM Percentage of time spent of Individual identity intercept 034 0.04 <0.001
sniffing events rufous brown lemurs -0.10 0.05 <005
brown lemurs -022 0.05 <0.001
white-fronted lemurs -0.13 0.05 <0.05
red-bellied lemurs -0.23 0.05 < 0.001
control -025 0.05 <0.001
sex 0.06 0.04 0.19
d LMM Percentage of time of sniffing Individual identity intercept 0.25 0.04 <0.001
events genetic distance ~003 001 <001
sex 0.06 0.05 027

apella), rhesus macaques (Macaca mulatta) as well as
Japanese macaques (Macaca fuscata) are able to use
visual and acoustic sensory modalities (voice-face
matching) to distinguish between conspecifics and
heterospecifics [66—68]. Moreover, ringtailed lemurs
(Lemur catta) are capable of multi-modal (olfactory-
auditory matching) individual recognition [69], and
the use of olfactory signals for species recognition in
some eulemurs has been already shown [41, 43].
Whether red-fronted lemurs are capable of multi-
modal species recognition was not explicitly tested in
this study. However, our results showed that while
red-fronted lemurs processed visual cues during the
experiment, they also sniffed at the stimuli. Thus,
red-fronted lemurs might be able to use two different
sensory modalities (olfactory-visual matching) at the
same time to discriminate individuals of their own species
from heterospecifics. However, explicit experiments
with signals of two different modalities are required
to confirm our preliminary conclusion that red-

fronted lemurs dispose of multi-modal species recog-
nition abilities.

Conclusions

This study revealed the importance of facial cues as visual
signals for species recognition in wild red-fronted lemurs.
Females of red-fronted lemurs may also be better at differ-
entiating conspecifics from heterospecifics due to sex
difference in color vision abilities. Our findings suggest a
potential role for sexual selection as well as genetic drift in
influencing the evolution of facial variation in eulemurs.
Moreover, this study revealed evidence for visual species
recognition abilities in wild red-fronted lemurs and also
suggested a potential for multi-modal species recognition.
However, it remains unclear which specific components of
the facial cues are used for species recognition, requiring
further investigations to identify the essential cue(s), such
as colors, patterns or a combination of both, used by eule-
murs to discriminate their own from different species as
well as among individuals.
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Methods

Study site

Experiments were conducted with red-fronted lemurs in
Kirindy Forest, western Madagascar (Fig. 1). Study sub-
jects are individually marked as part of a long-term
study and are well habituated to human observers [56,
57]. We studied eight adult females and seven adult
males in four different groups (2—5 subjects per group).

Experimental design

During the experiments, we presented each red-fronted
lemur a color photo of either a conspecific or heterospe-
cific male, i.e., photographs of a red-fronted lemur, the
closely related red, brown and white-fronted lemurs and

of the more distantly related red-bellied lemurs. Species
used as stimuli were chosen according to information on
genetic distance, visual appearance and geographic
distribution (see Table 1 and Fig. 1). Each photograph
contained only the head of the animal on a gray back-
ground (Fig. 4) and was adjusted to have approximately
the same size (head length and width) as the head of the
given species. As a control, we presented a picture frame
containing a white circle on a gray background having
the average size of the faces on the other pictures (Fig. 4).
Each picture was placed in a picture frame made of wood
to facilitate the presentation of the picture to the focal
animal as well as to stabilize the picture itself (Fig. 4).
Variation in facial color patterns of the species used as
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Eulemur rufifrons

Eulemur fulvus

Eulemur rufus

Eulemur rubriventer
Fig. 4 Examples of pictures of each species used as stimuli during the experiments and the control (white circle). Eulemur photographs: M. Markolf
A

Eulemur albifrons

control

stimuli during the experiments is provided in Table 1,
based on descriptions in Mittermeier et al. [37].

Before each experiment, individuals were attracted
with an acoustic signal to a location on the ground,
where they were fed some raisins (see for detailed proto-
col of the training Schnoell & Fichtel [70]). The experi-
ment was started when the focal subject finished
feeding, and was engaged in quiet activities such as
resting or grooming at the periphery of the group. The
experimenter (HR) approached the focal individual care-
fully by hiding the picture frame behind the back until
the focal individual was stationary on the ground. Then

Fig. 5 Photograph showing the procedure of an experiment

the picture was presented at a distance of about 1 m in
front of focal individual at the same height as the focal
individual (Fig. 5). We presented only one picture and
not two pictures simultaneously, because with such a
paired design, we would have had to present the pictures
of their own species repeatedly, which might have
caused habituation. In order to avoid pseudo-replication,
every individual was tested with a picture of a different,
unknown individual of the given species, and pictures
were presented in a randomized order. Each individual
was tested only once every second day. All experiments
were conducted during the breeding season of red-
fronted lemurs.

Responses of experimental subjects were recorded
with a SONY digital video camera from briefly before
until 60 s after the onset of each experiment. The
camera was placed in front of the focal animal, aligned
with the picture frame so that looking direction could be
clearly recorded. Based on these video-recordings, we
measured the time each subject spent looking towards
the picture after the onset (looking direction within a
45° angle of the direct line of sight towards the picture),
and calculated the percentage of time spent looking
towards the picture from the total time spent looking
around. In addition, during the experiments, we
observed sniffing behaviors of focal individuals while
conducting the experiments. We therefore measured
also the time individuals spent sniffing (inhaling a short
and distinct breath through the nose combined with very
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small movements of the snout) towards each picture
after the onset and calculated the percentage of time
spent sniffing (see Additional file 1). Videos were
analyzed frame-by-frame with a resolution of 30 frames/
s, using Adobe Premiere Elements (12.0). All experi-
ments were rated by HR, and 10% were rated again by a
second observer naive to the research question. We used
R to calculate the intra-class correlation coefficient (ICC)
to test for inter-observer reliability. The resulting ICC was
0.95 indicating strong agreement between raters.

Statistical analyses

We used linear mixed models (LMM) to test for differ-
ences in the percentage of time red-fronted lemurs spent
looking towards the pictures as well as the percentage of
time spent sniffing at the pictures in response to differ-
ent stimuli using LmerTest package in R [71]. Percent-
age of time looking towards the pictures and percentage
of time sniffing in the direction of the pictures were
arcsine-square root transformed and fitted as responses.
Species and sex were fitted as fixed factors and individ-
ual identity as a random factor to control for repeated
measurements. Because the genetic distance correlates
with the categories of the species, we fitted a second
LMM in order to examine whether the percentage of
time red-fronted lemurs spent looking and sniffing to-
wards the pictures was influenced by the genetic
distances between red-fronted lemurs and the species
providing the stimuli. The percentage of time spent
looking or sniffing towards the pictures were fitted as
response, genetic distance and sex were fitted as fixed
factors and individual identity as random factor. All ana-
lyses were conducted in R version 3.1.3.

Additional file

Additional file 1: Sample video showing an individual of red-fronted
lemurs looking at the picture with sniffing behavior. (MP4 3840 Kb)
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