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Novel Urinary Peptidomic Classifier Predicts Incident Heart Failure

Zhen-Yu Zhang, MD; Susana Ravassa, PhD; Esther Nkuipou-Kenfack, PhD; Wen-Yi Yang, MD; Shona M. Kerr, PhD; Thomas Koeck, PhD;
Archie Campbell, MA; Tatiana Kuznetsova, MD, PhD; Harald Mischak, MD, PhD; Sandosh Padmanabhan, PhD; Anna F. Dominiczak, MD,
PhD; Christian Delles, MD, PhD; Jan A. Staessen, MD, PhD

Background—Detection of preclinical cardiac dysfunction and prognosis of left ventricular heart failure (HF) would allow targeted
intervention, and appears to be the most promising approach in its management. Novel biomarker panels may support this
approach and provide new insights into the pathophysiology.

Methods and Results—A retrospective comparison of urinary proteomic profiles generated by mass spectrometric analysis from
49 HF patients, 36 patients who progressed to HF within 2.6+£1.6 years, and 192 sex- and age-matched controls who did not
progress to HF enabled identification of 96 potentially HF-specific peptide biomarkers. Based on these 96 peptides, the classifier
called Heart Failure Predictor (HFP) was established by support vector machine modeling. The incremental prognostic value of HFP
was subsequently evaluated in urine samples from 175 individuals with asymptomatic diastolic dysfunction from an independent
population cohort. Within 4.8 years, 17 of these individuals progressed to overt HF. The area under receiver-operating
characteristic curve was 0.70 (95% Cl, 0.56-0.82); P=0.0047 for HFP and 0.57 (0.42-0.72; P=0.62) for N-terminal pro b-type
natriuretic peptide. Hazard ratios were 1.63 (Cl, 1.04-2.55; P=0.032) per 1-SD increment in HFP and 0.70 (CI, 0.35-1.41; P=0.32)
for a doubling of the logarithmically transformed N-terminal pro b-type natriuretic peptide.

Conclusions—HFP is a novel biomarker derived from the urinary proteome and might serve as a sensitive tool to improve risk
stratification, patient management, and understanding of the pathophysiology of HF. (/ Am Heart Assoc. 2017;6:¢005432. DOI:
10.1161/JAHA.116.005432.)
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eft ventricular (LV) heart failure (HF) is a clinical
L syndrome caused by adverse LV structural or functional
alterations resulting in impaired ventricular filling and/or
ejection and thus in the disability of the heart to pump a
sufficient amount of blood to meet the metabolic needs of the
body."* HF represents an enormous public health and
socioeconomic burden.? Because of etiological diversity, it
is difficult to clearly identify all contributing factors in a
clinical setting and to depict the complex pathophysiology by
single biomarkers. Difficulties thus arise in diagnosis, risk

paper of the American Heart Association supported research
into proteomics as applied to cardiovascular health and
disease.® In line with this recommendation, we developed
multidimensional proteomic biomarkers characterizing dis-
tinct molecular manifestations of LV dysfunction that may
provide additional diagnostic and prognostic value and
identify new targets of treatment. We already identified
specific peptide biomarker patterns helping in the diagnosis of
coronary artery disease,* and asymptomatic LV dias-
tolic>®and systolic” dysfunction. The present study aimed to

stratification, and management of HF patients.? A position extend the findings®” of these case—control®’ and cross-
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Clinical Perspective

What Is New?

* We identified a novel multidimensional urinary biomarker
consisting of 96 peptide fragments and named it heart
failure predictor.

e Heart failure predictor predicts progression from asymp-
tomatic left ventricular dysfunction to overt heart failure and
is more accurate than a research-optimized N-terminal pro
b-type natriuretic peptide assay.

What Are the Clinical Implications?

* Heart failure predictor might serve as a tool to improve risk
stratification, patient management, and understanding the
pathophysiology of heart failure.

sectional® studies and to investigate whether the urinary
proteomic signature might predict progression from asymp-
tomatic LV dysfunction to overt symptomatic HF.

Methods
Study Participants

For discovery of the urinary biomarkers, we investigated 95
patients enrolled in the GS (Generation Scotland: Scottish
Family Health Study),® who had either HF at baseline (n=57)
or progressed to HF during follow-up (n=38) and 192 sex- and
age-matched healthy controls selected from the same cohort.
For validation, we studied 175 patients with asymptomatic
diastolic LV dysfunction at baseline enrolled in the FLEMENGHO
(Flemish Study on Environment, Genes and Health Out-
comes>®), of whom over a 4.8-year period 17 developed HF
during follow-up. The diagnosis of HF was ascertained against
the records held by general practitioners or hospitals in the
catchment area of the FLEMENGHO study.’ Both GS (ethical
approval registration number, 10/S1402/20) and FLEMEN-
GHO (ML4804) complied with the Helsinki declaration for
research in humans'® and received ethical approval. Permis-
sion for health record linkage in GS was obtained from the
Privacy Advisory Committee of NHS National Services Scot-
land. The FLEMENGHO database is registered with the Belgian
Privacy Commission (www.privacycommission.be). All partic-
ipants gave informed written consent.

Definition of LV Dysfunction

In the GS study,® HF was an ICD-coded admission to the
hospital for symptomatic HF. In FLEMENGHO, the diagnosis
of subclinical LV diastolic dysfunction relied on echocardio-
graphy. To ascertain the absence of symptoms, participants

completed the London School of Hygiene questionnaires on
cardiovascular and respiratory symptoms.'' As described
elsewhere,'? guideline-driven echocardiographic criteria to
stage patients with advanced diastolic LV dysfunction leave a
large proportion of people unclassified in population studies.
We therefore developed age-specific criteria in a healthy
reference sample drawn from FLEMENGHO'? and replicated
these criteria in an independent European population study.13
Diastolic LV dysfunction included'®': (1) patients with an
abnormally low age-specific transmitral E/A ratio indicative of
impaired relaxation, but without evidence of increased LV
filling pressures (E/e’ <8.5); (2) patients with a mildly-to-
moderately elevated LV filling pressure (E/e’ >8.5) and an E/
A ratio within the normal age-specific range; and (3) patients
with an elevated E/€’ ratio and an abnormally low age-specific
E/A ratio (combined dysfunction).

Proteomic Urine Sample Analysis

Sample preparation and capillary electrophoresis—mass
spectrometry analysis

For proteomic analysis, a 0.7-mL aliquot of stored urine was
thawed immediately before use and diluted with 0.7 mL of
2 mol/L urea, and 10 mmol/L NH4OH containing 0.02%
sodium dodecyl sulphate. To remove higher molecular mass
proteins, such as albumin and immunoglobulins, the sample
was ultrafiltered using Centrisart ultracentrifugation filter
devices (20 kDa MWCO; Sartorius, Gottingen, Germany) at
3000 relative centrifugal force units until 1.1 mL of filtrate
was obtained. This filtrate was then applied onto a PD-10
desalting column (GE Healthcare, Uppsala, Sweden) equili-
brated in 0.01% NH4OH in HPLC-grade in H,O (Carl Roth
GmbH, Karlsruhe, Germany) to decrease matrix effects by
removing urea, electrolytes, salts, and to enrich polypeptides.
Finally, all samples were lyophilized, stored at 4°C, and
suspended in HPLC-grade H,O shortly before capillary
electrophoresis—mass spectrometry (CE-MS) analyses.'*

CE-MS analyses were performed using a P/ACE MDQ
capillary electrophoresis system (Beckman Coulter, Fullerton,
CA) on-line coupled to a micrOTOF MS (Bruker Daltonics,
Bremen, Germany).'*'® The electrospray ionization device
(Agilent Technologies, Palo Alto, CA) was grounded, and the
ion spray interface potential was set between —4 and
—4.5 kV. Data acquisition and MS acquisition methods were
automatically controlled by the CE via contact-close-relays.
Spectra were accumulated every 3 s, over a mass-to-charge
ratio (m/z) ranging from 350 to 3000.

Quality control

Accuracy, precision, selectivity, sensitivity, reproducibility
(Figure 1), and stability of the CE-MS have been previously
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Figure 1. Proteome coverage of 6 CE-MS runs (A through F) of human urine standards. The molecular mass on a logarithmic scale
(0.8-20 kDa on the y-axis) was plotted against the normalized CE migration time (15-45 minutes on the x-axis). Peak height and color
represent average signal intensity. The human urine standard is a urine sample from a randomly selected healthy person that is used for quality

control.’® CE-MS indicates capillary electrophoresis—mass spectrometry.

published.''® Quality control involves daily CE-MS runs of
human urine standards.'® CE has a high reproducibility with at
least 70% of peptide recovered compared with only 43% by
liquid chromatography. To prevent variability because of carry-
over effects from 1 to the next run, capillaries are recondi-
tioned between runs (eg, 1 mol/L NaOH). Figure 1 shows
proteome coverage of 6 CE-MS runs of human urine
standards. The coefficient of variance estimated from over
600 urine samples collected once daily for over 3 years was
5.8%."

Mass spectrometric data processing

Mass spectral peaks representing identical molecules at
different charge states were deconvoluted into single masses,
using MosaiquesVisu software.'® Only signals with z of more
than 1 observed in a minimum of 3 consecutive spectra with a
signal-to-noise ratio of at least 4 were considered. Reference

signals of 1770 urinary polypeptides were used for CE-time
calibration by locally weighted regression. For normalization
of analytical and urine dilution variances, signal intensities
were normalized relative to 29 “housekeeping” peptides. '*?°
The obtained peak lists characterize each polypeptide by its
molecular mass, normalized CE migration time, and normal-
ized signal intensity. All detected peptides were deposited,
matched, and annotated in a Microsoft SQL database,
allowing further statistical analysis.?' For clustering, peptides
in different samples were considered identical, if mass
deviation was <50 ppm. CE migration time was controlled
to be below 0.35 minutes after calibration.

Sequencing of polypeptides

HF biomarkers were in silico assigned to the previously
sequenced peptides from Human Urinary Proteome Database,
version 2.0.%% Peptides from this database were sequenced,

DOI: 10.1161/JAHA.116.005432

Journal of the American Heart Association 3

HDYVHASHY TVNIDIYO



Heart Failure and the Urinary Peptidome Zhang et al

as described elsewhere.?®?* Briefly, urinary peptides were
fragmented using different tandem mass spectrometric
techniques with a prior separation step with CE or HPLC.
Fragmentation spectra were matched to the protein
sequences from up-to-date public databases (IPI, NCBI
Reference Sequence Database and Uniprot), using MS/MS
search engines MASCOT (Matrix Sciences Ltd., London, UK)
and OMSSA (National Center for Biotechnology Information,
Bethesda, MD). In matching, we accounted for urinary
proteins posttranslational modifications, such as hydroxyla-
tion of lysine and proline, and specific MS characteristics.
Peptide sequences from liquid chromatography—MS analyses
were verified by the comparison of experimental and
theoretical CE migration time, which is dependent on the
number of basic and neutral polar amino acids.

Identified HF-specific urinary peptides were combined into
a single multidimensional classifier called Heart Failure
Predictor (HFP), using the support vector machine-based

MosaCluster software, version 1.7.0.2° MosaCluster calcu-
lates classification scores based on the amplitudes of the
selected biomarkers. Classification is performed by determin-
ing the Euclidian distance (defined as the support-vector
machine classification score) of the vector to a maximal
margin hyperplane. The parameters for derivation of the HFP
classifier were 6.4 for C, 0.008192 for gamma, and 0.001 for
epsilon. In sensitivity analyses, we forced sex and age into the
computations of the classification scores.

Other Measurements

Hypertension was a blood pressure of at least 140 mm Hg
systolic or 90 mm Hg diastolic or use of antihypertensive
drugs. Venous blood samples were drawn after at least
6 hours of fasting for measurement of plasma glucose and
serum total and high-density lipoprotein cholesterol and
serum creatinine. We derived the estimated glomerular

Table 1. Baseline Characteristics of Cases and Controls Nested in the GS

Characteristic HF at Baseline Incident HF Healthy Controls
Number 57 38 192
Number of subjects, %
Women 18 (31.6) 12 (31.6) 61 (31.3)
Hypertension 46 (80.7) 26 (68.6) 157 (81.8)
Diabetes mellitus 9 (15.8) 3(7.9 8 (4.2
Obesity 23 (41.1) 10 (26.3) 42 (22.0)
Mean (SD) of characteristic
Age, y 69+10* 64+11 64+9
Body mass index, kg/m? 2945 2845 2745
Waist-to-hip ratio 0.94+0.08* 0.91+0.07 0.91+0.09
Blood pressure, mm Hg
Systolic pressure 136423 143421 141417
Diastolic pressure 78+13* 81+12* 82+10
Heart rate, beats per minute 68+£12 7014 67+11
Biochemical data
Serum creatinine, pmol/L 944-28* 85+19* 80413
eGFR, mL/min per 1.73 m? 74422 80+17* 85415
Total cholesterol, mmol/L 4.3+41.0* 4.941.4* 52411
HDL cholesterol, mmol/L 1.24+0.4* 1.34+0.4* 1.44+0.4
Plasma glucose, mmol/L 5.8+2.2¢ 5.2+1.6* 51+1.3
NT-proBNP, pg/mL 278 (93-774)* 132 (69-242)* 48 (32-72)

Values are mean (+SD) or geometric mean (interquartile range). Hypertension was an office blood pressure of >140 mm Hg systolic, >90 mm Hg diastolic, or use of antihypertensive
drugs. Diabetes mellitus was a self-reported diagnosis, a fasting glucose level of at least 7 mmol/L, or use of antidiabetic agents. Obesity was a body mass index of >30 kg/m?. For
NT-proBNP, values are geometric mean (interquartile range). eGFR indicates estimated glomerular filtration rate; HDL, high-density lipoprotein; HF, heart failure; NT-proBNP, N-terminal

pro-b-type natriuretic peptide.
*Indicates a difference (P<0.05) between cases and controls.
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5616 peptides detected

N

1380 with more than
30% frequency in the training cohort

157 proteins 658 sequenced

722 non-sequenced

96 with significant difference in
abundance between cases and controls
with correction for multiple testing applied

-

Construction of HFP in the discovery phase

Figure 2. Flow chart illustrating the peptides retained in the generation of HFP. HFP indicates Heart

Failure Predictor.

filtration rate from serum creatinine by the Modification of
Diet in Renal Disease formula.?® Diabetes mellitus was a self-
reported diagnosis, a fasting glucose level of at least 7 mmol/
L, or use of antidiabetic agents.?” In the GS study,® N-terminal
proatrial natriuretic peptide (NT-proBNP) was measured using
an automated ELISA assay (Roche Diagnostics, Basel,
Switzerland) with an interassay coefficient of variation of
<3%. The lower limit of detection was 5 pg of NT-proBNP per
mL. In the FLEMENGHO study,'%"® NT-proBNP was measured
in plasma by a competitive enzyme immunoassay for research
use (Biomedica Gruppe, Vienna, Austria).”® The interassay and
intra-assay variations were lower than 15%. The lower
detection limit was 5 pmol of NT-proBNP/L. The standard
range provided by the manufacturer of the enzyme

immunoassay is from O to 1000 pmol/L (median,
208 pmol/L; 95% percentile, 300 pmol/L).

Statistical Analysis

We compared means and proportions characterizing the study
participants at baseline by Student t test and Fisher exact
test, respectively. We compared urinary peptide levels with a
detectable signal in at least 30% of participants by the
nonparametric Wilcoxon rank sum test. Unadjusted P values
were calculated using the normal approximation of the
Wilcoxon test statistic. In the GS study, we applied the
Benjamini-Hochberg approach with the false discovery rate
set at 5%.%° We used Cox regression to compute hazard ratios
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Table 2. Sequenced Peptides Included in the Heart Failure-Specific Peptide Panel in the GS Cohort

ID Sequence Protein Name Accession Number | BAS INC Overlap

107929 | DAaHKSEVAHRFKDLGEENFKALVL Serum albumin P02768 +28.1 | +44.5

2505 SpGEAGRpG Collagen «-1(l) chain P02452 -22 | —13 | 2

2659 DDGEAGKpG Collagen o-1(l) chain P02452 21| 12 |2

5675 DGKTGPpGPA Collagen o-1(l) chain P02452 21 | —1.2

14906 DGRpGPpGPpG Collagen o-1(l) chain P02452 27 | —14 | 2

16779 | ApGDRGEpGPP Collagen a-1(l) chain P02452 —-2.8 | +1.3

17694 | ApGDRGEpGpP Collagen «-1(1) chain P02452 28 | -13 | 2

21365 | PpGEAGKpGEQG Collagen o-1(l) chain P02452 +1.8 | —1.0 | 2

23697 DDGEAGKpGRpG Collagen a-1(l) chain P02452 -21 | —-12 | 1

28561 | SpGPDGKTGPpGPA Collagen o-1(l) chain P02452 -29 | —15 | 1,2

30575 | SpGSpGPDGKTGPp Collagen o-1(l) chain P02452 -33 | —1.2

32171 ApGDRGEpGPpGPA Collagen «-1(l) chain P02452 -15 | —-12 | 1.2

35339 | ApGDRGEpGPpGPAG Collagen o-1(l) chain P02452 14 | —11 | 1,2

42594 | VGPpGpPGPPGPPGPPS Collagen -1(l) chain P02452 -18 | —1.2

43442 | VGPpGPpGPpGPPGPPS Collagen a-1(l) chain P02452 —-14 | —11

50638 | PpGPpGKNGDDGEAGKP Collagen o-1(l) chain P02452 -2.1 | +141

51175 | EGSpGRDGSpGAKGDRG Collagen a-1(l) chain P02452 2.3 | +1.1

51875 | VGPpGPpGPpGPPGPPSAG Collagen o-1(l) chain P02452 +1.6 | +1.1

62504 | TGPIGPpGPAGApPGDKGESGP Collagen a-1(l) chain P02452 +2.1 +1.2

63209 | EGSpGRDGSpGAKGDRGET Collagen o-1(1) chain P02452 —-20 | —11 | 2

65257 | SGEpGApGSKGDTGAKGEpPGP Collagen o-1(l) chain P02452 +1.7 | +3.2 2

72896 | SGEpGApGSKGDTGAKGEpPGPVG Collagen a-1(l) chain P02452 +12 | +1.4

75846 | GPpGEAGKpGEQGVpGDLGApGP Collagen ao-1(l) chain P02452 +12 | +1.3

77018 | DGQPGAKGEpGDAGAKGDAGPPGp Collagen o-1(l) chain P02452 +1.2 | +1.4

78073 | AEGSpGRDGSpGAKGDRGETGPA Collagen «-1(l) chain P02452 -11 | -21

81457 | IGPpGPAGAPGDKGESGPSGPAGPTG Collagen o-1(l) chain P02452 11 | —1.8

82234 IGPpGPAGAPGDKGESGPSGPAGPTG Collagen «-1(l) chain P02452 -12 | -26

87460 KGNSGEPGApGSKGDTGAKGEPGPVG Collagen a-1(l) chain P02452 +1.5 +1.9

99808 | LTGPIGPPGpAGApGDKGESGPSGPAGPTG Collagen o-1(l) chain P02452 12 | 1.2

118163 | LTGSpGSpGpDGKTGPPGPAGQDGRPGPpGppG | Collagen o-1(l) chain P02452 -11 | —15

36769 | DGPpGRDGQpGHKG Collagen o-2(l) chain P08123 -12 | =21

48093 GpAGPRGERGPpGESGA Collagen a-2(1) chain P08123 +1.2 | +2.0 2

110240 | LKGQpGApGVKGEpGApGENGTPGQTGARG Collagen o-2() chain P08123 +7.7 | +2.2

114086 | TGEVGAVGPpGFAGEKGPSGEAGTAGPpGTpGP | Collagen o-2() chain P08123 +1.3 +2.0

18988 | DGESGRpGRpG Collagen a-1(lll) chain P02461 -12 | =30

28747 | SpGERGETGPpGP Collagen a-1(1ll) chain P02461 +1.1 +1.4 |1

30699 | DGApGKNGERGGpG Collagen a-1(lll) chain P02461 -1.0 | —24 | 2

36784 DGVPGKDGPRGPTGP Collagen a-1(lll) chain P02461 +1.0 | +2.0 2

38798 | GLpGTGGPpGENGKpG Collagen o-1(1ll) chain P02461 11| -21 | 2

49295 | ApGGKGDAGApGERGPpG Collagen o-1(1ll) chain P02461 +1.2 | +1.8

61304 GLpGTGGPpGENGKPGEPGp Collagen a-1(lll) chain P02461 +1.5 +3.6 2

61945 GLpGTGGPpGENGKpGEPGp Collagen a-1(1ll) chain P02461 +1.6 | +2.6 2
Continued
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Table 2. Continued

D Sequence Protein Name Accession Number | BAS INC Overlap
64887 | GApPGApPGGKGDAGAPGERGPpG Collagen o-1(lll) chain P02461 +1.3 | +2.4
107460 | KNGETGPQGPPGPTGPGGDKGDTGPpGpQG Collagen o-1(lll) chain P02461 -12 | =17 | 1
84484 pGFPGAQGEPGSQGEpGDpGLpGP Collagen o-2(IV) chain P08572 +16 | +2.8
30500 | GApGLAGpAGpQGpS Collagen a-1(VIl) chain Q02388-2 +1.7 | +2.1
86029 PpGppGPpGVPGSDGIDGDNGPPGK Collagen o-2(IX) chain HOY409 +1.3 | +2.0
129940 | DVGSYQEKVDVVLGPIQLQTPPRREEEPR Deleted in malignant brain tumors 1 protein Q9UGM3 +1.4 | +2.0
98089 | DEAGSEADHEGTHSTKRGHAKSRP Fibrinogen o chain P02671 +16 | +24 |1
103912 | DEAGSEADHEGTHSTKRGHAKSRPV Fibrinogen o chain P02671 +1.4 | +1.9
17968 DGGGSPKGDVDP Sodium/potassium-transporting ATPase subunit v | P54710 —12 | —14 | 2
13747 | ATKTVGSDTF Kininogen-1 P01042-2 +1.1 —-2.8
67263 GSGGSSYGSGGGSYGSGGGGGGGRG Keratin; type Il cytoskeletal 1 P04264 —-11 | —16
59368 | FGASAGTGDLSDNHDIIS Vesicular integral-membrane protein VIP36 Q12907 +1.7 | +3.0
73434 KDQGGYTmHQDQEGDTDAG Microtubule—associated protein t; MAPT P10636 —-13 | 1.7 | 1
87692 EDPQGDAAQKTDTSHHDQDHP Short peptide from AAT G3v387 -13 | -21
73015 ELTETGVEAAAASAISVARTL Plasma protease C1 inhibitor P05155 +1.9 | +5.7
111426 | IPVKQADSGSSEEKQLYNKYPDAVAT Osteopontin P10451 +19 | +15
118694 | IPVKQADSGSSEEKQLYNKYPDAVATW Osteopontin P10451 +29 | +7.1

The analysis of 49 cases with HF at baseline (BAS), 36 cases with incident HF (INC), and 192 controls identified 59 differentially excreted peptides that could be sequenced. The accession
number is the identifier in the UniProtKB database (www.uniprot.org). BAS and INC are fold changes of amplitude comparing heart failure cases at baseline (BAS) and incident heart failure
at follow-up (INC) to normal controls, respectively. The differential excretion was computed as (amplitude casesxfrequency)/(amplitude controlxfrequency) or as (amplitude
controlsxfrequency)/(amplitude casesxfrequency) for upregulated (+) and downregulated (—) proteins in cases vs controls, respectively. Amplitude refers to the average mass
spectrometric signal and frequency to the number of individuals with a detectable signal. Overlap refers to the peptide fragments also included in the previously published HF1

(1; reference 5) and HF patients with reduced ejection fraction (2; reference 7) classifiers. HF indicates heart failure.

and to determine clinical characteristics relevant for progres-
sion to overt HF. We identified covariables to be retained by a
backward elimination with the P value set at 0.1. Variables
with physiological relevance that were not retained by the
stepdown procedure were combined in a propensity score®°
derived by regressing HFP on covariables, including sex, body
mass index, mean arterial pressure, heart rate, LV mass index,
treatment with inhibitors of the renin system, and use of
B-blockers. To account for the small sample size in the
replication sample (FLEMENGHO®>®), we applied Firth
regression.>’ In FLEMENGHO nparticipants,>® we evaluated
the discriminatory performance of HFP by constructing the
receiver operating characteristic curve and calculating the
area under the receiver operating characteristic curve.

Results

Design of HFP in the GS Study

Cases were 57 patients with overt HF (ICD10 code, 150.1)
present at baseline and 38 patients who over a 5-year follow-
up period progressed to symptomatic HF requiring hospital-
ization (median time to event, 2.9 years). Among cases with

incident HF, 19 (50%) had elevated levels of NT-proBNP
(>125 pg/mL) at baseline. Controls were 192 sex- and age-
matched healthy individuals with normal NT-proBNP level
(Table 1).

Impaired renal function is a potential confounder in urinary
biomarker discovery.®? We therefore excluded the 10 patients
with an estimated glomerular filtration rate of <45 mL/min
per 1.73 m? (stage 3B according to the National Kidney
Foundation Kidney Disease Outcomes Quality Initiative guide-
line [www.kidney.org]) from biomarker discovery, leaving 49
with overt HF at baseline and 36 with incident HF. The total
number of detected peptide fragments was 5616, but only
1380 (24.6%) with a signal in at least 30% of study
participants were analyzed. Of these 1380 peptides (Fig-
ure 2), 722 were not sequenced and 658 were sequenced.
The sequenced peptides enabled identification of 157 parent
proteins. Comparison of cases and controls with the false
discovery rate set at 5% identified 96 potential peptide
biomarkers, of which 59 were characterized by sequence and
posttranslational modification (Table 2). The majority of the
sequenced peptides originated from the extracellular matrix
and were fragments of collagen | (n=33), lll (n=10), as well as
collagen IV, VII, and IX (each n=1). Other peptides originated
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from o-1-antitrypsin, fibrinogen o (n=2), kininogen-1, micro-
tubule-associated protein 1, osteopontin (n=2), plasma pro-
tease C1 inhibitor, and serum albumin (Table 2).

To reduce overfitting in the support vector machine
modeling, for the generation of a novel multidimensional
classifier for HF, we included all available 95 cases, irrespec-
tive of their renal function. The resulting classifier, HFP
(threshold level —0.22), allowed correct discrimination of 57
patients with HF at baseline and 38 patients with incident HF
versus 192 controls with 100% accuracy upon complete take-

Table 3. Baseline Characteristics of Cases and Controls in
the FLEMENGHO Study

Characteristic Cases Controls
Number 17 158
Number of subjects, %
Women 11 (64.7) 90 (57.0)
Hypertension 13 (76.5) 128 (81.0)
Diabetes mellitus 3(17.7) 13 (8.2)
Obesity 4 (23.5) 52 (32.9)
Mean (SD) of characteristic
Age, y 72-46* 64413
Body mass index, kg/m? 2844 2844
Waist-to-hip ratio 0.89+0.08 0.90+0.08
Blood pressure, mm Hg
Systolic pressure 142+19 143+19
Diastolic pressure 76+9* 82+10
Heart rate, beats per minute 55+11* 63+11
Biochemical data
Serum creatinine, pmol/L 85+19 87421
eGFR, mL/min per 1.73 m? 71+16 72+14
Total cholesterol, mmol/L 5.44-0.8 5.5+1.0
HDL cholesterol, mmol/L 1.54+0.3 1.4+0.3
Plasma glucose, mmol/L 5.6+1.9 52411

NT-proBNP, pmol/L
Echocardiography data

269 (251-432) | 245 (166-389)

LVEF, % 68+9 70+9
¢’ peak, cm/s 7517 7.74+1.9
E/e/ 9.94+2.6 9.242.9

Values are mean (+SD) or geometric mean (interquartile range). Hypertension was an
office blood pressure of >140 mm Hg systolic, 290 mm Hg diastolic, or use of
antihypertensive drugs. Diabetes mellitus was a self-reported diagnosis, a fasting
glucose level of at least 7 mmol/L, or use of antidiabetic agents. Obesity was a body
mass index of >30 kg/m?. For NT-proBNP, values are geometric mean (interquartile
range). eGFR indicates estimated glomerular filtration rate; FLEMENGHO, Flemish Study
on Environment, Genes and Health Outcomes; HDL, high-density lipoprotein; HF, heart
failure; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-b-type
natriuretic peptide.

*Indicates a difference (P<0.05) between cases and controls.

1-out cross-validation. HFP had 11 (11.5%) peptide fragments
in common with the earlier published classifiers HF1 devel-
oped in hypertensive patients with asymptomatic LV diastolic
dysfunction®® and shared 22 (22.9%) peptides with HFrEF103
derived in HF patients with reduced ejection fraction.”
Twenty-two of these common peptides have a known
sequence (Table 2). Forcing sex and age into the computa-
tions of the classification scores did not affect the perfor-
mance of HFP.

Replication of HFP in the FLEMENGHO Study

The prognostic utility of HFP was assessed in the independent
FLEMENGHO cohort by applying the classifier onto the
proteome profiles of 175 individuals with asymptomatic LV
diastolic dysfunction but without previous coronary events
(Table 3). Median follow-up was 4.7 years (interquartile
range, 4.5-5.1; range, 1.1-8.4 years) in 158 patients who
did not progress to HF and 5.0 years (interquartile range, 4.4—
6.2; range, 3.4-7.2) in 17 patients who developed overt
diastolic HF (P=0.20). In stepdown Cox regression, age was
the only covariable retaining significance. With adjustment for
age and the propensity score, the hazard ratio for HF
associated with HFP in Firth regression was 1.64 (Cl, 1.05—
2.53; P=0.029) for a 1-SD increment. The corresponding
hazard ratio for logarithmically transformed NT-proBNP was
0.70 (Cl, 0.36—1.38; P=0.31). In similarly adjusted models
including both biomarkers, the hazard ratios were 1.63 (Cl,
1.04-2.55; P=0.032) for HFP and 0.70 (Cl, 0.35-1.41;
P=0.32) for NT-proBNP.

The area under the receiver operating characteristic curve
for NT-proBNP was 0.57 (95% Cl, 0.42-0.72; P=0.62). For
HFP, the area under the receiver operating characteristic
curve was 0.70 (Cl, 0.56-0.82; P=0.0047; Figure 3). The
performance of the classifier made up of only type | collagens
fragments (n=33) generated an area under the receiver
operating characteristic curve of 0.60 (Cl, 0.44-0.76;
P=0.21).

Discussion

We identified urinary peptide biomarkers with prognostic
value for the progression from asymptomatic LV dysfunction
to overt HF. The ensuing multidimensional classifier HFP
surpassed a research-optimized NT-proBNP assay in the
prediction of progression to symptomatic HF. NT-ProBNP, an
inactive fragment of the cleaved pro-BNP molecule, is the
guideline-endorsed state-of-the-art clinical marker to confirm
HF diagnosis.®*

From a mechanistic point of view, HFP extensively depicts
specific excretory molecular phenotypic alterations associ-
ated with progressive LV dysfunction. Fragments of fibrillar
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Figure 3. Receiver operating characteristic curve for the HFP
score factors and NT-proBNP values of the comparison between
patients with preclinical left ventricular diastolic dysfunction who
did and did not progress to overt heart failure in the FLEMENGHO
cohort. FLEMENGHO indicates the Flemish Study on Environment,
Genes and Health Outcomes; HFP, Heart Failure Predictor;
NT-proBNP, N-terminal pro b-type natriuretic peptide.

type | and Il collagen, important components of the
myocardial extracellular matrix,>* predominantly make up
the proteomic urinary signature associated with HF. These
observations are in line with altered collagen synthesis,*®
chemical/enzymatic cross-linking,® and/or turnover by dif-
ferent proteases®>®” as the mechanisms underlying the
perturbed LV mechanics and geometry®®®? and progression
to HF.*® Renal dysfunction secondary to HF?? might also have
contributed to the urinary peptide excretion pattern as
captured by HFP.

In addition to collagens, the biomarker pattern included
peptide fragments from o-1-antitrypsin and osteopontin,
which showed an elevated differential excretion in cases
(Table 2). Levels of a-1-antitrypsin progressively increase
across the New York Heart Association classes of HF and
correlate with B-type natriuretic peptide.*’ This might be a
compensatory mechanism for the loss of anti-protease
activity as a consequence of oxidative stress. The presence
of a kininogen-1 fragment in HFP indicated that alterations in
kininogen-1 and therefore kinins, its cleavage products, may
also be relevant for the diagnosis and prediction of HF. Kinins,
such as bradykinin (kallidin-l) and lysyl-bradykinin (kallidin-Il),
are potent vasoactive and inflammatory peptides acting
through the formation of nitric oxide radicals and prostacy-
clin.*? Inhibition of kinin degradation by angiotensin-convert-
ing enzyme inhibitors increases LV ejection fraction and

decreases the LV end-diastolic volume,*® thereby underscor-
ing the relevance of kinins in the pathophysiology of HF.
Moreover, in line with the observed increased HF-related
excretion of osteopontin and altered excretion of collagen
type | and I, Lépez and coworkers demonstrated that
elevated expression of osteopontin in HF patients correlated
with collagen cross-linking lysyl oxidase and insoluble
collagen.** Combined with NT-proBNP, osteopontin improves
the diagnosis of acute heart failure and refines risk
stratification.*®

Conclusions

HFP is a novel biomarker derived from the urinary proteome
and might serve as a tool to improve risk stratification, patient
management, and understanding of the pathophysiology of
HF. While the prognostic utility of HFP has been validated in a
fully independent cohort, our study must be interpreted within
the context of its limitations. First, the number of patients
progressing to overt HF in the validation cohort was relatively
small (9.7%), thus limiting the statistical assessment of the
prognostic utility. However, we applied Firth regression as a
bias-corrected approach to conventional Cox regression.
Second, we derived HFP from peptides with a detectable
signal in at least 30% of study participants. Incomplete data
might be perceived as a weakness. However, ignoring
biomarkers with missing values wastes potentially important
information, explaining why in proteomic studies missing
values of 50% or more are commonly accepted without
consensus about the threshold to be applied. Moreover, the
30% threshold in this article is in keeping with our previously
published peer-reviewed research. Third, the fact that not all
identified polypeptides were sequenced impedes to some
extent the insight into the pathophysiological mechanisms
underlying HF. Finally, our current study cannot prove the
origin of the urinary collagen fragments. However, we are now
running proteomics on biopsies taken from explanted (dis-
eased) and implanted (healthy) hearts during cardiac trans-
plantation surgery in an attempt to prove that the urinary and
tissue proteomic signatures are similar (http://erc.europa.e
u/projects-and-results /erc-funded-projects/prophet). In spite
of these limitations, our study underscores the diagnostic and
prognostic power of a multidimensional biomarker approach.
Further studies are necessary to reach the high level of
evidence sufficient to establish HFP as a clinically valuable
test.
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