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Evidence suggests that oxidative stress is involved in the pathogenesis of Parkinson
disease (PD). Simvastatin has been suggested to protect against oxidative stress in
several diseases. However, the molecular mechanisms by which simvastatin protects
against neuropathology and oxidative damage in PD are poorly elucidated. In this study,
we aimed to investigate the potential neuroprotective effects of simvastatin owing
to its anti-oxidative properties in 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y
cells and mice. The results of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA)
fluorescence and CCK-8 assay demonstrated that simvastatin reduced intracellular
reactive oxygen species (ROS) levels and reversed apoptosis in 6-OHDA-treated
SH-SY5Y cells. Mechanistic studies revealed that 6-OHDA-induced activation of
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase/p38 mitogen-activated
protein kinase (MAPK) pathway was inhibited and nuclear factor-κB (NF-κB) nuclear
transcription decreased in SH-SY5Y cells after simvastatin treatment. Enhanced
expression levels of superoxide dismutase (SOD), heme oxygenase-1 (HO-1),
peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and glutamate-
cysteine ligase modifier subunit (GCLM) were observed after simvastatin treatment
in 6-OHDA-treated SH-SY5Y cells. In vivo studies revealed that administration
of simvastatin by gavage decreased limb-use asymmetry and apomorphine-
induced rotations in 6-OHDA-lesioned mice. Simvastatin increased dopaminergic
neurons and reduced protein tyrosine nitration and gliosis in the midbrain of PD
mice. An inhibitory effect on activation of the NADPH oxidase/p38 MAPK was

Abbreviations: 6-OHDA, 6-hydroxydopamine; ANOVA, analysis of variance; ARE, antioxidant response element;
DPI, diphenyleneiodonium; ERK1/2, extracellular signal-regulated kinases 1 and 2; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; GCLM, glutamate-cysteine ligase modifier subunit; GSH-Px, glutathione peroxidase; HMG-CoA, 3-hydroxy-
3-methylglutaryl-coenzyme A; HO-1, heme oxygenase-1; IBA-1, ionized calcium-binding adapter molecule 1; iNOS,
inducible nitric oxide synthase; MAPK, mitogen-activated protein kinase; NADPH oxidase, nicotinamide adenine
dinucleotide phosphate oxidase; NF-κB, nuclear factor-κB; PBS, phosphate-buffered saline; PD, Parkinson disease; PGC-
1α, peroxisome proliferator-activated receptor-γ coactivator-1α; PMSF, phenylmethanesulfonyl fluoride; P-p38 MAPK,
Phospho-p38 mitogen-activated protein kinase; ROS, reactive oxygen species; SEM, standard error of the mean; SN,
substantia nigra; SNc, substantia nigra pars compacta; SOD, superoxide dismutase; TH, tyrosine hydroxylase; WST-8,
2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt.
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observed, and increased antioxidant protein expression in the midbrain were seen
in the simvastatin plus 6-OHDA group compared with the 6-OHDA-lesioned group.
Taken together, these results demonstrate that simvastatin might inhibit the activation
of NADPH oxidase/p38 MAPK pathway, enhance antioxidant protein expression and
protect against oxidative stress, thereby providing a novel antioxidant mechanism that
has therapeutic validity.

Keywords: Parkinson disease, simvastatin, NADPH oxidase, oxidative stress, anti-oxidase

INTRODUCTION

Parkinson disease (PD) is the second most common
neurodegenerative disorder following Alzheimer disease
(Obeso et al., 2010). PD is characterized by tremor, bradykinesia,
rigidity and postural instability (Olanow and Tatton, 1999;
Vila and Przedborski, 2004). The pathological hallmark of
PD comprises a marked loss of dopaminergic neurons in the
substantia nigra pars compacta (SNc; Granado et al., 2013)
and the presence of insoluble protein inclusions called Lewy
bodies (Dunning et al., 2012). The prevalence of PD increases
with age, being more than 1% in people over age 65 years
and increasing to about 4% in those over age 85 years (Bekris
et al., 2010; Crosiers et al., 2011). Current clinical dopamine
replacement interventions provide symptomatic relief, but only
on a temporary basis (Schapira, 2007; Skibinski and Finkbeiner,
2011). Thus, alternative strategies must be developed to modify
the course of this disease.

Although PD has been heavily researched in the last two
decades, the precise etiology of the disease is still unknown.
It is noteworthy that research in recent years has provided
substantial evidence supporting the hypothesis that oxidative
stress is one of the critical factors that induce the onset of
PD (Greenamyre and Hastings, 2004; Jing et al., 2015). Reports
have found that nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase can be activated, producing a large quantity
of related reactive oxygen species (ROS) in the brain of a PD
mouse model, which play an important role in PD pathogenesis
(Qin et al., 2013; Wang et al., 2015). An impaired antioxidant
system has been observed in PD, including decreased superoxide
dismutase (SOD), glutathione peroxidase (GSH-Px) activity and
heme oxygenase-1 (HO-1) expression (Khurana and Gajbhiye,
2013; Lu et al., 2015). In addition, numerous studies have
reported that use of antioxidant drugs prevents dopaminergic
neuron death and neurobiological and behavioral deficits in
PD, by virtue of anti-oxidative actions (Drummond et al., 2017;
Michel et al., 2017). These studies suggest that antioxidant
compounds or drugs might serve as potential therapeutic agents
in PD, in addition to the available protective drugs (Hwang,
2013).

Simvastatin, a lipophilic statin that easily crosses the
blood–brain barrier, is an inhibitor of 3-hydroxy-3-methyl-
glutaryl-coenzyme A (HMG-CoA) reductase and is used
worldwide as a cholesterol-lowering drug (Kostis et al., 2012;
McGuinness et al., 2016). In addition to therapeutic use in
hyperlipidemia, recent studies suggest that statins modulate
neurodegeneration-related signaling processes and may be

beneficial in PD and AD (Fassbender et al., 2001). It has been
shown that lower serum levels of total cholesterol are associated
with a significantly decreased risk of PD (Hu et al., 2008;
Gao et al., 2012; Lee et al., 2013). A previous meta-analysis
supports the hypothesis that statin use reduces the individual’s
risk of PD (Undela et al., 2013), but no such effect was
found for long-term statin use (Wolozin et al., 2007). In
experimental parkinsonian models, simvastatin provides robust
neuroprotection against dopaminergic neurodegeneration by
anti-inflammatory mechanisms, cannabinoid receptor 1 and
NMDA receptor modulation (Ghosh et al., 2009; Xu et al.,
2013; Mackovski et al., 2016). However, in a study among
only 124 participants, Huang et al. delineated that people
with low levels of LDL cholesterol are more likely to
have PD than those with high LDL levels (Huang et al.,
2007). However, these authors did not report whether their
patients had low LDL levels prior to their diagnosis of PD,
or whether their LDL levels decreased after this diagnosis.
Furthermore, that study was vastly underpowered in the
sense that fewer than 20 of the 124 PD patients were
actually taking statins so the results cannot be viewed as
reliable. Different treatment time of simvastatin may lead to
different results. The neuroprotective effect of simvastatin in PD
remains controversial and the related mechanisms remain to be
elucidated.

The neurotoxin 6-hydroxydopamine (6-OHDA) is commonly
used to generate experimental models of PD by specifically
inducing apoptosis in dopaminergic cells (Przedborski and
Ischiropoulos, 2005; da Costa et al., 2009; Tobón-Velasco et al.,
2013), including human SH-SY5Y cell lines (Guo et al., 2005;
Arena et al., 2013). In the present study, we tested the hypothesis
that simvastatin has therapeutic effects in 6-OHDA-induced
cellular and animal models of PD via enhancing anti-oxidative
effects.

MATERIALS AND METHODS

Animals and Treatments
We obtained 8- to 10-week-old male C57BL/6 mice, weighing
between 25 g and 30 g, from Guangdong Medical Animal
Laboratory (Foshan, China). The animals had free access to water
and food, and they were housed under a 12:12 h light/dark
cycle. Experiments were performedwith age andweight-matched
animals. Before the experiments, the animals were allowed
to adapt to the environment for at least 5 days. All animal
experiments were performed in accordance with the National
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Institutes of Health Guide for the Care and Use of Laboratory
Animals (Eighth Edition, 2011). All procedures were approved
by the Institutional Animal Care andUse Committee of Southern
Medical University (Guangzhou, China).

Animals were randomly divided into four groups: saline-
treated sham-operated controls, simvastatin-treated group,
6-OHDA-treated group and simvastatin plus 6-OHDA treated
group. The 6-OHDA was always made fresh before the
experiments. Saline with 0.2% ascorbic acid was used to
dissolve the 6-OHDA. We then filtered the 6-OHDA solution
with a 0.2 µm bacterial filter. Based on the known dosage
for statins (80 mg/day) in an adult human patient with
hypercholesterolemia, we treated mice with a dose of 1 mg/kg
body weight/day simvastatin (Ghosh et al., 2009; Mackovski
et al., 2016; Sigma–Aldrich, St. Louis, MO, USA). Mice were
treated with simvastatin or saline via gavage 2 days before
the first injection of 6-OHDA (Sigma–Aldrich), followed by
continuous administration of simvastatin for 14 days. On day
15 of lesioning, the mice were euthanized and themidbrains were
quickly dissected out for assaying; the remaining samples were
stored at−80◦C.

Neuroblastoma SH-SY5Y Cell Culture and
Treatments
Human neuroblastoma SH-SY5Y cells were obtained from the
Cell Bank of Type Culture Collection of the Chinese Academy
of Sciences (Shanghai, China). The cells were maintained in
Gibco Dulbecco’s Modified Eagle’s medium (Catalog number:
11965092, Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% FBS (Thermo Fisher Scientific),
100 U/mL penicillin and 100 µg/mL streptomycin (Beyotime,
Shanghai, China). The medium was subsequently changed every
2–3 days and cells were equilibrated in humidified air containing
5% CO2 at 37◦C. The cultured cells were treated with 100 µM
6-OHDA and/or 1µM simvastatin at the same time, for different
lengths of time, as described below.

Cell Counting Kit-8 (CCK-8) Assay
A total 1 × 104 SH-SY5Y cells were seeded per well in 96-well
plates. After 18–24 h, cells were incubated with 1 µmol/L
simvastatin and/or 100 µmol/L 6-OHDA for another 24 h. Cell
viability was determined using 2-(2-methoxy-4-nitrophenyl)-
3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium mono
sodium salt (WST-8) and monosodium salt with a CCK-8 assay
(Enjing Biotech Co., Ltd., Nanjing, China), according to the
manufacturer’s instructions. The absorbance was determined
at 450 nm using a multimode plate reader (PerkinElmer Inc.,
Hopkinton, MA, USA).

Measurement of Intracellular Reactive
Oxygen Species (ROS)
Levels of oxidative stress were determined by
measuring intracellular ROS generation using a 2′,7′-
dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence
assay (Beyotime). Briefly, SH-SY5Y cells were seeded in 96-well
plates at a density of 1 × 104/well and incubated overnight.

After treatment with 6-OHDA and/or simvastatin, cells were
incubated in serum-free medium containing 10 µM DCFH-DA
at 37◦C for 6 h. Each well was gently washed three times
with sterilized phosphate-buffered saline (PBS) to remove
uncombined DCFH-DA. Images were acquired using laser
scanning confocal microscopy (Zeiss, Germany), with the
same settings for all samples in each experiment. Fluorescence
intensity was calculated using Image-Pro Plus 6.0 software
(Silver Spring, MD, USA).

6-OHDA-Induced Lesions
Mice were deeply anesthetized with 4% chloral hydrate (loss
of corneal and toe pad reflexes), and fixed on a stereotaxic
instrument (Shenzhen Kingward Technology, Shenzhen, China)
in a flat position. Mice received unilateral injections of 6-OHDA
(5 µg/µL) or sterile saline in 2 µL volumes (at an injection speed
of 0.3 µL/min) into the right side of the SNc at the following
coordinates, according to the mouse brain atlas of Paxinos and
Franklin (2001): anteroposterior (AP), −3.0 mm; lateral (L),
−1.3 mm; and dorsoventral (DV), −4.7 mm (Park et al., 2014,
2016). Mice were left on a warming plate until they woke up from
the anesthesia and were then returned to their home cages until
use. To avoid dehydration, lesioned mice received sterile saline
(10 mL/kg i.p.) for 3 days. In addition, during the first week post-
surgery, food pellets soaked in water were placed in a shallow
vessel on the floor of the cage.

Apomorphine-Induced Rotation Test
Mice were placed individually in a cylinder (diameter: 23 cm;
height: 30 cm) and allowed to adapt to their environment for
5 min. They were subsequently injected i.p. with apomorphine
(Cayman Chemical, Ann Arbor, MI, USA) at a dose of 0.5 mg/kg.
After 10 min, rotations were recorded for 30 min. Quantitative
analyses of complete (360◦) left rotations were made off-line
by an investigator blinded to the experimental conditions.
Results were expressed as the number of rotations to the side
contralateral to the lesion.

Cylinder Test
Forelimb use during exploratory activity was assessed using a
cylinder test, as in previous studies (Park et al., 2014, 2016).
Two weeks after 6-OHDA infusion, each mouse was individually
placed inside a transparent glass cylinder (diameter, 15 cm;
height, 22 cm) in which they could move freely. For each animal,
an observer blinded to the identity of the animals observed a total
of 20 contacts executed with the right and/or left forepaw on the
wall of the cylinder. Use of the impaired (right) forelimb was
expressed as a percentage of the total number of supporting wall
contacts.

Protein Extraction
For total protein extraction from SH-SY5Y cells, the culture
medium was discarded, cells were washed twice with ice-cold
PBS and harvested. For total protein extraction from midbrain
samples, tissues were homogenized with a glass homogenizer,
and cells or tissue homogenate was then centrifuged at 13,000× g
for 2 min. Radioimmunoprecipitation assay (RIPA) buffer
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(Beyotime: contains 50 mM Tris (pH 7.4), 150 mM NaCl,
1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, sodium
orthovanadate, sodium fluoride, EDTA, leupeptin) containing
1 mM phenylmethanesulfonyl fluoride (PMSF) was added,
and the mixture was then placed on ice for 30 min. After
centrifugation at 14,000× g for 15 min, the supernatant
(containing the total protein fraction) was collected.

For extraction of cytoplasmic and nuclear fractions from
SH-SY5Y cells, we use a Nuclear and Cytoplasmic Protein
Extraction Kit (Beyotime), according to the manufacturer’s
instructions. Briefly, cells were collected and resuspended in
cytoplasmic protein isolation solution A. After vortexing for 5 s,
the tubes were incubated for 15 min on ice to promote lysis.
Next, cytoplasmic protein isolation solution B was added and
the cells were vortexed for 5 s. The homogenate was centrifuged
at 15,000× g for 5min at 4◦C. The supernatant containing the
cytosolic fraction was immediately frozen for further analysis.
The pellet was resuspended in nuclear protein isolation solution,
vortexed and centrifuged at 15,000× g for 10min. The resulting
supernatant was the nuclear protein fraction.

For membrane protein extraction from midbrain samples,
we used a Membrane Protein Extraction Kit (BioVision
Inc., Milpitas, CA, USA), according to the manufacturer’s
instructions. Briefly, 4 mL of cell wash solution was added
to the midbrain tissue, vortexed briefly, centrifuged and the
wash solution discarded. Then 1 mL of permeabilization buffer
was added to the tissue, which was homogenized and then
incubated for 10 min at 4◦C with constant mixing. The mixture
was centrifuged at 16,000× g for 15 min at 4◦C to pellet the
permeabilized cells. The supernatant (containing the cytosolic
proteins) was carefully removed; the pellet was resuspended in
1 mL of solubilization buffer and incubated 30 min at 4◦C,
with constant mixing. The suspension was then centrifuged at
16,000× g for 15 min at 4◦C. The supernatant (containing
the solubilized membrane proteins) was collected and stored at
−80◦C for future use.

Protein concentrations were measured using a BCA assay
(Beyotime). Samples were diluted with protein loading buffer and
heated at 95◦C for 5 min prior to western blot analysis.

Western Blot
Immunoblot analysis was performed to detect the protein
expression levels. Briefly, proteins were separated by SDS–PAGE
gel (12% acrylamide gel). After the transfer, membranes
were blocked with 5% bovine serum albumin (BSA) for
1 h. The blots were incubated with the primary antibodies
at 4◦C overnight, as follows: p38 mitogen-activated protein
kinase (MAPK) antibody (1:1000; Enjing Biotech Co., Ltd.,
Nanjing, China), phospho-p38 MAPK (Thr180) antibody
(1:1000; Enjing Biotech Co., Ltd.), glutamate-cysteine ligase
modifier subunit (GCLM) antibody (1:1000; Enjing Biotech
Co., Ltd.), peroxisome proliferator-activated receptor-γ
coactivator-1α (PGC-1α) antibody (1:1000; Enjing Biotech
Co., Ltd.), cleaved caspase-3 (Asp175, 5A1E) antibody (1:1000;
Cell Signaling Technology Inc., Danvers, MA, USA), HO-1
antibody (1:200; Santa Cruz Biotechnology Inc., Santa Cruz,
CA, USA), inducible nitric oxide synthase (iNOS) antibody

(1:200; Santa Cruz Biotechnology Inc.), Bcl-2 antibody
(1:200; Enjing Biotech Co., Ltd.), Bax antibody (1:200;
Enjing Biotech Co., Ltd.), p47 phox antibody (1:200; Santa
Cruz Biotechnology, Inc.), gp91 phox antibody (1:200; Santa
Cruz Biotechnology, Inc.), tyrosine hydroxylase (TH; F-11)
antibody (1:200; Santa Cruz Biotechnology Inc.), integrin
β-1 (N-20) antibody (1:200; Santa Cruz Biotechnology Inc.),
nitrotyrosine (11C2) antibody (1:200; Santa Cruz Biotechnology
Inc.), β-actin antibody (1:1000; Beyotime) and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) antibody (1:1000;
Beyotime) and histone H3 antibody (1:200; Enjing Biotech
Co., Ltd.). Subsequently, the blots were washed and incubated
with secondary antibody diluted in blocking buffer for 1 h at
room temperature. Secondary antibody included: HRP-labeled
goat anti-mouse IgG (H+L; Beyotime), HRP-labeled goat
anti-rabbit IgG (H+L; Beyotime) and HRP-labeled donkey
anti-goat IgG (H+L; Beyotime). Bands were visualized using
an enhanced chemiluminescence kit (Beyotime). Band density
values of total proteins were normalized to GAPDH or
actin, and band density values of membrane proteins were
normalized to integrin. Band density was measured using ImageJ
software. Data were collected from at least three independent
experiments.

Immunohistochemistry Assay
Immunohistochemistry assay was performed, as in our previous
study (Zhang et al., 2017). Briefly, brain tissue samples were
embedded in optimum cutting temperature compound (Sakura
Finetek, Torrance, CA, USA) and stored at −80◦C. Samples
sections were cut into 10-µm slices and antigen retrieval was
performed using citrate buffer. Sections were treated with
3% hydrogen peroxide (Sangon Biotech Co., Ltd., Shanghai,
China) in PBS for 10 min and then incubated in 5% BSA for
10 min. Sections were incubated overnight at 4◦C with primary
antibodies as follows: TH (F-11) antibody (1:50; Santa Cruz
Biotechnology Inc.), nitrotyrosine (11C2) antibody (1:50; Santa
Cruz Biotechnology Inc.), glial fibrillary acidic protein (GFAP)
antibody (1:50; Santa Cruz Biotechnology Inc.) and ionized
calcium-binding adapter molecule 1 (IBA-1) antibody (1:500;
WAKO, Osaka, Japan). After washing 3 times with PBS for 5 min
each, sections were incubated sequentially in HRP-conjugated
goat anti-mouse and goat anti-rabbit secondary antibody (ZSGB-
BIO, Beijing, China) for 2 h at 37◦C. Sections were visualized with
a 3,3-diaminobenzidine (DAB) peroxidase substrate kit (Boster,
Wuhan, China). Integrated option density (IOD)was determined
using an Image-Pro Plus 6.0 photogram analysis system (IPP 6.0;
Media Cybernetics, Bethesda, MD, USA).

Immunocytofluorescence
Immunocytofluorescence was performed as in our previous
study, with some modifications (Tong et al., 2017). Culture
supernatant was discarded, and cells were then washed
three times with pre-chilled PBS. Cells were fixed in cold
4% paraformaldehyde in PBS for 20 min and then washed
three times with cold PBS. Cell slides were blocked with 5%
BSA containing 0.3% Triton X-100 in PBS for 30 min at
room temperature. Cells were incubated with primary antibodies
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at 4◦C overnight as follows: anti-p47 phox antibody (1:100;
Santa Cruz Biotechnology Inc.) and anti-nuclear factor-κB
(NF-κB) antibody (1:100; Santa Cruz Biotechnology Inc.). The
slides were incubated with FITC-conjugated goat anti-mouse
antibody (1:300; ZSGB-BIO), and then kept in a dark place at
room temperature. Images were acquired using laser scanning
confocal microscopy (Zeiss), with the same settings for all
samples in each experiment.

Determination of Intracellular Superoxide
Dismutase (SOD) Activity
Total SOD activity of the midbrain samples was determined
using a Total SOD Assay Kit with WST-8 (Beyotime), based on
the protocols provided by the manufacturer (Chen et al., 2017).

Statistical Analysis
All experimental results were expressed asmean± standard error
of the mean (SEM) and analyzed using IBM SPSS 20.0 software
(IBM Corp., Armonk, NY, USA). Statistical significance of the
data was determined using Dunnett’s T3 test or Fisher’s least
significant difference (LSD) post hoc test based on one-way
analysis of variance (ANOVA). Significance was considered as
P < 0.05. Data were drawn from at least three independent
experiments.

RESULTS

Simvastatin Protected Against
6-OHDA-Induced Cytotoxicity in SH-SY5Y
Cells
To determine the effect of simvastatin on 6-OHDA-induced
cytotoxicity, we exposed SH-SY5Y cells to simvastatin and/or
6-OHDA. The cell viability decreased to 16.8%–92.68% of
control cells after treatment with 6-OHDA (25–400 µmol/L)
for 24 h in SH-SY5Y cells (Figure 1A). Treatment with
100 µmol/L 6-OHDA significantly decreased the viability
of SH-SY5Y cells after 24 h treatment (47.34 ± 7.40% of
control cells). Next, 6-OHDA at 100 µmol/L was selected
for the following experiments (Lin et al., 2007). Co-treatment
with 1 µmol/L simvastatin plus 6-OHDA increased viability
to 59.58 ± 5.80% (Figure 1B). After 12 h treatment,
western blots showed that 100 µmol/L 6-OHDA also induced
activation of caspase-3 (180.13 ± 10.44% of control cells;
Figures 1C,D), which plays a key role in the terminal execution
phase of apoptosis. Co-treatment with 1 µmol/L simvastatin
plus 6-OHDA decreased cleaved caspase-3 expression to
126.46± 10.31%, compared with the 6-OHDA group.We further
explored whether simvastatin changed the protein expression
of Bcl-2 (anti-apoptotic) and Bax (pro-apoptotic) in 6-OHDA-

FIGURE 1 | Simvastatin protected against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in SH-SY5Y cells. (A) SH-SY5Y cells treated with different
concentration of 6-OHDA and cell viability determined after 24 h using a CCK-8 kit. (B) SH-SY5Y cells co-treated with 1 µmol/L simvastatin and 100 µmol/L
6-OHDA; cell viability determined after 24 h using a CCK-8 kit. (C) After 12 h co-treatment, expression of cleaved caspase-3 detected by western blot. (D) Relative
quantitative analysis of cleaved caspase-3 expression. (E) Expression of Bcl-2 and Bax detected by western blot after 24 h co-treatment. (F) Analysis of the
Bcl-2/Bax ratio. Data were obtained from three independent experiments. Statistical analysis was by Dunnett’s T3 test or least significant difference (LSD) post hoc
test based on analysis of variance (ANOVA); data expressed as mean ± standard error of the mean (SEM). ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, #P < 0.05.
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treated SH-SY5Y cells. Co-treatment with 1 µmol/L simvastatin
reversed the 6-OHDA-induced reduction in the Bcl-2/Bax ratio
to 96.04 ± 9.29% after 24 h co-treatment (Figures 1E,F). These
results suggest that simvastatin can effectively inhibit 6-OHDA-
induced apoptosis in SH-SY5Y cells.

Simvastatin Reduced 6-OHDA-Induced
ROS and Inducible Nitric Oxide Synthase
(iNOS) Production in SH-SY5Y Cells
Oxidative stress, including by 6-OHDA, induces accumulation
of a large quantity of ROS in SH-SY5Y cells (Lou et al., 2014).
To examine whether simvastatin prevented the production of
ROS after 6-OHDA treatment, the accumulation of ROS was
measured in SH-SY5Y cells using the fluorescent probe DCFH-
DA. As in a previous study, we found that 100 µmol/L 6-OHDA
treatment alone induced an increase of the intracellular ROS level
in SH-SY5Y cells after 6 h treatment (Figures 2A,B). However,

co-treatment with 1 µmol/L simvastatin can inhibit 6-OHDA-
induced production of ROS.

When the brain is exposed to oxidative stress, glial cells
and neurons express a large quantity of iNOS, which results
in sustained release of NO and leads to toxic effects (Bal-Price
and Brown, 2001; Koppula et al., 2012). In this study, we found
that 100 µmol/L 6-OHDA induced SH-SY5Y cells to produce
large amounts of iNOS (173.13 ± 39.72% of control cells)
after 24 h treatment (Figures 2C,D). Simvastatin significantly
attenuated the expression of iNOS in 6-OHDA-treated SH-SY5Y
cells (78.58± 7.32% of control cells).

Simvastatin Can Inhibit 6-OHDA-Induced
NADPH Oxidase Activation in SH-SY5Y
Cells
There are a variety of enzymes involved in the formation of
ROS. NADPH oxidase is one of the most important sources

FIGURE 2 | Simvastatin reduced 6-OHDA-induced reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) production in SH-SY5Y cells.
(A) SH-SY5Y cells treated with 1 µmol/L simvastatin and 100 µmol/L 6-OHDA for 6 h, and intracellular ROS was measured using the carboxy-H2DCFDA method.
(B) Relative quantitative analysis of intracellular ROS. (C) SH-SY5Y cells treated with simvastatin and 6-OHDA for 24 h, and iNOS expression detected by western
blot. (D) Relative quantitative analysis of iNOS expression. Scale bar, 50 µm. Data were obtained from three independent experiments. Statistical analysis was by
Dunnett’s T3 or LSD post hoc test based on ANOVA; data are expressed as mean ± SEM. ∗P < 0.05, ∗∗∗P < 0.001, #P < 0.05, ##P < 0.01.
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of ROS production in the brain, and the translocation of
cytosolic subunit p47 phox has a key role in the process
of NADPH oxidase activation (Lambeth, 2004; Rastogi et al.,
2017). We found that 100 µmol/L 6-OHDA promoted the
translocation of p47 phox to the cell membrane in SH-SY5Y
cells, as detected by immunofluorescence after 24 h treatment
(Figure 3A), leading to the activation of NADPH oxidase.
After treatment with 1 µmol/L simvastatin, the membrane
translocation of 6-OHDA-mediated p47 phox was significantly
attenuated, suggesting that the activity of NADPH oxidase was
decreased. In addition, western blot showed that the expression
of the gp91 phox subunit, another NADPH oxidase subunit, was
significantly increased (141.38 ± 11.95% of control cells) after
6-OHDA treatment for 12 h, and co-treatment with simvastatin
could reverse the process (110.99 ± 9.97% of control cells;
Figures 3B,C).

Simvastatin Can Inhibit 6-OHDA-Induced
Activation of p38 MAPK and NF-κB
Downstream of NADPH Oxidase in
SH-SY5Y Cells
NADPH oxidase activation induced by ROS and superoxide
anions may cause p38 MAPK phosphorylation. As a common
downstream target of inflammatory factors and oxidative

stress, once activated, p38 MAPK can induce downstream
signaling and further activate downstream NF-κB nuclear
transcription, which mediates neuronal apoptosis. To define
the role of simvastatin in the signaling molecule downstream
of NADPH oxidase in SH-SY5Y cells after 6-OHDA treatment,
we detected the activity of p38 MAPK and NF-κB. We
found that Phospho-p38 mitogen-activated protein kinase
(P-p38 MAPK) expression in SH-SY5Y cells was increased
(134.39 ± 14.47% of control cells) after 100 µmol/L 6-OHDA
treatment for 24 h; further, 1 µmol/L simvastatin could reverse
6-OHDA-induced activation of p38 MAPK (104.73 ± 4.77%
of control cells; Figures 4A,B). Moreover, pretreatment
for 1 h with 5 µmol/L diphenyleneiodonium (DPI), a
potent NADPH oxidase inhibitor, also inhibited 6-OHDA-
induced p38 phosphorylation activation in SH-SY5Y cells
(Figures 4C,D), which is similar to the effect of simvastatin; this
suggests a role of NADPH oxidase in mediating the activation
of p38 MAPK. In addition, we found that 6-OHDA treatment
for 6 h can activate NF-κB and promote its transcription
to the nucleus. Immunoblot demonstrated that levels of
nuclear NF-κB increased (148.29 ± 11.54% of control cells;
Figure 4E), and 6-OHDA-mediated nuclear transcription can be
inhibited (122.15 ± 6.47% of control cells) by simvastatin
(Figure 4E). No significant difference was observed in
cytosolic NF-κB among the different groups (Figure 4F).

FIGURE 3 | Simvastatin can inhibit 6-OHDA-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation in SH-SY5Y cells. SH-SY5Y cells
were co-treated with 1 µmol/L simvastatin or 100 µmol/L 6-OHDA. (A) Cell slides treated for 24 h and photographed after immunofluorescent staining, to detect
levels of membrane p47 phox in SH-SY5Y cells. (B) Culture medium was discarded after 12 h treatment, total protein was extracted and total gp91 phox expression
detected by western blot. (C) Relative quantitative analysis of gp91 phox expression. Scale bar, 30 µm. Data were obtained from three independent experiments.
Statistical analysis by Dunnett’s T3 or LSD post hoc test based on ANOVA; data expressed as mean ± SEM. ∗∗P < 0.01, #P < 0.05.
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FIGURE 4 | Simvastatin can inhibit 6-OHDA-induced activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) downstream of
NADPH oxidase in SH-SY5Y cells. SH-SY5Y cells were co-treated with 1 µmol/L simvastatin and 100 µmol/L 6-OHDA. (A) Expression of Phospho-p38
mitogen-activated protein kinase (P-p38 MAPK) and t-p38 MAPK detected by western blot after 24 h. (B) Relative quantitative analysis of P-p38 MAPK and t-p38
MAPK expression. (C) After 5 µmol/L diphenyleneiodonium (DPI) pretreatment for 60 min, 1 µmol/L simvastatin and 100 µmol/L 6-OHDA were added to the culture;
expression of P-p38 MAPK and t-p38 MAPK detected after 24 h. (D) Relative quantitative analysis of P-p38 MAPK and t-p38 MAPK expression in cells pretreated
with DPI. Expression of nuclear NF-κB (E) and cytosolic NF-κB (F) detected by western blot after 6 h and relative quantitative analysis. (G) Cells were fixed, ruptured
after 6 h co-treatment, then incubated with anti-NF-κB primary antibody and fluorescent-labeled secondary antibody. Nuclear translocation of NF-κB detected using
confocal fluorescence microscopy. Scale bar, 30 µm. Data were obtained from three independent experiments. Statistical analysis by Dunnett’s T3 or LSD post hoc
test based on ANOVA; data expressed as mean ± SEM. ∗P < 0.05, ∗∗P < 0.01, #P < 0.05, ###P < 0.001.

Similar results were found by immunocytofluorescence
(Figure 4G).

Simvastatin Exerted an Antioxidant
Protective Effect by Enhancing Expression
of Antioxidative Proteins in
6-OHDA-Treated SH-SY5Y Cells
GCLM forms part of the rate-limiting enzyme complex in
GSH synthesis and contributes to the effect against oxidase
stress. Overexpression of GCLM may exert neurodegenerative
effects in PD. In our study, we found that 6-OHDA decreased
the expression of GCLM (67.49 ± 4.82% of control cells) in
SH-SY5Y cells after 24 h treatment for 24 h (Figures 5A,B),
which can be reversed by simvastatin plus 6-OHDA co-treatment
(81.11± 3.55% of control cells).

It is widely accepted that stress-induced ROS can activate
the antioxidant element to initiate expression of antioxidant
genes encoding antioxidative proteins, including HO-1. Herein,
we found that the expression of HO-1 in SH-SY5Y cells
exposed to 100 µmol/L 6-OHDA for 12 h was unexpectedly

increased (180.73 ± 32.11% of control cells; Figures 5C,D).
Compared with the 6-OHDA group, the expression of HO-1
was further increased (245.02 ± 13.01% of control cells) after 1
µmol/L simvastatin plus 6-OHDA co-treatment, which exerted
an antioxidant effect.

PGC-1α is a newly characterized transcriptional regulator
that plays a key role in antioxidant stress systems. Elevated
PGC-1α activity in neurons during oxidative stress can regulate
cellular responses. To investigate the effect of simvastatin on
PGC-1α, we examined the protein expression of PGC-1α in
SH-SY5Y cells. Treatment with 1 µmol/L simvastatin or 100
µmol/L 6-OHDA alone increased the expression of PGC-1α to
134.43 ± 3.55% and 127.05 ± 6.44%, respectively, in SH-SY5Y
cells (Figures 5E,F). Simultaneous administration of simvastatin
and 6-OHDA could further enhance the expression of PGC-1α
(159.18 ± 15.41% of control cells), compared with the 6-OHDA
group.

In addition, 6-OHDA-induced reduction of SOD can
be reversed by simvastatin (Figure 5G). Taken together,
these data suggest that simvastatin up-regulates antioxidant
response element (ARE) genes, leading to an increase in
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FIGURE 5 | Simvastatin exerted an antioxidant protective effect by enhancing expression of antioxidative proteins in 6-OHDA-treated SH-SY5Y cells. SH-SY5Y cells
exposed to 1 µmol/L simvastatin and 100 µmol/L 6-OHDA. (A) Expression of glutamate-cysteine ligase modifier subunit (GCLM) detected by western blot after
24 h. (B) Relative quantitative analysis of GCLM expression. (C) Expression of heme oxygenase-1 (HO-1) detected by western blot after 12 h. (D) Relative
quantitative analysis of HO-1 expression. (E) Expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) detected by western blot after 12 h.
(F) Relative quantitative analysis of PGC-1α expression. (G) Total superoxide dismutase (SOD) activity of SH-SY5Y cells determined using a Beyotime Total SOD
Assay Kit. Data were obtained from three independent experiments. Statistical analysis by Dunnett’s T3 or LSD post hoc test based on ANOVA; data expressed as
mean ± SEM. ∗P < 0.05, ∗∗∗P < 0.001, #P < 0.05.

GCLM, HO-1, PGC-1α and SOD, which are potent cellular
antioxidants.

Simvastatin Improved Behavior
Performance and Dopaminergic Neuronal
Survival in the Unilaterally
6-OHDA-Lesioned Mouse Model of PD
To explore the effect of simvastatin on behavior performance
in 6-OHDA-treated mice, we applied a cylinder test
and apomorphine-induced rotation test after 2 weeks of
6-OHDA-induced lesioning. We found that the frequency
of use of the right forelimb in 6-OHDA-lesioned mice was
significantly higher (76.38 ± 6.83%) than that in controls
(5.34 ± 0.85%), indicating that 6-OHDA-treated mice had
limb-use asymmetry (Figure 6A). The use frequency of the
right forelimb in 6-OHDA-treated mice was significantly
reduced to 21.43 ± 2.61% after 1 mg/kg simvastatin treatment
via gavage, indicating that simvastatin significantly improved
the limb-use asymmetry. Moreover, 6-OHDA increased
the number of apomorphine-induced rotations (6-OHDA:
157.80 ± 30.04; controls: 13.80 ± 3.89; Figure 6B). Mice
treated with simvastatin plus 6-OHDA had a significantly
decreased number of rotations (89.90 ± 9.96) compared
with the 6-OHDA group, suggesting that simvastatin can
attenuate 6-OHDA-induced dopamine neuronal injury
in the lesioned side of the SNc. These data suggest that
administration of simvastatin may alleviate the progress of
behavior deficiency in a unilaterally 6-OHDA-lesioned mouse
model of PD.

To explore the effect of simvastatin on TH-immunopositive
neuronal cells in the midbrain, we used western blotting.
TH-immunoreactivity in midbrain samples was greatly reduced
in 6-OHDA-lesioned mice (6-OHDA: 0.76 ± 0.03; controls:
1.27 ± 0.08; Figures 6C,D). TH-immunoreactivity in the
6-OHDA-lesioned group increased to 1.08 ± 0.12 in the
midbrain after administration of 1 mg/kg simvastatin via
gavage. TH-immunopositive neurons in midbrain samples
showed similar results using immunohistochemistry method
(Figures 6E,F).

Simvastatin Inhibited Gliosis and Level of
Tyrosine Nitration in the Midbrain in the
Unilaterally 6-OHDA-Lesioned Mouse
Model of PD
It has been previously demonstrated that, in addition to the
dramatic loss of dopaminergic neurons in the SNpc, gliosis is
also a marked neuropathological feature in 6-OHDA-induced
mouse models of PD (Wu et al., 2002). Herein, we found that
the number of astrocytes (GFAP positive) in the substantia nigra
(SN) of 6-OHDA-lesioned mice were dramatically increased
(75.62 ± 4.78) in the lesioned side, in comparison with the
control group (31.93 ± 2.97; Figures 7A,B). Similarly, the
number of microglia (IBA-1 positive) from 6-OHDA-lesioned
mice were significantly increased (64.80± 3.54). Administration
of simvastatin decreased the number of astrocyte and microglia
to 45.39 ± 1.88 and 47.40 ± 3.59, respectively, in the SN of
6-OHDA-lesioned mice (Figures 7C,D).
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FIGURE 6 | Simvastatin improved behavior performance and dopaminergic neuronal survival in the unilaterally 6-OHDA-lesioned mouse model of parkinson disease
(PD). (A) Cylinder test was performed 2 weeks after 10 µg 6-OHDA stereotaxic injection of the substantia nigra pars compacta (SNc). A total of 20 contacts with the
right or left forepaw on the wall of the cylinder were recorded; use of the right forelimb was expressed as a percentage of the total number of supporting wall
contacts. Data were obtained from at least seven independent experiments. (B) Apomorphine-induced rotation 2 weeks after 6-OHDA stereotaxic injection was
shown as the number of turns within 30 min. Data were obtained from at least five independent experiments. (C) Midbrain tissues were homogenized with
radioimmunoprecipitation assay (RIPA) buffer. The supernatant contained the total protein after centrifugation; tyrosine hydroxylase (TH) expression was detected by
western blot. (D) Relative quantitative analysis of TH expression. (E) Brain sections were prepared, incubated with TH antibody and HRP-conjugated secondary
antibody, and visualized with 3,3-diaminobenzidine (DAB). (F) Relative quantitative analysis of TH-positive cells (dopaminergic neurons). TH-positive cells were
counted using an IPP 6.0 system. Scale bar, 100 µm. Data were obtained from at least three independent experiments. Statistical analysis by Dunnett’s T3 or LSD
post hoc test based on ANOVA; data expressed as mean ± SEM. ∗∗∗P < 0.001, #P < 0.05, ###P < 0.001.

Previous studies have showed that nitration of TH occurred in
mouse brain after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
administration (Ara et al., 1998). Nitration of tyrosine residues
in TH, a marker for protein nitration in the midbrain, results
in loss of enzymatic activity, supporting a critical role for
tyrosine nitration in TH inactivation. We further investigated
the anti-oxidative effect of simvastatin on 6-OHDA-induced
dopaminergic neuron degeneration by examining the level
of tyrosine nitration. Using western blotting, we found that
the level of tyrosine nitration in the midbrain of 6-OHDA-

lesioned mice was greatly enhanced (densitometry: 1.11 ± 0.07)
compared with the control group (densitometry: 0.66 ± 0.04;
Figures 7E,F). Simvastatin administration inhibited elevated
tyrosine nitration. This result was further confirmed using
immunohistochemistry (Figures 7G,H). Moreover, increased
expression of iNOS in SN after 6-OHDA lesioning was
significantly inhibited by simvastatin (Figures 7I,J). These
results suggest that the protective effects of simvastatin on
6-OHDA-induced neuronal degenerationmay bemediated by its
anti-oxidative effect.
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FIGURE 7 | Simvastatin inhibited gliosis and the level of tyrosine nitration in midbrain samples in the unilaterally 6-OHDA-lesioned mouse model of PD. On day
15 after 6-OHDA stereotaxic injection, brain sections were prepared, incubated with glial fibrillary acidic protein (GFAP) antibody (A), ionized calcium-binding adapter
molecule 1 (IBA-1) antibody (C), and HRP-conjugated secondary antibody, and then visualized with DAB. Relative quantitative analysis of GFAP-positive cells
(astrocyte) (B) and IBA-1-positive cells (microglia) (D). Data were obtained from at least three independent experiments. (E) Protein was extracted from midbrain
tissues, and the level of nitrotyrosine was evaluated by western blot. (F) Relative quantitative analysis of nitrotyrosine expression. Data were obtained from four
independent experiments. (G) Immunostaining of nitrotyrosine in the substantia nigra (SN); (H) immunoreactivity of nitrotyrosine was analyzed and quantified using
IPP 6.0. Scale bar, 30 µm. (I) iNOS level evaluated by western blot. (J) Relative quantitative analysis of iNOS expression. Data were obtained from three independent
experiments. Statistical analysis by Dunnett’s T3 or LSD post hoc test based on ANOVA; data expressed as mean ± SEM. ∗∗∗P < 0.001, ##P < 0.01, ###P < 0.001.

Simvastatin Inhibited the Activity of
NADPH Oxidase and p38 MAPK in the
Midbrain in the Unilaterally
6-OHDA-Lesioned Mouse Model of PD
The expression of NADPH oxidase was up-regulated in the
SN of the PD mouse model (Choi et al., 2012; Zhou et al.,
2012). To define whether simvastatin exerted a protective effect
by targeting NADPH oxidase in the midbrain, we detected the
level and distribution of its subunit, p47 phox, in midbrain
samples. We found that the level of membrane p47 phox was
increased in 6-OHDA-lesioned mice (densitometry: 0.92± 0.07)
compared with the control group (densitometry: 0.39 ± 0.06;
Figures 8A,B), but the level of cytosol p47 phox was
decreased (densitometry: 0.89 ± 0.10) compared with controls
(densitometry: 1.40 ± 0.06; Figures 8C,D). After administration
of simvastatin, the elevated level of membrane p47 phox
in the midbrain was reversed (densitometry: 0.57 ± 0.03)
in 6-OHDA-lesioned mice; however, there was no difference
in the level of expression of p47 phox in the cytosol
between the 6-OHDA group and simvastatin plus 6-OHDA
group.

As p38 MAPK is correlated with NADPH oxidase activity,
we continued to observe a change of p38 MAPK activity.

After 6-OHDA stereotactic injection, the level of P-p38
MAPK in the midbrain increased to 0.82 ± 0.08 compared
with that in the control group (densitometry: 0.50 ± 0.07;
Figures 8E,F); The increased P-p38 MAPK induced by 6-OHDA
was significantly attenuated (densitometry: 0.63 ± 0.10)
by simvastatin administration. These data confirm that the
therapeutic effect of simvastatin may also be related to the
suppression of p38 MAPK activity.

Simvastatin Enhanced the Expression of
Anti-oxidative Signaling Molecules in the
Midbrain in the Unilaterally
6-OHDA-Lesioned Mouse Model of PD
To investigate the change of oxidation resistance in 6-OHDA-
treated mice after simvastatin treatment, we detected the
anti-oxidative signaling pathway, including the expression
of GCLM, PGC-1α and SOD. Oxidation resistance was
decreased in 6-OHDA-treated mice, evidenced by reduced
expression of GCLM (densitometry of 6-OHDA group:
0.81 ± 0.13; densitometry of controls: 1.30 ± 0.11) and PGC-1α
(densitometry of 6-OHDA group: 1.35 ± 0.11; densitometry
of controls: 2.13 ± 0.17; Figures 9A–C) in the midbrain.
Simvastatin could reverse the reduction of GCLM (densitometry:
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FIGURE 8 | Simvastatin inhibited the activity of NADPH oxidase and p38 AMPK in midbrain samples in the unilaterally 6-OHDA-lesioned mouse model of PD.
p47 phox subunit protein levels were determined in lysates of midbrain tissue. Supernatant containing solubilized membrane or cytosol proteins was collected;
membrane p47 phox (A) and cytosol p47 phox (C) expression was detected using western blot. Relative quantitative analysis of membrane p47 phox (B) and
cytosol p47 phox (D) expression performed using ImageJ. Data were obtained from three independent experiments. (E) Protein levels of P-p38 evaluated by western
blot. (F) Relative quantitative analysis of P-p38. Data were obtained from five independent experiments. Statistical analysis by Dunnett’s T3 or LSD post hoc test
based on ANOVA; data expressed as mean ± SEM. ∗∗∗P < 0.001, ##P < 0.01. NS, not significant.

1.24± 0.09) and PGC-1α (densitometry: 1.88± 0.08) expression,
which is consistent with the results in SH-SY5Y cells. Moreover,
simvastatin could reverse 6-OHDA-induced reduction of
SOD activity in the midbrain of PD mice (densitometry of
6-OHDA group: 5.47 ± 0.79; densitometry of simvastatin plus
6-OHDA group: 7.65± 0.93; Figure 9D).

DISCUSSION

PD is a neurodegenerative disorder involving the progressive
degeneration of dopamine neurons in the SN (Olanow and
Tatton, 1999). Although the etiology of PD has been extensively
investigated for several decades, genetic and epigenetic factors
remain elusive (Miller et al., 2009). Among all the pathological
factors, oxidative stress is considered the predominant
underlying mechanism for the progression of PD (Mythri
et al., 2011). Therefore, use of antioxidants is considered a
promising approach to slow the progression and limit the extent
of neuronal cell loss in PD.

In this study, we demonstrated that simvastatin protected
against 6-OHDA-induced cytotoxicity in dopaminergic neurons
and reduced the intracellular ROS level in SH-SY5Y cells. In PD

mice, simvastatin prevented protein tyrosine nitration and gliosis
in addition to ameliorating behavior deficits and TH protein
levels in the midbrain. Simvastatin inhibited 6-OHDA-induced
NADPH oxidase activation by decreasing the translocation of
p47 phox and expression of gp91 phox. In addition, simvastatin
exerted an anti-oxidative effect by enhancing the expression of
related antioxidant molecules including SOD, HO-1, PGC-1α
and GCLM. Moreover, inhibition of p38 MAPK and NF-κB may
be involved in the protective effects of simvastatin. Therefore, the
protective effects of simvastatin against neuronal cell death in PD
might be due to its anti-oxidative properties.

A recent study demonstrated that simvastatin is associated
with decreased risk of PD (Brakedal et al., 2017). Simvastatin can
also regulate the progression in PD models (Selley, 2005; Ghosh
et al., 2009; Mackovski et al., 2016), but the mechanism that
exerts the protective effects remains unknown. Herein, we found
that simvastatin can inhibit 6-OHDA-induced apoptosis in
SH-SY5Y cells, consistent with a previous study (Yan et al., 2014).
Simvastatin can also reverse the reduction of dopaminergic
neurons and behavior deficits in PD mice (Ghosh et al., 2009).

Oxidative stress has been associated with an oxidant–
antioxidant imbalance and is thought to underlie defects in
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FIGURE 9 | Simvastatin enhanced expression of anti-oxidative signaling molecules in midbrain samples in the unilaterally 6-OHDA-lesioned mouse model of PD.
(A) Total protein in the midbrain was extracted with RIPA buffer, then western blot was used to detect the expression of GCLM and PGC-1α. Relative quantitative
analysis of GCLM (B) and PGC-1α (C) expression performed using ImageJ. (D) Total SOD activity of midbrain samples determined using a Beyotime Total SOD
Assay Kit; data were obtained from three independent experiments. Statistical analysis by Dunnett’s T3 or LSD post hoc test based on ANOVA; data expressed as
mean ± SEM. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, #P < 0.05.

energy metabolism and induce cellular degeneration (Cui et al.,
2004). Dopaminergic neurons are more susceptible to oxidative
damage because of auto-oxidation and enzymatic oxidation
of dopamine (Hanrott et al., 2006). Evidence suggests that
oxidative stress caused by excess ROS production is thought
to be associated with the development of PD (Cui et al.,
2004). In recent years, simvastatin’s anti-oxidative capacity has
shown a protective effect in various oxidative stress-related
diseases (Chang et al., 2017). Based on previous studies of
the anti-oxidative effects exerted by simvastatin, we sought to
study these effects in a PD model. In our study, we observed
excess production of ROS and increased iNOS expression in
6-OHDA-induced PD model, as in a previous study (Cui
et al., 2016), which can lead to dopaminergic neuron death
in the brain in PD. Simvastatin inhibited the production of
ROS and overexpression of iNOS in PD model. Inhibition
of glial activation might contribute to the protective effect
of simvastatin in the PD model (Rodriguez-Pallares et al.,
2007).

The presence of nitrotyrosine on proteins can be used
as a marker for peroxynitrite formation in vivo. A previous
study provided evidence that nitration at single or multiple
tyrosine residues may be involved in the regulation of
α-syn oligomerization and fibril formation (Burai et al.,
2015), which may contribute to the pathogenesis of PD. We
found that simvastatin can reverse the increased level of
nitrotyrosine in the midbrain; however, further study is needed
to verify whether increased nitrotyrosine is related to α-syn. In
conclusion, consistent with our expectations, simvastatin exerted
anti-oxidative effects in the PD model.

NADPH oxidase, a superoxide-producing enzyme, is
composed of membrane (gp91 phox, p22 phox) and cytosolic
(p47 phox, p67 phox, p40 phox and Rac1/2) subunits (Ansari and
Scheff, 2011; Guemez-Gamboa et al., 2011; Khalyfa et al., 2014).
Membrane translocation of cytosolic subunits is necessary for
the activation of NADPH oxidase (Lambeth, 2004; Rastogi et al.,
2017). Translocation of p47 phox to the plasma membrane may
reflect the activation of NADPH oxidase activation (Hu et al.,
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2010; Wang et al., 2014; Hou et al., 2017b). Previous reports
have found that NADPH oxidase can be activated and produce
a large amount of related ROS in the brain of a PD model
and that it plays a key role in chronic neuroinflammation and
related dopaminergic neurodegeneration in PD (Peterson and
Flood, 2012; Qin et al., 2013; Wang et al., 2015; Hou et al.,
2017a). Therefore, the effects of simvastatin on NADPH oxidase
were examined by measuring the membrane translocation of
cytosolic subunits and level of gp91 expression in PD mice.
In our study, we found increased membrane translocation of
p47 phox and expression of gp91 phox in 6-OHDA-treated
SH-SY5Y cells. We also found that the membrane level of
gp91 phox in the midbrain of PD mice was elevated, as in
previous studies (Rodriguez-Pallares et al., 2007; Jiang et al.,
2015). After simvastatin treatment, the translocation of p47 phox
and expression of gp91 phox was decreased in SH-SY5Y cells and
PD mice, which suggests that simvastatin may down-regulate
the activity of NADPH oxidase in the PD model, and reduce
the formation of oxidative stress factor, to protect against the
development of PD.

NADPH oxidase can activate extracellular signal-regulated
kinase 1/2 (ERK1/2) and p38 MAPK along with the activation
and translocation of NF-κB (Priya et al., 2017). p38 MAPK and
NF-κB, two well-characterized oxidative stress-responsive
pro-death signaling pathways, appear to participate in
dopaminergic neuronal cell death in PD models (Tobón-
Velasco et al., 2013). In our study, we observed the activation
of p38 MAPK and NF-κB in PD models, and that simvastatin
could effectively reserve this process. Moreover, addition of DPI
exerted similar effects in SH-SY5Y cells, which suggests that
the decrease of p38 MAPK and NF-κB activation may be partly
caused by simvastatin-induced inhibition of NADPH oxidase
activity.

An increasing number of studies have found that increased
expression of anti-oxidase genes, including SOD (Filograna
et al., 2016) and HO-1 (Song et al., 2017), is beneficial
for the improvement of PD. Many studies have confirmed
that simvastatin can inhibit epithelial–mesenchymal transition
(Clark et al., 2016), reduce ventilator-induced lung injury (Zhao
et al., 2015) and protect Neuro2a cells against lipopolysaccharide-
induced damage by up-regulating anti-oxidase gene expression

(Hsieh et al., 2011). Based on this evidence, we examined
anti-oxidase gene expression in PD. Herein, we confirmed that
simvastatin strongly enhanced the expression of stress proteins,
including SOD, HO-1, PGC-1α and GCLM in the PD model,
which may contribute to the removal of stress factor. Therefore,
via enhancing its anti-oxidase capacity, simvastatin produced
neuroprotective effects in PD.

Together, these findings demonstrate that simvastatin
effectively exerts neuroprotective action in a 6-OHDA-induced
PD model through the enhancement of antioxidant capability
and attenuation of oxidative stress injury. Thus, simvastatin
may offer a potential treatment to slow the progression of
PD. However, further investigation in animals or humans is
necessary to define the anti-oxidase capacity of simvastatin in
PD. The results of this study also provide compelling evidence
in the search for more potent pharmacological agents to protect
against oxidative stress for treating neurodegenerative diseases,
especially PD.
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