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Confidence interval estimation
for vaccine e�cacy against
COVID-19

Qinyu Wei, Peng Wang and Ping Yin*

Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College,

Huazhong University of Science and Technology, Wuhan, China

This article focuses on the construction of a confidence interval for vaccine

e�cacy against contagious coronavirus disease-2019 (COVID-19) in a fixed

number of events design. Five di�erent approaches are presented, and their

performance is investigated in terms of the two-sided coverage probability,

non-coverage probability at the lower tail, and expected confidence interval

width. Furthermore, the e�ect of under-sensitivity of diagnosis tests on vaccine

e�cacy estimation was evaluated. Except for the exact conditional method,

the non-coverage probability of the remaining methods may exceed the

nominal significance level, e.g., 5%, even for a large number of total confirmed

COVID-19 cases. The narrower confidence interval width from the Bayesian,

approximate Poisson, and mid-P methods are on the cost of increased

instability of coverage probability. When the sensitivity of diagnosis test in

the vaccine group is lower than that in the placebo group, the reported

vaccine e�cacy tends to be overly optimistic. The exact conditional method

is preferable to other methods in COVID-19 vaccine e�cacy trials when the

total number of cases reaches 60; otherwise, mid-p method can be used to

obtain a narrower interval width.

KEYWORDS

vaccine e�cacy, fixed number of events design, under-sensitivity, COVID-19,
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Introduction

The contagious coronavirus disease-2019 (COVID-19) pandemic continues to

present a challenge to global health. There is no effective treatment or cure for the disease,

and vaccination remains the most effective method to block the rapid spread of the virus

for the near future. Many COVID-19 vaccine developers have published their vaccine

efficacy (VE) results against symptomatic COVID-19 from ongoing phase 3 trials (1–6).

According to the Food and Drug Administration (FDA) issued guidance, the statistical

success criterion for a placebo-controlled efficacy trial should be that the point estimate

of VE is at least 50%, and the lower bound of the Confidence Interval (CI) around the VE

point estimate is > 30% (7). Different CI estimation methods are available for VE, which

may lead to different lower limits, influencing the final conclusion.

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.848120
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.848120&domain=pdf&date_stamp=2022-08-12
mailto:pingyin2000@126.com
https://doi.org/10.3389/fpubh.2022.848120
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.848120/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wei et al. 10.3389/fpubh.2022.848120

In vaccine field efficacy trials where the prevalence of

disease is low, VE is always estimated by one minus the

incidence rate ratio (vaccine group vs. placebo group), with

the incidence rate calculated as the number of infected

cases divided by the total person time at risk in each

group (8). Such studies are generally designed to accrue a

fixed number of infected cases rather than running a fixed

surveillance period for each subject. Conditional on the total

number of confirmed COVID-19 cases, the CI for VE can

be constructed from the Binominal or Poisson distribution,

adjusting for the surveillance time. The discrete nature of

the Binomial and Poisson distributions make it impossible

in many situations to precisely attain the desired significance

level. The coverage probability of interval estimation for a

single Binomial proportion has been widely investigated (9–

13), but few studies have investigated the performance of these

methods on constructing VE intervals. Ewell (1996) suggested

that the exact conditional method is too conservative, and

large sample approximation method or Bayesian method can

be used instead to obtain a narrower interval width (14). In

their study, the Wald method was used for approximation.

However, many studies have shown that the Wald method is

unstable for the interval estimation of a single proportion (11–

13).

VE rate plays a crucial role in public health planning.

This study presented five VE interval estimation methods

and evaluated their performance based on two-sided coverage

probability, non-coverage probability at the lower tail, and

expected interval width. We also investigated the effect of

under-sensitivity from imperfect diagnosis test on the estimation

of VE and corresponding CI. Finally, we illustrate these

methods using published data from phase III COVID-19

vaccine trials.

Materials and methods

In trials where the incidence of the disease is measured

by incidence rates, VE can be estimated as V̂E = 1 − IRR

where IRR being the estimated incidence rate ratio, which is

calculated as the incidence rate in the investigational vaccine

group vs. that in the placebo group. Let c1, T1, c0, and

T0 denote the number of infected cases and total person-

time at risk in the investigational vaccine and placebo groups,

respectively. The incidence rate in each group is estimated

by dividing the number of cases diagnosed by the total

person-time at risk of that group, where the total person-

time at risk is the sum of the individual person-time at risk,

which is the length of surveillance period for non-infected

subjects, time to infection for infected subjects, and time

to discontinuation for non-infected dropouts. IRR can be

calculated as IRR =
c1/T1
c0/T0

.

Intervals based on conditional binomial
distribution

Assuming that the number of cases during the surveillance

period for each group follows a Poisson distribution, with

parameter λ1 for the investigational vaccine group and λ0 for

the placebo group, then c1 is binomially distributed B(c,π)

conditional on the total number of cases c where c = c0 + c1,

and with π = T1λ1
T1λ1+T0λ0

. The relationship between π and VE

is expressed as

VE = 1− IRR = 1−
c1/T1

c0/T0
= 1−

λ1

λ0
= 1−

π

r(1− π)
(1)

Where, the constant r = T1/T0 is the ratio of the total person-

time at risk in the vaccine and placebo groups.

The interval estimation for VE is then converted to the

problem of constructing CI for a single Binomial proportion of

π . If (Lπ ,Uπ ) is the 100(1−α)% CI for π , then the 100(1−α)%

CI for VE can be derived as:

(1−
Uπ

r(1− Uπ )
, 1−

Lπ

r(1− Lπ )
). (2)

Exact conditional interval

The Clopper-Pearson interval for π is constructed by

inverting the equal-tailed test based on the binomial distribution

(15). The upper and lower exact confidence limits (Lπ , Uπ )

satisfy the following equations.

n
∑

x=c1

(

c

x

)

Lπ
x(1− Lπ )

c−x = α/2

c1
∑

x=0

(

c

x

)

Uπ
x(1− Uπ )

c−x = α/2

Using the relationship between the binomial summations and

beta integrals, (Lπ , Uπ ) can be expressed as quantiles of the

following Beta distributions.

[Beta
(α

2
, c1, c− c1 + 1

)

, Beta
(

1−
α

2
, c1 + 1, c− c1

)

] (3)

The interval for π can then be converted into the CI for VE by

using Equation (2).

Mid-p interval

The mid-p approach replaces the probability of the observed

frequency by half of that probability in the Clopper-Pearson

sum, leading to an “approximate” interval. This family of

intervals aims for mean coverage to be close to nominal level

without compromising minimum coverage too much. The exact
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mid-p confidence limits Lπ and Uπ are solutions to the

following equations.

PrUπ
(x < c1) + 0.5× PrUπ

(x = c1) = α/2

PrLπ
(x > c1) + 0.5× PrLπ

(x = c1) = α/2

The interval for π can then be converted into the CI for VE by

using Equation (2).

Bayesian interval with beta conjugate
prior

Assume that π follows a prior beta distribution beta
(

a, b
)

with parameters a and b. The mean of the prior distribution is
u = a/(a + b) and the variance is u(1 − u)/(a + b + 1). The
posterior distribution of π given c1 infected cases in the vaccine
group conditional on the total number of cases c is again a
member of the beta family, denoted beta(a+ c1, b+ c− c1). The

resulting limits of the Bayesian interval are the α/2th and (1 −

α/2)th quantiles of the posterior beta distribution, respectively.
The 100(1- α)% equal tailed Bayesian interval is given by

[Beta(
α

2
; a+ c1, b+ c− c1),Beta(1−

α

2
; a+ c1, b+ c− c1)].(4)

Notably, when a = b = 0.5, the above interval corresponds to

the 100(1- α)% equal-tailed Jeffreys interval.

According to Pfizer’s protocol, a minimally informative beta

prior, beta (0.700102, 1), which is centered at θ = 0.4118

(VE=30%), was applied to construct the posterior probability

for π (16). The 100(1- α)% equal tailed interval for π is given by

[Beta(
α

2
; c1 + 0.700102, c− c1 + 1),

Beta(1−
α

2
; c1 + 0.700102, c− c1 + 1)]. (5)

The interval for π can then be converted into the CI for VE by

using Equation (2).

Approximate poisson interval

This method is based on normal approximation for a

logarithmic transformation of the incidence rate ratio, the

variance of log(IRR) can be written as the sum of variances of

the log incidence rates in vaccine group and placebo group.

var(log IRR) = var[log(
c1/T1

c0/T0
)] = var[log(c1/T1)]

+ var[log(c0/T0)]

By a Taylor’s series approximation, the variance of log(cx/Tx)

is var(cx)/cx
2, and since cx follows a Poisson distribution, an

estimate of var(cx) is given by cx. This yields the following

large sample two-sided 100(1 − α)% CI for the incidence rate

ratio (14):

exp{log(IRR)± z1− a
2

√

1

c1
+

1

c0
}

The above CI can also be obtained from the Poisson

regression using the maximum likelihood estimate (MLE) of the

parameters with treatment as a fixed effect and time at risk for

each subject as offset in the model.

The 100(1− α)% CI for VE can then be expressed as:

[1− IRRexp(z1− a
2

√

1

c1
+

1

c0
), 1− RRexp(−z1− a

2

√

1

c1
+

1

c0
)]

(6)

When c1 = 0 or c0 = 0, the approximate Poisson interval

doesn’t exist.

Criteria for evaluation

To evaluate the performance of the 95% CI constructed

using the preceding methods, simulations were conducted to

compare the two-sided coverage probability (CP), non-coverage

at lower tail (NCL), and expected interval width. In addition,

the effect of under-sensitivity from imperfect diagnostic test for

COVID-19 were investigated.

A variety of scenarios were simulated with null VE from 0.5

to 1 in the increments of 0.001, and the total number of cases c

was set to be 10, 20, 60, and 500. The 2-sided significance level

α was fixed at 0.05. For easy of comparison, we fixed the ratio

of surveillance time in vaccine group to placebo group to be

1. Similar conclusion can be made when r 6= 1. Approximate

Poisson method cannot provide interval for boundary outcomes

for which the exact conditional interval is applied at c1 = 0

and c1 = c. To investigate the effect of under-sensitivity of

the diagnosis test on the observed VE interval, we fixed the

sensitivity in the placebo group at s1 = 100%, and set the ratio

of sensitivity s1/s0 ranging from 0.9 to 1 in increments of 0.02.

All the results were generated using R version 4.1.1. Below

are definitions for these evaluation criteria.

Two-sided coverage probability

At a fixed vaccine efficacy ve with given c, r, and a, the

coverage probability is defined as the proportion of the two-

sided (1 − α) CI containing the true ve. An ideal interval

estimation method has the coverage probability equal to (1− a)

under all parameter settings, e.g., a 95% CI contains the true ve

with 95% probability. However, this is not always the case for

data that follow discrete distributions.
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Given the total number of cases c, the possible combinations

of the number of cases in the vaccine group c1 = 0, 1, 2, . . . , n

and the number of cases in the placebo group c0 = c − c1

are exhaustive. The binomial probability for each combination

of (c1, c0) is given by

(

c

c1

)

π c1 (1− π)c−c1 where π = 1 −

1
1+(1−VE)r according to Equation (1). The coverage probability

can then be estimated by summing the probabilities of all

combinations for which the resulting interval contains the true

ve. For each configuration of (ve, c, r, a), the coverage probability

can be calculated using the following formula.

CP =
∑c

k=0
I(k, ve)

(

c

k

)

(1−
1

1+ (1− ve) r
)
k
(

1

1+ (1− ve) r
)
c−k

(7)

where I
(

k, ve
)

is an indicator variable that equals to 1 if the CI

includes ve when c1 = k, otherwise I
(

k, ve
)

= 0.

Non-coverage probability at the lower
tail

VE is always demonstrated by comparing the lower limit of

the CI with a given margin. When the non-coverage probability

at the lower tail is greater than the nominal level a/2, it

may lead to inflation of the type I error rate. Owing to the

asymmetry of the Poisson and Binomial distributions, the non-

coverage probability at the two tails is always unequal. For a

given method under each configuration of (ve, c, r, a), the non-

coverage probability at the lower tail can be calculated as the

sum of the binomial probabilities of all combinations for which

the lower limit of the resulting CI is greater than the true vaccine

efficacy ve.

NCL =
∑c

k=0
J(k, ve)

(

c

k

)

(1−
1

1+ (1− ve) r
)
k

(
1

1+ (1− ve) r
)
c−k

(8)

Where, indicator J
(

k, ve
)

= 1 if the lower limit of the CI is

greater than the true ve when c1 = k, otherwise J
(

k, ve
)

= 0.

Expected interval width

The expected interval width can be calculated using a

formula similar to that of the coverage probability and non-

coverage probability. For each configuration of (ve, c, r, a), it can

be calculated as follows.

Len =
∑c

k=0
Len(k, ve)

(

c

k

)

(1−
1

1+ (1− ve) r
)
k

(
1

1+ (1− ve) r
)
c−k

(9)

where Len
(

k, ve
)

is the interval width of the resulting CI when

c1 = k. Because ve ranges from−∞ to 100%, the interval width

was set to 2 when the lower limit is lower than−100%; otherwise,

it was calculated as (upper limit—lower limit).

Under-sensitivity of the diagnosis test

Reported VE always implicitly assumes that the diagnostic

test has a sensitivity and specificity of 100%. However, this

assumption is invalid according to the reported sensitivity

and specificity of COVID-19 diagnosis testing (17, 18). The

estimated VE can be biased by an unknown amount when the

sensitivity or specificity of the diagnostic test is < 100% (19, 20).

Diagnostic tests are rarely totally accurate. We assume that the

diagnosis of COVID-19 with a specificity of 100%. However, the

sensitivity for identifying a COVID-19 infection varies based on

the type and quality of the specimen obtained and duration of

illness at the time of testing (21). Ridgway et al. (18) reported that

sensitivity of a single NAAT test ranged from 82 to 97% among

symptomatic patients utilizing 34348 SARS CoV-2 NAAT results

from two health systems (18).

The sensitivity of a diagnostic test is the conditional

probability that the test will be positive (Test+) if the disease

is present (Disease+).

sensitivity = Pr(Test + |Disease+),

Specificity is the conditional probability that the test will be

negative (Test–) if the disease is not present (Disease–).

specificity = Pr(Test − |Disease−).

When the sensitivity and specificity of the test are known, the

adjusted number of cases, also called the actual number of cases

Cactual, is calculated according to the following formula.

Cactual =
Cobserved + Sp− 1

Se+ Sp− 1

Where, Cobserved, Se, and Sp denote the observed number of

cases, sensitivity, and specificity, respectively.

When the specificity is 100%, the above formula can be

written as Cactual = Cobserved/Se.

Let s1 and s0 denote the sensitivities in the Vaccine and

placebo groups, respectively. The number of the observed cases

in the vaccine and placebo groups can then be derived as
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FIGURE 1

Line plot of coverage probability for di�erent VE intervals.

c1o = c1s1 and c0o = c0s0, respectively. The impact of under-

sensitivity of diagnosis test on the non-coverage probability at

the lower tail and expected lower limit are investigated. The

expected lower limit is calculated in a similar way with expected

interval width.

Example COVID-19 vaccine e�cacy trials

The reported vaccine efficacy data from the following

three COVID-19 studies will be used to illustrate our

results. The examples are sorted by the vaccine name in an

alphabetical order.

Example 1 (BNT162b2 vaccine): This is an ongoing

multinational, placebo-controlled, observer-blinded, pivotal

efficacy among persons 16 years of age or older. Participants

were randomized in a 1:1 ratio to receive two doses, 21 days

apart, of either placebo (N = 17511) or the BNT162b2 vaccine

(N = 17411). The primary endpoint is VE against confirmed

Covid-19 with onset at least 7 days after the second dose.

There were 170 cases of symptomatic COVID-19 included in the

primary efficacy analysis (3).

Example 2 (ChAdOx1 vaccine): This is an ongoing single-

blind phase 3 trial in Brazil among adults 18 years and older.

Participants were randomized to control group (N = 2025) or

ChAdOx1 group (N = 2063) in a 1:1 ratio. All participants

were offered 2 doses with administration 4 weeks apart. The

primary endpoint is VE against symptomatic COVID-19 more

than 14 days after the second dose of vaccine. There were

131 cases of symptomatic COVID-19 included in the primary

efficacy analysis (4).

Example 3 (HBO2 vaccine): This is an ongoing randomized,

double-blind, phase 3 trial in the United Arab Emirates and

Bahrain among adults 18 years and older. Participants were

randomized to receive 1 of 2 inactivated vaccines developed

from WIV04 (N = 13 459) and HB02 (N = 13 465) strains or

Placebo (N = 13 458); they received 2 intramuscular injections

21 days apart. The primary endpoint is VE against laboratory-

confirmed symptomatic COVID-19 that occurred at least 14

days after a second vaccine dose. There were 142 symptomatic

COVID-19 cases (95 cases in Placebo group; 26 cases in WIV04

group; 21 cases in HB02 group) and we randomly selected HB02

group for the analysis (6).

Results

Oscillation behavior of coverage
probability for VE intervals

The two-sided coverage probability over the ve overlapped

by c are presented in Figure 1 using line plots with the horizontal

and vertical axes indicating the ve and coverage probability,

respectively. Similarly, the non-coverage probability at the lower
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FIGURE 2

Line plot of non-coverage probability at lower tail for di�erent VE intervals.

tail is plotted in Figure 2. In addition, a descriptive summary

of the coverage probability and non-coverage probability at the

lower tail is provided in Table 1.

As shown in Figure 1, the coverage probability is not fixed

at the nominal level 1 − α = 95% for all methods. As c

increases, the coverage probability approaches the nominal level

95%, and oscillation decreases but still exists even for large

values of c. Under all parameter settings, the exact conditional

method has a two-sided coverage probability on or above the

nominal level 95%. It is clear from the plot that the oscillatory

is more significant for Bayesian intervals using either the non-

informative Jeffreys prior or minimal informative Pfizer prior,

when compared to the other three methods. As indicated

in Table 1, the minimum coverage is 86.8% for the Bayesian

method with the Jeffreys prior and 86.2% for the Pfizer prior.

The Pfizermethod performs slightly better than the Jeffreys prior

and its low-coverage mainly comes from the region where the

true ve is close to 100% when c reaches 60. The approximate

Poisson method has minimum coverage below 90% when the

true ve is close to 100% and above 92.5% when the true ve is

not close to 100%. The mid-p interval has minimum coverage

probability above 92.5% under all scenarios.

As shown in Figure 2, the non-coverage probability of the

exact conditional method is no greater than the nominal level

α/2 = 2.5% under all scenarios. As shown in Figure 2, the

Bayesian intervals using either non-informative Jeffreys prior

or minimal informative Pfizer prior has a higher non-coverage

probability at the lower tail, when compared to the other three

methods. The non-coverage probability can be three times

higher than the nominal level 2.5% for the Jeffreys prior, and

two times higher than the nominal level 2.5% for the Pfizer

prior. For the mid-p method, the non-coverage probability at

the lower tail is always below 5%. The non-coverage probability

of the approximate Poisson interval at the lower tail is desirable,

with a maximum value of 2.8% as shown in Table 1. However,

the coverage probability of Poisson method is low when the

ve is close to 1, as shown in Figure 1, which indicates that

the non-coverage of Poisson method mainly comes from the

upper tail.

Comparison of expected interval width

The expected interval width of two-sided 95% CI

constructed by the five methods for c = 10, 20, and 60,

and VE from 0.5 to 1 is presented in Figure 3 using box plot. A

descriptive summary of the expected interval width is provided

in Table 1. The exact conditional and approximate Poisson

methods provide wider interval widths under all scenarios, and

the approximate Poisson method has slightly narrower interval

compared to the exact conditional method. Bayesian methods

are consistently narrower than the other methods. The pattern

of the interval widths for all five methods become increasingly
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TABLE 1 Summary of coverage probability, non-coverage at lower tail, and expected interval width.

Method Total Cases Coverage probability (%) Non-coverage at lower tail (%) Median expected interval width

Mean Minimum Mean Maximum

Jeffreys 10 95.4 86.8 1.9 8.6 1.01

20 95.1 89.4 2.2 8.2 0.64

60 95.0 88.3 2.4 8 0.33

100 95.0 88.1 2.5 7.7 0.25

300 95.0 91.3 2.5 6.8 0.14

500 95.0 91.8 2.5 5 0.11

Pfizer 10 96.0 86.2 1.2 6.2 1.00

20 95.5 87.0 1.7 5.5 0.63

60 95.2 88.7 2.1 5.1 0.33

100 95.1 90.5 2.2 4.7 0.25

300 95.1 91.5 2.4 3.9 0.14

500 95.0 93.2 2.4 3.2 0.11

Approximate Poisson 10 96.8 87.0 0.2 2.5 1.17

20 96.4 87.0 0.5 2.5 0.70

60 95.7 88.7 1.3 2.8 0.34

100 95.5 90.5 1.6 2.8 0.26

300 95.2 93.6 2 2.7 0.14

500 95.1 91.0 2.1 2.7 0.11

Mid-p 10 97.1 92.7 0.9 5 1.09

20 96.2 93.5 1.6 5 0.67

60 95.5 92.4 2.1 4.8 0.34

100 95.3 92.1 2.3 4.7 0.25

300 95.1 93.0 2.4 3.9 0.14

500 95.1 92.9 2.4 4.1 0.11

Exact 10 98.6 96.3 0.2 2.5 1.24

20 97.9 96.0 0.7 2.5 0.75

60 96.9 95.1 1.4 2.5 0.36

100 96.5 95.0 1.6 2.5 0.27

300 96.0 95.1 2 2.5 0.15

500 95.8 95.0 2.1 2.5 0.11

more similar as c increases. When c reaches 60, the interval

width of all five methods is very close.

E�ect of diagnosis test sensitivity on VE
estimation

The exact conditional method is often considered too

conservative, with an unnecessarily wider interval width. In this

section, we demonstrate that this is not always the case. Figure 4

plots the cumulative percentage of the non-coverage probability

at the lower tail of the observed VE interval using the exact

conditional method with a variable ratio of sensitivity. Figure 5

shows the expected lower limit of the observed VE interval with

a variable ratio of sensitivity. As shown in Figure 4, when the

ratio of sensitivity is below one, the non-coverage probability

may exceed the nominal level 2.5%, and the lower the ratio

of sensitivity, the higher the probability that the non-coverage

probability exceeds the nominal level 2.5%. Moreover, Figure 5

shows that the lower the ratio of sensitivity, the higher the

expected lower limit of the observed VE interval especially when

the actual VE is close to 0.5. This indicates that the reported

CI constructed using the number of observed cases tends to

be overly optimistic when the ratio of sensitivity in the vaccine

group to that in the placebo group is below one.

Application to empirical data

In this section, we illustrate our results using the reported

efficacy data for COVID-19 vaccines. Three studies were selected

(see Example COVID-19 Vaccine Efficacy Trials), and their
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FIGURE 3

Box plot of expected two-sided interval width for di�erent VE intervals.

FIGURE 4

Cumulative percentage plot of one-sided non-coverage probability at lower tail with variable ratio of sensitivity (exact conditional method).

primary efficacy endpoint were analyzed using the five methods

presented in this paper, with the results presented in Table 2.

As indicated in Table 2, the VE interval constructed by the

five methods are very similar when total number of infected

cases is large (example 1). Among the five methods, the exact

conditional method is always wider than the other methods,

followed by the approximate Poisson method. The mid-p

interval is slightly wider than the Bayesian intervals when the

total number of cases is small (example 2).

Assume that the sensitivity of the diagnosis test is

90% in the vaccine group and 100% in the Placebo group,

then the estimated VE% using actual number of cases in

examples 1–3 are 94.5, 60.2, and 75.6, respectively. They

are lower than the estimated VE% presented in Table 2,

which indicates that the reported VE% and corresponding

CI will be overly optimistic when the sensitivity of the

diagnosis test in the vaccine group is lower than that

in the Placebo group. The exact conditional method
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FIGURE 5

Expected lower limit of observed VE interval with variable ratio of sensitivity (exact conditional method).

will be affected less than other methods due to wider

interval width.

Discussions

In this article, we present a few approaches to construct a

CI for VE in a fixed number of events design. The approximate

Poisson method is constructed using the Poisson distribution,

while other approaches, including exact conditional interval,

Bayesian intervals with Jeffreys prior or Pfizer prior, and mid-

p interval, share a common feature in that they are all obtained

by converting a CI for a single Binomial proportion.

Exact conditional method

This method was converted from the Clopper-Pearson

interval for a single proportion. This is the only method that

guarantees two-sided coverage probability and non-coverage

probability at the lower tail under all scenarios. The Clopper-

Pearson interval is often considered to be too conservative

for Binomial proportions (22–25), and Ewell (14) showed that

the exact conditional interval for VE is overly conservative

with a wide interval width (14). In our simulations, the exact

conditional method produced an interval that was consistently

wider than that of the other methods, especially when the

total number of cases was small. When the total number of

cases reaches 60, the interval width of all five methods are

very similar.

Mid-p method

This method was converted from the mid-p interval of a

single proportion. Although the minimum coverage is below

the nominal level, it exhibits slight oscillation among the

methods except for the exact conditional method. Theminimum

coverage is closer to the nominal level, compared to approximate

Poisson method and Bayesian methods. The mid-p interval is

slightly wider than the Bayesian intervals and narrower than the

approximate Poisson and exact conditional intervals.

Approximate poisson method

The approximate Poisson method performs well when the

VE is not close to one. When the VE is close to one, this method

may lead to very low coverage, but non-coverage mainly comes

from the upper tail. As a result, the lower limit of this method

is conservative relative to the mid-p and Bayesian methods. This

method provides a slightly narrower interval than the Clopper-

Pearson method but wider than that of the other methods. Joshi,

Geroldinger, and Jiricka et al. (26) showed that a Poisson interval

does not exist when the number of infected cases is zero in the

vaccine group (26).

Bayesian method

The coverage probability of Bayesian methods with either

the Pfizer prior or Jeffreys prior behaves more erratically than
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TABLE 2 COVID-19 vaccine e�cacy against symptomatic Covid-19 in three case studies.

Category Statistics Placebo/control group Vaccine group

Example 1 (BNT162b2 vaccine) N 17511 17411

Number of cases 162 8

Incidence rate per 1000 person-years 72.91 3.61

Estimated VE% 95.0

95% CI

Approximate Poisson method 89.9, 97.6

Bayesian Jeffreys prior 90.5, 97.7

Bayesian Pfizer prior 90.3, 97.6†

Mid-p method 90.4, 97.7

Exact Conditional method 90.0, 97.9

Example 2 (ChAdOx1 vaccine) N 2025 2063

Number of cases 33 12

Incidence rate per 1000 person-years 156.98 56.24

Estimated VE% 64.2

95% CI

Approximate Poisson method 30.7, 81.5†

Bayesian Jeffreys prior 32.3, 81.5

Bayesian Pfizer prior 32.5, 81.8

Mid-p method 31.8, 82.2

Exact Conditional method 28.9, 83.2

Example 3 (HBO2 vaccine) N 12737 12726

Number of cases 95 21

Incidence rate per 1000 person-years 44.70 9.80

Estimated VE% 78.1

95% CI

Approximate Poisson method 64.8, 86.3†

Bayesian Jeffreys prior 65.4, 86.6

Bayesian Pfizer prior 65.3, 86.6

Mid-p method 65.3, 86.6

Exact Conditional method 64.5, 87.0

N, number of participants in each group.
†The reported 95% CI for vaccine efficacy by the developer.

the other methods, and may lead to inflation of the type I error

rate under some parameter settings because of low coverage.

In conclusion, we showed that the coverage probability for

VE intervals is not fixed at the nominal significance level for all

methods, due to the discreteness of the count data.

For the exact conditional method, it equals the nominal

level or more while for the rest methods it may below the

nominal level, even for a large number of total infected cases.

In addition, our investigation shows that the exact conditional

interval is too wide when the total number of infected cases

is small, and hence, may not provide an informative CI.

The narrower interval obtained using the Bayesian, mid-

p, and approximate Poisson methods is at the cost of not

preserving the nominal significance level. As a result, we

suggest a mid-p method should be used when the total number

of cases is below 60 to obtain a narrower interval width

with a slight loss of coverage. When the total number of

cases reaches 60, the exact conditional method has a similar

interval width to that of the other methods without a loss

of coverage.

Furthermore, our investigation of the effect of under-

sensitivity of diagnosis testing shows that coverage

probability decreases when the sensitivity in the vaccine

group is lower than that in the placebo group. In such

cases, the exact conditional method is preferred to

guarantee coverage.
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