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Abstract

Background: Research on the ecological consequences of global climate change has elicited a
growing interest in the use of time series analysis to investigate population dynamics in a changing
climate. Here, we compare linear and non-linear models describing the contribution of climate to
the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999.

Results: The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due
to differences in the strength and nature of density dependence, relatively small and large
populations may be differentially affected by future changes in climate. Both linear and non-linear
models predict a decrease in the population of wolves with predicted changes in climate.

Conclusions: Because specific predictions differed between linear and non-linear models, our
study highlights the importance of using non-linear methods that allow the detection of non-
linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach
to modelling population response to climate change, either exclusively or in addition to linear

approaches, may compromise efforts to quantify ecological consequences of future warming.

Background

Several recent studies have suggested that species from
many taxa and environments are already responding to
regional climate change with, for example, poleward and
elevational range shifts, changes in abundance, changes in
body size, and changes in the timing of life history events
[1-3]. Because these changes may influence important sta-
bilizing mechanisms in communities and ecosystems,
and, thus, the goods and services they provide to our soci-
ety, and because the rates of such changes may continue
to increase [3], they have moved to the forefront of polit-
ical and environmental concern [1]. Nonetheless, there is
still considerable uncertainty regarding the magnitude of
future changes in climate on both local and regional scales
and the impact they will have on populations, communi-

ties, and ecosystems. Clearly, studying the consequences
of climate change for the dynamics and stability of popu-
lations will improve our ability to predict these effects and
respond accordingly.

One growing body of research investigating this issue has
used time series analysis of long-term datasets to quantify
the contribution of large-scale climatic fluctuation to pop-
ulation dynamics (reviewed in [4] and [5]). The approach
commonly used in such studies is log-linear autoregres-
sive modeling. The dynamical properties of this approach
make it a logical, tractable, and appropriate candidate for
examining and quantitatively predicting the influence of
climate change on mean population density [6].
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While appropriate in some situations, linear models may
obscure potentially important properties of the popula-
tion, which may ultimately influence the accuracy of pre-
dictions drawn from them. For example, linear models
cannot detect non-linear density dependence and the dif-
ferential influence of abiotic factors above and below cer-
tain density thresholds (see, e.g., [7]). While several
studies have indicated the potential for non-linear den-
sity-dependence in natural populations, the consequences
of incorrectly assuming linear density-dependence for the
accuracy of model predictions is not well understood.

Here, we present a comparative analysis of linear and non-
linear models describing the contribution of climate to
the interannual density fluctuations of the population of
wolves (Canis lupus) on Isle Royale, Michigan, USA, from
1959 to 1999. Our analysis builds on previous studies
indicating that the dynamics of the focal wolf population
may be influenced by large-scale climatic variation [8,9],
and that the population may exhibit phase-dependence
[10-12] that could generate non-linearity in the dynamics
[13]. Thus, there are indications that climate change may
have important implications for the dynamics of wolves
on Isle Royale, and, in addition, there are convincing
arguments suggesting that non-linear modeling may be
appropriate for investigating this issue. We proceed by
first developing a non-linear self-excitatory threshold
autoregressive (SETAR) model for the focal population.
We then develop a linear autoregressive model using sim-
ilar methods and compare the stability properties, statisti-
cal fit, and predictions obtained by both models. Our
analysis indicates that linear and non-linear models may,
in fact, lead to significantly different predictions of popu-
lation response to climate change.

Results

The fit of the models

The most parsimonious non-linear model identified here
includes the number of packs in the previous year and
both temperature and snow in the current year as covari-
ates in the low-density regime; and pack size in the previ-
ous year, the number of packs in the previous year, and
snow of the current year as covariates in the high-density
regime (Table 1). Piecewise non-linear modeling indi-
cated that the optimal density threshold for the SETAR
model was 3.4, which on a raw scale is a density of
approximately 30 wolves (Table 1). The non-linear SETAR
model is discontinuous at this threshold. In the lower
regime, only the parameters for the delayed density and
temperature covariates are significant at . = 0.1 Table 1).
In contrast, only the parameters for delayed density and
delayed number of packs covariates are significant in the
upper regime (Table 1).
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The most parsimonious linear model includes the
number of packs in the previous year and temperature of
the current year as covariates and the parameters for these
covariate are significant at o = 0.1 (Table 1). Given only
the first observed value of the density time series and the
observed values of snow, temperature, the number of
packs, and pack size, both models simulate dynamics rea-
sonably well (Fig. 2). However, AIC scores indicate a bet-
ter fit for the non-linear model (Table 1).

Stability properties

The stability of the dynamics within the each regime of the
non-linear model and for the linear model were deter-
mined by the values of the coefficients of density depend-
ence (a,, a,, and a; in Table 1). Ninety-five percent
confidence intervals for the coefficient of direct density
dependence in the lower regime (0.05 + 0.28) and the
upper regime (2.63 + 0.13) do not overlap suggesting that
the strength of density dependence differs between the
two regimes. The equilibrium point in the lower regime is
stable, while that for the upper regime is not (Table 1).
The equilibrium point in the linear model is stable (Table
1). The location of the equilibrium points in both regimes
of the non-linear model and in the linear model, however,
depends on climate (Table 1). If the average values of pack
size (8.24), number of packs (3.7), temperature (0.10),
and snow (190.4) from the observed time series are used,
then the equilibrium points of the lower and upper
regime of the non-linear model and of the linear model
are approximately 11, 36, and 20 wolves on the raw scale,
respectively (Table 1).

Discussion

Non-linear SETAR model

Previous work has revealed that density dependence in the
wolf population on Isle Royale is phase-dependent [12],
which may contribute to non-linearity in the dynamics of
this population. Importantly, our results also indicate that
there are differences in the nature of density dependence
between low- and high-density regimes (Table 1, Fig. 1).
Analysis of the model suggests that populations below the
density threshold experience negative density dependence
and exhibit monotonic damping, while populations
above the threshold display positive density dependence.

The social behavior of wolves provides a convincing bio-
logical explanation for the presence of a density depend-
ence threshold and positive density dependence above the
threshold. Because they live on an island and, thus, have
a finite amount of space, growth in the population must
be accompanied by an increase in the number of wolves
per pack and/or the number of packs on the island. A
closer examination of the data demonstrates that at low
densities, population growth on Isle Royale is accompa-
nied by an increase in average pack size (Fig. 3). The
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Table I: The most parsimonious SETAR models of the population dynamics of wolves on Isle Royale, Michigan, 1959-99. Covariates
included winter snow accumulation (SW,), Northern Hemisphere temperature anomalies (T,), number of packs in the previous year
(PA,.}), and mean pack size in the previous year (PS, ). X, is log.-transformed density, and g;; are statistical parameters (i = | and 2

b

corresponds to lower and upper regimes, respectively, j = 0, |, 2, 3 correspond to the constant, lag-1 density coefficients, number of
packs coefficients, and climatic coefficients, respectively). n indicates the number of data points in each regime. Parameter estimates
were obtained by the method of conditional least squares. X* is the equilibrium point on the log-scale.

Full Model 0 Coefficients SE p n AIC R? Equilibrium
Xi=ayg+a) Xy +a,PA +a 3T+ a) ,SW, X1 <340 a,=1.89 043 0.0002 32 14.18 058 X*=240
Non-Linear a,; =050 0.14  0.001 Stable
Model
a,,=-0.06 0.04 0.17
a,3=-047 0.16  0.009
a;4=-0008 0.0005 O.I5
Xi=ayot ay X + 0y0PS, + ay3PA  + a0 SW, X ,2340  a,,=-5.82 1.43 0.03 8 0.96  X*=358
ay; =263 0.46 0.01 Unstable
a,,=0.06 0.03 0.11
a,3=-0.24 0.05 0.02
a,4=0.002 0.0009 0.12
Linear Model X, = ag* a, X, + a,PA, | + a;T, a,=0.86 0.33 0.0l 40 2798 0.69 X*=297
a, =038l 0.12 0.00 Stable

a, =-0.07 0.03 0.06
a;=-0.39 0.18 0.04

number of packs on the island remains relatively constant
(3 to 5 packs). When the total population size reaches 30
wolves, however, the number of packs begins to increase
(Fig. 3). The average pack size remains relatively constant
at 10-15 wolves per pack. These data suggest that there
may be an upper limit to the size of a pack, possibly due
to difficulties obtaining enough to food to feed all pack
members or due to an increase in aggressive behaviors.
This upper limit in pack size may generate a density
threshold. In addition, this shift in behavior may lead to
positive density dependence at high densities. An increase
in the number of packs corresponds to an increase in the
number of breeding pairs on the island. As density contin-
ues to increase, more packs are formed, leading to higher
population growth. However, and importantly, this posi-
tive feedback loop is inherently unstable. As the number
of packs on the island increases, the amount of territory
per pack decreases and the frequency of aggressive
encounters among packs must increase. Together, these
processes should lead to increased mortality. In fact, the
observed dynamics of the population support this theory.
The first time the population reached 30 wolves in 1965,
it declined over the next four years, and the two times it
has crossed this threshold, between 1978 and 1980, it has
crashed precipitously [12].

Population response to climate change

Differences in the nature of density dependence above
and below the threshold suggest that the consequences of
climate change for the dynamics of Isle Royale wolves
differ depending on if the population is relatively small or

large. At low densities dynamics are largely determined by
within pack dynamics, specifically their ability to capture
prey and feed all pack members. Because changes in cli-
mate influence the ability of wolves to capture prey, cli-
mate change should have significant effects when the
population is small. Because dynamics maybe determined
more by interpack dynamics and less by the ability of indi-
vidual packs to capture prey at high densities, climate and
climate change should be less important in determining
population dynamics when the population is large. Cli-
mate may influence the dynamics of large populations,
but the signature of climatic effects may be diluted by the
effects of interpack aggression. These predictions are sup-
ported by the fact that though the most parsimonious
non-linear model contains climate as covariates in both
regimes, the only significant coefficient of a climatic vari-
able occurs in the low-density regime (Table 1). Thus, our
results suggest that the dynamics of this population, when
its density is low, are stable, determined mainly by direct
density dependence, and affected by changes in climate.
At higher densities, the dynamics are intrinsically unstable
and the population is less influenced by climate.

In addition to predicting when climate and climate
change is important, the non-linear SETAR model sug-
gests that predicted changes in climate will cause the pop-
ulation of wolves on Isle Royale to decline, possibly to
extinction. While wolf density is negatively related to both
temperature and snow in the low density regime, the coef-
ficient for snow is not significant (Table 1). This suggests
that below the density threshold, changes in snow depth
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Population growth rate (R, = X, - X, |) of wolves versus In-transformed density in the previous year (X, ). Solid lines indicate
non-linear spline functions, and dashed lines indicate 95% confidence bands, estimated with generalized additive models. These
plots suggest a threshold at ~3.25-3.50 wolves on a log, scale. The linear relationship below this threshold suggests weak den-
sity dependence while the relationship above this threshold suggests that density dependence is stronger at higher densities.

will have a lesser effect on the population than changes in
temperature. Hence, predicted increases in temperature
may lead to a decrease in the population of wolves on Isle
Royale, possibly contributing to extinction risk. At densi-
ties above the threshold, the population is unlikely to be
systematically affected directly by changes in climate.
However, because dynamics are unstable at high densi-
ties, large populations are likely to crash, falling below the
threshold where predicted changes in climate will cause
the population to decline.

While increases in mean temperature may cause the pop-
ulation to decline, this warming trend may also be accom-
panied by increases in variability that could have

additional effects on the population. Extreme variations
in climate may cause the population of wolves on Isle
Royale to fluctuate above and below the density thresh-
old. This may cause extreme fluctuations in the size of the
population greatly increasing the chance of extinction.

Comparison to linear model

Qualitatively, the linear model obtained here predicts
similar responses to climate change in comparison to the
non-linear model: increasing temperatures will lead to
declines in population density. However, the linear model
indicates negative density dependence for the whole range
of observed densities and suggests that the number of
packs is important in determining the dynamics of the
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Dynamics predicted by non-linear SETAR model and linear model. Predicted dynamics were calculated from the full models in
Table | using one seed density estimates from 1960 and the observed climate and pack time series (one step ahead simula-
tions). (a). Dynamics predicted by SETAR model with winter snow accumulation, SW,, as a covariate. (b). Dynamics predicted
by linear model with the number of packs, PA,;, and the Northern Hemisphere winter temperature anomaly, T,, as covariates.
(c). Predicted versus observed values for the non-linear model. (d). Predicted versus observed values for the linear model.

population. Importantly, the absence of a density thresh-
old and positive density dependence in this model sug-
gests that the population should experience relatively
small fluctuations in density in constant and variable
environments. Negative density dependence should regu-
late the population at all densities and buffer the popula-
tion from changes in climate. Thus, in contrast to the non-
linear SETAR model, the linear model predicts similar
effects of climate and climate change on relatively small
and large populations, predicts that the population is rel-
atively stable, and suggests that population fluctuations
will be relatively small.

In terms of statistical fit to the data, the non-linear SETAR
model performs better than the linear model, indicated by
the fact that the AIC of the linear model is almost double
that of the non-linear model (Table 1). Because these are
phenomenological models, this criterion does not neces-
sarily mean that the non-linear model more accurately
portrays the biology of the system or that it is better for the
purposes of predicting response to climate change. In fact,
we urge caution in interpretations of both models. For the
non-linear model in particular, there are only eight data
points, but relatively many parameters in the upper
regime. This decreases certainty surrounding parameter
estimates and thus, our conclusions regarding stability
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for non-linear model is ~30 wolves on the raw scale.

and response to climate change for large populations. In
addition, despite differences in AIC scores, the linear
model still provides a reasonably good fit to the data. It
may, therefore, give just as reliable predictions as the non-
linear model. The main contribution of our analysis is its
demonstration of how linear versus non-linear time series
modeling approaches may influence conclusions regard-
ing population response to climate change.

The importance of non-linear time-series modelling

Using time series data for examining population dynam-
ics has both disadvantages and advantages, regardless of
whether linear or non-linear approaches are applied. Our
ability to model the dynamics of a population and the
reliability of the predictions that can be drawn from it
depend on the data available and the length of the time
series. As mentioned above, trophic interactions were not
directly included in either model but could be very impor-
tant in determining not only the dynamics of the popula-
tion of wolves on Isle Royale, but also its response to
climate change. In addition, though this data set
represents one of the longest time series of a three-trophic
level system, it spans only 40 years and teasing out the rel-
ative influences of intrinsic versus extrinsic processes on
the dynamics of long-lived species may require longer
time series [14]. In addition, it is possible that the factors
most important in determining dynamics vary through

time. For example, it is possible that the population was
exposed to canine parvovirus in the 1980s [11]. The
dynamics of the population during this time period may
differ in important ways that cannot be captured in a sim-
ple model of the full time series lacking this information.

Despite the potential difficulties, the analysis of time
series data offers several advantages. First, these methods
provide one of the only means for examining population
dynamics when experimentation and detailed demo-
graphic analyses are impractical or impossible, as they are
on Isle Royale. Second, these methods allow analyses of
population dynamics when only limited data are availa-
ble. Finally, time series analysis is useful when examining
processes that occur over large spatio-temporal scales such
as climate change.

Conclusions

While time series methods may allow us to predict the
effects of climate change on population dynamics, the
reliability of those predictions and our mechanistic
understanding of population dynamics is influenced by
whether linear or non-linear approaches are taken. Linear
models may be more appropriate for determining
response of the whole system to changes in climate, how-
ever, linear models assume that the strength of density
dependence and, thus, the susceptibility of the population
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to climate change, are independent of density (sensu [6]).
The non-linear model presented here, however, suggests
that the nature and strength of density dependence may
be non-linear (i.e. differs between high- and low-density
regimes) (Table 1) and, because of this, the manner in
which the population responds to climate change may
differ depending on if the population is at relatively high
or relatively low densities. By specifically examining the
possibility of non-linearity, we were able to suggest mech-
anisms through which changes in wolf behavior may
influence population dynamics and their response to
changes in climate. Thus, we suggest that because density
dependence determines, in part, population response to
climate change, it is important to investigate methods that
allow the detection of non-linearity in the nature and
strength of this force and other potentially important
processes.

Methods

Developing the model

Wolves on Isle Royale are the top predator in a straight-
chain, three trophic-level system including moose (Alces
alces) and balsam fir (Abies balsamea) [16]. Therefore, the
dynamics of the wolves in this system are most broadly
influenced by trophic interactions with moose and intrin-
sic density dependence. Because wolves prey primarily on
young and old moose, their population dynamics may
depend more on the density of these age groups rather
than the total density of moose. Unfortunately, there is
very little information regarding the age structure of the
moose population. In addition, estimates of moose den-
sity are based upon cohort reconstruction and, therefore,
may be less accurate than those of wolf density, which are
based on direct counts. For these reasons, in addition to
previous studies suggesting that a uni-variate equation in
delay coordinates may indirectly incorporate trophic
interactions [17], we begin with a simple single-species
linear autogressive model:

X=og+ 0 X  +0,X ,+ ...+, X, ,+¢ (1)

where X; is log,-transformed wolf density at time i and g; is
white noise. Although this simplification compromises
detail in terms of the ecology behind wolf dynamics, it
may facilitate further manipulations while, at some level,
incorporating trophic interactions between wolves and
moose (see, e.g. [13,18]).

Partial autocorrelation function (PACF) plots and recent
first- and second-order linear and piecewise non-linear
modeling of the wolf time series indicate that a first-order
model provides a better fit in terms of statistical parsi-
mony than second-order or higher models [9,12]; A. Ellis,
unpublished results) giving:

http://www.biomedcentral.com/1472-6785/4/2

Xi=og+o X +g  (2)

To examine the structure of density dependence we set X,
- X1 = R, simplify coefficients, and express equation (2)
in terms of the population growth rate of wolves:

R=Bo+BiXi+g (3)

The scatter plot of R, versus X, , fit with a spline function
(Fig. 1) indicates that the relationship between
population growth rate in the current year and density in
the previous year may be non-linear. While this inference
is supported by the reduction in residual error achieved by
applying a generalized additive model [19] with a non-
linear spline function (deviance = 1.44) compared to a
linear regression (deviance = 2.19) between R, and lagged
density, more data points are needed to verify the robust-
ness of this claim. For the purposes of this study, this plot
suggests that the strength of density dependence may dif-
fer between relatively small and relatively large popula-
tions around some threshold (in X, ;) and that this non-
linearity may appropriately be expressed with simple lin-
ear piecewise models.

A first-order self-excitatory threshold autoregressive
(SETAR) model with a low- and high-density regime and
a threshold in X, ;| has the general form:

Xi=ayo+a Xp+e, Xq<0  (4)

Xi=ayo+ay X1+ 8y, X120

where, X, and X, , are log,-transformed densities of the cur-
rent and previous years, respectively, a;; are statistical
parameters (i = 1 and 2 corresponds to lower and upper
density regimes, respectively, j = 0 and 1 correspond to the
constant and lag-1 coefficients, respectively), ;, is white
noise (i = 1 and 2 corresponds to lower and upper density
regimes, respectively), and 0 is the threshold set in terms
of density [7,20].

Covariates

Clearly, wolf dynamics are not determined exclusively by
the direct influence of density dependence and the indi-
rect influence of moose density. Wolf dynamics may also
be influenced by social structure [9,12,21], local climate
[22], and large-scale climate [9]. There is, for example,
typically one breeding pair per pack [23], so that the birth
rate of the population depends on the number of packs in
the population. A closely related aspect of social structure,
pack size, may also influence dynamics because pack size
may affect ability to capture prey [9,12]. Climate, specifi-
cally snow depth and the North Atlantic Oscillation
(NAO) [24], may also influence wolf dynamics through
its influence on prey vulnerability and kill rate [8,22].
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Because snow depth itself is influenced by winter temper-
ature (R2 = 0.14 for the period of 1959 to 1999), and
because the NAO may represent the vehicle through
which large-scale warming occurs [25], it is reasonable to
suggest that winter temperature may also influence wolf
dynamics on Isle Royale though, to our knowledge, this
influence has not been examined.

Hence, we examined all possible non-linear SETAR mod-
els of the form specified in equation (4) with covariates of
most-recent lags including pack size of the previous year,
number of packs of the previous year, cumulative winter
snow depth of the current year (Ontario Climate Center),
the Northern Hemisphere winter temperature anomaly of
the current year, and the North Atlantic Oscillation of the
current year [26]. Because estimates of cumulative snow-
fall and temperature on Isle Royale are not available, we
used snowfall measurements from nearby Thunder Bay,
Ontario and the Northern Hemisphere winter tempera-
ture anomaly.

Threshold selection

Before obtaining parameter estimates and comparing
models, we determined the optimal threshold for each
possible model. The optimal threshold for a particular
model based upon the skeleton (Eq. 4) is the lag-one den-
sity term (X, ;) from the observed unique values of X,
that minimizes the negative log-likelihood value for the
entire model. This was determined by analyzing each
model with 0 in every unique value of X, ;, except for the
lowest and highest values to ensure minimum degrees of
freedom to perform a linear regression. The threshold that
minimized the negative log-likelihood was the optimal
threshold for that particular model.

Model selection

All possible SETAR models with the form of equation (4)
and the covariates mentioned above were analyzed to find
the most statistically parsimonious model. For compari-
son, all possible linear models of the form of equation (2)
and the covariates mentioned above were also analyzed
and the most parsimonious model selected. We examined
models with the separate effects of snow, temperature, or
the NAO and models that included two or three climate
variables to investigate the interaction between them. The
most parsimonious model was that which minimized the
corrected Akaike's Information Criterion (AIC) score [27].
Selected models were then tested for multicollinearity.
Pairs of covariates resulting in variance inflation factors
greater than 10 were not simultaneously included in the
model, excluding the covariate with lower explanatory
power when necessary.

http://www.biomedcentral.com/1472-6785/4/2

Stability

Stability theory predicts that the greater the strength of
density dependence, the more likely a population is to
remain within a range of densities despite environmental
change [28]. We inferred the stability of the system on the
basis of the value of the coefficient of direct density
dependence (a, ;, 4, in Eq. (4) and a, in Eq. (2)) in the
regime where the equilibrium point lies [18,29,30].
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