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Abstract: Lung cancer is still the leading cause of cancer death in the world. For this reason, novel
approaches for early and more accurate diagnosis are needed. Computer-aided decision (CAD)
can be an interesting option for a noninvasive tumour characterisation based on thoracic computed
tomography (CT) image analysis. Until now, radiomics have been focused on tumour features
analysis, and have not considered the information on other lung structures that can have relevant
features for tumour genotype classification, especially for epidermal growth factor receptor (EGFR),
which is the mutation with the most successful targeted therapies. With this perspective paper, we
aim to explore a comprehensive analysis of the need to combine the information from tumours with
other lung structures for the next generation of CADs, which could create a high impact on targeted
therapies and personalised medicine. The forthcoming artificial intelligence (AI)-based approaches
for lung cancer assessment should be able to make a holistic analysis, capturing information from
pathological processes involved in cancer development. The powerful and interpretable AI models
allow us to identify novel biomarkers of cancer development, contributing to new insights about the
pathological processes, and making a more accurate diagnosis to help in the treatment plan selection.

Keywords: lung cancer assessment; tumour characterisation; personalised medicine; computer-aided
decision; computed tomography analysis

1. Introduction

Lung cancer is still the leading cause of cancer death in the world as a result of high
incidence combined with low 5-year survival rates [1,2]. For these reasons, lung cancer
deserves special attention from the medicine, biology, and scientific communities in order
to develop novel solutions to increase the early diagnosis, assist in treatment decisions,
and monitor responses to improve patient outcomes. The molecular profile of the tumour
tissues enables the identification of driver mutations, and targeted therapies can be used
for particular genotypes. Traditional chemotherapy works by killing all cells, without
discriminating between normal and cancerous cells. Instead, targeted therapy acts in
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specific elements, interfering with the cancer driver genes and stopping or slowing the
growth of tumour cells.

Epidermal growth factor receptors (EGFRs) and Kirsten rat sarcoma viral oncogenes
(KRASs) are the most frequently mutated genes present in non-small-cell lung cancer
(NSCLC) [3–5], which is a major sub-type of lung cancer [6]. Activating mutations in
EGFRs (namely exon 19 deletions or exon 21 L858R point mutations) benefit from treatment
with EGFR tyrosine kinase inhibitors (TKIs) [7–9]. This gene is responsible for multiple
biological processes and is useful to determine the clinical outcomes in many lung diseases.
Abnormalities in EGFR pathways cause abnormal EGFR signalling and are associated with
cancer, lung fibrosis, and numerous airway diseases [10]. Targeted therapies have been
studied in recent years, with encouraging results for EGFRs [11,12], improving progression-
free survival for patients with advanced NSCLC who were selected on the basis of EGFR
mutations [12–15]. EGFR-dedicated therapies are currently used as first- and second-line
lung cancer treatments [16], and several others are in development [17]. On the other
hand, mutant KRAS has a wide spectrum of other co-occurring genetic alterations and a
high biological heterogeneity, including diverse KRAS point mutations, which hinder the
development of new target therapies [18]. For mutated KRAS, there are no current clinically
approved targeted therapies, but there are several KRAS inhibitors in clinical trials [19–21].
Additionally, another target therapy of NSCLC has emerged—immunotherapy. This therapy
relies on the use of immune checkpoint inhibitors to release the patient’s immune cells
to fight the cancer [22]. Although it has demonstrated significant patient improvement,
only a small portion of patients benefit from this therapy (20%) [23]. This is attributed
to the low performance of the current predictive biomarkers of response to immune
checkpoint blockade therapy, which rely on detection of programmed death ligand 1 (PD-
L1) in cancer tissue [24]. Tumour-infiltrating immune cells are a key population of the
tumour microenvironment and mediate the antitumor effects of immunotherapy [25]. The
classification of the different immune cells helps to better define the immunogenic potency
of NSCLC [26]. Despite the evident benefits, with the increased use of these personalised
therapies in oncology, new side effects have emerged, causing important clinical challenges
in the management of lung cancer patients. In fact, although the majority of these events
are mild, some of them can be severe and potentially life-threatening [27].

Tissue biopsy is the traditional method to identify the main biomarkers of the tu-
mour [28]; however, it is an invasive procedure with clinical implications such as pneu-
mothorax, pain, and complications like infection, haemorrhage, and damage to surround-
ing tissues [29]. Due to the importance of tumour characterisation, less invasive, easier,
and faster techniques to access the genotype of the tumour are needed. Computed tomog-
raphy (CT) plays a key role in lung cancer management from initial diagnosis and staging
to treatment response assessment [30]. CT is more sensitive than chest radiography in
lung cancer screening [31–33]. Moreover, it allows for a three-dimensional (3D) thorax
characterisation as each nodule is assessed, and information about other lung structures
can be retrieved. The application of artificial intelligence (AI) solutions for lung cancer
imaging has been dedicated to reproducing the radiology procedure. The traditional
computer-aided decision (CAD) support system approaches based on a CT scan start
with nodule detection and segmentation for further analysis, e.g., malignancy and sub-
type classification [32,34,35]. AI-based solutions dedicated to predicting the risk of LCa
showed high-performance results and represent an opportunity to optimise the screening
process, reducing the false positives and false negatives on assessments performed by
radiologists [35]. On the genotype characterisation, previous studies using the radiomic
features from CT images have shown that it is possible to use the imaging information
to predict the gene mutation status related to cancer development [36–40]. However, the
majority of these studies are focused on the nodule, which cannot capture the extension
and complexity of the pathophysiological phenomena that occur in the other structures,
but that can be related to the cancer development—and could introduce insights useful for
the diagnosis and prognosis of the patient.
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The general idea for AI-based solutions is to follow the same procedure but improve
the accuracy of the diagnosis by trying to detect missed nodules, reducing the time and
effort of clinicians during the evaluation process, and creating a measurable impact on
clinical management and patient outcomes. Furthermore, AI-based solutions enable the
identification of radiomic information from the lung structures on the CT images that
are not visible to the naked eyes of radiologists, producing a more accurate genotype
characterisation. In fact, this comprehensive perspective has not yet been explored for
CADs in lung cancer. Recent works studied other lung structure abnormalities and found
relevant relations with the presence of lung cancer. The current work identifies the studies
of the most important pathophysiological processes in the lung related to lung cancer
and opens the discussion about what kind of information can be decisive for these novel
and comprehensive radiomic approaches. The next generation of CADs aim to integrate
more representative information about the relevant biological changes in the lung to pro-
duce predictive models that can improve the accuracy of the tumour characterisation
(avoiding the need for biopsy) in order to help therapeutic decisions and leverage person-
alised medicine—selecting patients who will definitely benefit from targeted therapies and
avoiding superfluous therapy-related side effects.

2. Pathophysiologic Features

Genotype characterisation, as an essential step for treatment decision, may benefit
if more information about the simultaneous pathophysiological processes that occur is
combined with traditionally used nodule information. Recent studies have identified other
relevant biological structures beyond the nodule that can help the tumour characterisation
and contribute to a better understanding of cancer development [41,42]. In fact, lung
cancer has been studied as a more extensive clinicopathological phenomenon that involves
several other lung structure alterations, and their relationship with cancer development
has been identified. The main pathophysiological changes related to lung cancer can be
identified on specific findings in the CT images. The most relevant examples are represented
in Figure 1: emphysema, pulmonary fibrosis, air bronchogram, pleural retraction, and
vascular convergence.

Emphysema causes damage to the alveoli, and, as a consequence, there is a reduction
in the gas exchange efficiency [43]. On CT images, emphysema is characterised by a
compartment of air seen at extremely low attenuation areas (Figure 1a) [44]. Chronic
inflammation in the airways has been shown to be important to the pathogenesis of both
emphysema and lung cancer [45–49], and it is recommended to consider emphysema when
assessing lung cancer risk [45,46].

Pulmonary fibrosis affects the tissue surrounding the alveoli (interstitium), and this
condition occurs when lung tissue becomes thick and stiff [50]. The three specific findings
for fibrosis are: traction bronchiectasis, loss of volume, and honeycomb (Figure 1b) [51].
Fibrosis might contribute to carcinogenesis due to the occurrence of atypical or dysplastic
epithelial changes that progress to invasive malignancy [52].

Air bronchogram is characterised by a pattern of air-filled bronchi on the background
of a nodular opacity [53]. The airways appear in the CT images as air-filled structures
that originate an opacification of the surrounding alveoli (Figure 1c) [54]. The correlation
between air bronchogram and lung cancer has been studied, and CT air bronchogram is an
important malignant feature to predict the invasiveness of lung cancer [55,56].

Pleural retraction consists of pulling the visceral pleura toward the invading neoplastic
tissue [57], and can be identified in the CT images as millimetre-thin lines of spun pleura
(Figure 1d). Pleural retraction is correlated with lung cancer [58], and with the EGFR
mutation [59,60].

Vascular convergence is verified when the vessels converge to a nodule without
adjoining or contacting the edge of the nodule (Figure 1e) [57,61,62]. This phenomenon
reflects angiogenesis [57].
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Figure 1. A set of axial computed tomography (CT) images with findings related with lung cancer pathogenesis: (a) cen-
trilobular emphysema; (b) pulmonary-fibrosis; (c) air bronchogram; (d) pleural retraction; and, (e) vascular convergence.

Angiogenesis is essential for tumour growth and metastasis; maybe, for this reason,
the convergence of vasculature towards or surrounding a nodule is related to lung cancer
stage and pathology [61].

3. Comprehensive Perspective for the Next Generation of CADs

The correlation between several pathophysiological changes in the lung has been
studied, since those phenomena do not occur in isolation and usually share pathways
and/or functional mechanisms with lung cancer development. EGFR regulates several
biological processes, and the correlations between different lung pathologies have been
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suggested. This is an important point and can expand the region of interest (ROI) for
predictive models.

Radiomics in lung cancer have mostly been based on nodule assessment [32,63].
Recently, a few approaches have tried to use features from other lung structures; however,
this information came from semantic annotations provided by radiologists [41,42,59]. As
AI has shown to be able to extract and use relevant information, the quantitative analysis
of the lung cancer performed by radiomic analysis could improve the performance on
tumour characterisation—if the data from relevant structures of the lung were taken into
consideration and selected by automatic feature learning methods, avoiding the human
effort required for semantic annotations and making the process less subjective. The next
generation of CADs should be able to use large lung regions for analysis and feature
learning in order to capture more information associated with cancer pathogenesis. The
most powerful learning methods are based on deep learning techniques, which allow for
the capture of information that is not visible to the naked eye and avoid ad hoc feature
extractions, depending on the feature engineering processes used for the task. Furthermore,
those methods allow us to cope with the wide heterogeneities of clinical data using massive
databases. Based on these advantages, the AI-based models for novel and comprehensive
CADs would be mainly based on deep learning algorithms. Additionally, explainable
AI, based on activation maps, can identify which part in the medical image was used to
contribute to the final classification from the learning model [64–66]. AI solutions will
move from “black boxes” to interpretable models that will help clinicians to understand
which are the regions and features that contribute to the final decision, build trust in the
methods to use in the clinical context, and create a deeper understanding of pathological
features that will facilitate the management of lung cancer [67].

Figure 2 represents the main differences between the traditional CADs and the novel
and comprehensive approach of next-generation CADs. The current solutions for automatic
imaging analysis are: focus on the nodule assessment, mainly for screening; and the need
of a biopsy for the tumour characterisation. Novel CADs should be able to detect the
malignancy and characterise the lung tumour based on CT images and clinical data, using
explainable models that help clinicians to understand the choice made by the model.
However, despite not being represented in Figure 2, even the new AI-based solutions will
still need to use biopsy as a backup method for cases in which radiomics would not be
conclusive on tumour characterisation.

There are three main levels of actions for CADs: screening, diagnosis/characterisation,
and treatment assignment. On treatment planning, the comprehensive approach would
assist clinicians in choosing the optimal treatment, with clear and transparent explanations
for recommendations. Currently, recommendations are clear about the need for biopsy
to determine the mutational status of the tumour in order to select the best available
treatment [68]. However, learning from a comprehensive approach offers the possibility of
capturing correspondences between processes and gaining an in-depth understanding of
pathophysiological changes. This would allow for the selection of a personalised treatment
that will improve effectiveness and efficiency while diminishing avoidable therapy-related
adverse events. The AI-based approach would stratify the patient groups according to
their singular properties in order to more effectively evaluate the potential efficacy of
treatments, recommend the sequence of therapies, and predict the effects of specific drugs
and clinical outcomes. This strategy may be particularly helpful in elderly or unfit patients
who are at higher risk of procedure-related complications. In these patients, such risks
may interfere with a proper diagnosis or treatment. For example: since inoperable early
stage lung cancer patients may benefit from stereotactic radiotherapy [69], a noninvasive
diagnosis strategy in this group of patients could diminish the risks, prevent complications
associated with traditional methods, and allow for prompt treatment, thus leading to better
disease control and survival rates. Moreover, CADs would use aggregated knowledge of
many patients with matching results, history, biomarkers, physiological characteristics,
and behavioural risk to present clinicians with the most efficacious treatment option. In
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addition to preventing toxicities, personalised treatment recommendations can reduce time
loss and costs.
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The two approaches represented in Figure 2 have pros and cons based on the specific
features of those approaches and the stage of development (Table 1). The traditional lung
cancer characterisation (biopsy) is an invasive procedure that limits repetition for treatment
response evaluation, and automatic solutions are not currently significantly used in the
screening process. The comprehensive lung cancer characterisation using imagiological
data represents a noninvasive option, avoiding all the complications associated with an
invasive procedure. For this reason, it can be repeated several times in order to assess
the treatment response and personalise a treatment plan. The novel approaches are in
development with the emergence of powerful AI-based models that can give interpretable
information that can be helpful when identifying relations between pathophysiological
processes that occur during cancer development. Novel radiomic approaches will allow
for the identification of the main biomarkers and will study the relationship between
the imagiological findings and the lung cancer development, creating a comprehensive
analysis of pathophysiological processes.

The biggest challenge for these comprehensive models, which will use information
from multiple lung structures, comes from the size of the dataset used for training. Due
to the high degree of variability that can be found in lung structures, there is a need
for a massive amount of data that covers all heterogeneities, in order to create a good
representation of the population [70]. Only with large datasets will it be possible to capture
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the relevant information, correlate pathophysiological phenomena between structures,
and create a better understanding of the processes and mechanisms involved in cancer
development. The analysis based on multiple structures has not yet proven conclusive, but
certainly deserves additional studies since multiple pathophysiological processes share
common pathways and have been shown to be related [47].

Table 1. Pros and Cons of traditional and comprehensive approaches for lung cancer diagnosis.

Traditional Approach Comprehensive Approach

Pros -Clinically validated

-Non-invasive assessment, faster and with lower costs;
-Safety repeated;
-Leverage the personalised medicine;
-Interpretable models;
-Comprehensive perspective

Cons
-Invasive and with clinical implications;
-Restriction for the repetitions of the procedure;
-AI based solutions with residual help in the diagnosis

-In development;
-Requirement large datasets to train the predictive models

The need for large datasets is a transverse limitation on AI-based solutions in health-
care. The ImageNet, composed of 14 million natural images, allowed for the training of
complex and powerful neural networks and consequently revolutionised image classifi-
cation [71]. Currently, the biomedical field is struggling with data size limitations and
attempting to build robust models to help clinicians with diagnoses. Large medical datasets
are extremely difficult to obtain due to privacy and security issues, annotation efforts by
experts, and the huge investment required to collect, store, and maintain the data. The
reuse of clinical data in data banks will allow for an important improvement in deep
learning solutions for healthcare. The LIDC Data Collection Process for Nodule Detection
and Annotation was used in multiple publications [72], allowing for the development of
the most relevant radiomic studies for lung cancer screening using CT images [63]. This
shows the importance of large datasets in leveraging the development of AI tools. With
large datasets, which cover all of the heterogeneities in the population, it will be possible
to study the importance of other lung structures for lung cancer characterisation.

4. Conclusions

Several previous works showed the relationship between pathophysiological changes
in lung structures and lung cancer development, which suggests that there are common
biological pathways that can be captured by CT images and used by comprehensive and
automatic systems to characterise lung cancer. The dataset size (under-representative of the
population) is still the biggest limitation on the development of powerful methods to cope
with the heterogeneities of all lung structures. Some recent works have already tried to
include more information than the nodule features; however, the small datasets (hundreds
of patients) were not representative of all of the variabilities. For this reason, they did
not achieve relevant performance improvement. Even so, they confirm the relevance of
those other structures. These relations can be used to study the mechanism of cancer
development. For radiomic-based solutions, the integration of novel information will
allow for the development of a more comprehensive assessment and more accurate models,
leading to better tumour characterisation and personalised treatment plans. Understanding
the mechanisms that drive cancer processes with other pulmonary diseases—along with
better disease models—is essential for the development of new targeted treatments.
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