
RESEARCH ARTICLE

Estimation of measurement error in plasma

HIV-1 RNA assays near their limit of

quantification

Viviane D. Lima1,2*, Lu Wang1, Chanson Brumme1, Lang Wu3, Julio S. G. Montaner1,2,

P. Richard Harrigan1,2

1 British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada, 2 Division of

AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British

Columbia, Canada, 3 Statistics Department, University of British Columbia, Vancouver, British Columbia,

Canada

* vlima@cfenet.ubc.ca

Abstract

Background

Plasma HIV-1 RNA levels (pVLs), routinely used for clinical management, are influenced by

measurement error (ME) due to physiologic and assay variation.

Objective

To assess the ME of the COBAS HIV-1 Ampliprep AMPLICOR MONITOR ultrasensitive

assay version 1.5 and the COBAS Ampliprep Taqman HIV-1 assay versions 1.0 and 2.0

close to their lower limit of detection. Secondly to examine whether there was any evidence

that pVL measurements closest to the lower limit of quantification, where clinical decisions

are made, were susceptible to a higher degree of random noise than the remaining range.

Methods

We analysed longitudinal pVL of treatment-naïve patients from British Columbia, Canada,

during their first six months on treatment, for time periods when each assay was uniquely

available: Period 1 (Amplicor): 08/03/2000–01/02/2008; Period 2 (Taqman v1.0): 07/01/

2010–07/03/2012; Period 3 (Taqman v2.0): 08/03/2012–30/06/2014. ME was estimated via

generalized additive mixed effects models, adjusting for several clinical and demographic

variables and follow-up time.

Results

The ME associated with each assay was approximately 0.5 log10 copies/mL. The number of

pVL measurements, at a given pVL value, was not randomly distributed; values�250 copies/

mL were strongly systematically overrepresented in all assays, with the prevalence decreasing

monotonically as the pVL increased. Model residuals for pVL�250 copies/mL were approxi-

mately three times higher than that for the higher range, and pVL measurements in this range

could not be modelled effectively due to considerable random noise of the data.
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Conclusions

Although the ME was stable across assays, there is substantial increase in random noise in

measuring pVL close to the lower level of detection. These findings have important clinical

significance, especially in the range where key clinical decisions are made. Thus, pVL val-

ues�250 copies/mL should not be taken as the “truth” and repeat pVL measurement is

encouraged to confirm viral suppression.

Background

Long-term suppression of plasma HIV-1 RNA levels (pVLs) below the quantification limit of

clinically available assays is the critical goal for patients starting combination antiretroviral ther-

apy (cART) [1]. Maintaining pVLs below this threshold has been shown to promote immune

restoration, decrease morbidity and mortality associated with HIV disease, and prevent ongoing

viral evolution and HIV transmission [1]. In most resource-rich settings, patients’ pVLs are

monitored every 3 to 4 months for early diagnostic of treatment failure, and if failure is con-

firmed, treatment switch is often recommended. Frequency of monitoring varies in resource-

limited settings depending on the availability of the test, however, this issue is rapidly evolving

as a result of new guidelines and emerging technologies [2, 3].

Around the world, the Roche COBAS HIV-1 Ampliprep Amplicor Monitor ultrasensitive

assay version 1.5 (or Amplicor v1.5) was used as the gold standard to measure pVLs for almost a

decade (from 1997 to 2008). Its lower limit of quantification (i.e., 50 copies/mL) was adopted as

the threshold defining effective cART [4]. In recent years, this assay was replaced by technically-

simpler assays with a wider dynamic range [5]. Currently, the two most used assays are the Roche

COBAS Ampliprep Taqman HIV-1 assay version 2.0 (or Taqman v2.0) or the Abbott RealTime
HIV-1 RT-PCR assay. Even though pVLs based on these assays are routinely used to inform clini-

cal management, it is important to stress that these measurements are not precise, and they are

influenced by measurement error (ME) due to physiologic and assay variation [6, 7].

Objective

To assess the ME of the Amplicor v1.5 and the Taqman v1.0 and v2.0 assays. Additionally, we

examined whether there was any evidence that pVL measurements closest to the lower limit of

quantification, where clinical decisions are made, were susceptible to a higher degree of ran-

dom noise than the remaining range.

Materials and Methods

Data

Data were extracted from the British Columbia (BC) Centre for Excellence in HIV/AIDS in

Vancouver, Canada. cART is distributed, free-of-charge, to all individuals living with HIV-1

according to specific guidelines consistent with those put forward by the International Antivi-

ral Society-USA since 1996 [1, 8, 9].

Eligible patients were cART naïve,� 19 years old, enrolled between January 1, 2000 and

June 30, 2013 and followed until June 30, 2014. Initial cART regimens consisted of two nucleo-

side reverse transcriptase inhibitors as backbone, plus either a non-nucleoside reverse transcrip-

tase inhibitor (NNRTI), a ritonavir-boosted protease inhibitor (bPI), an integrase inhibitor
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(IIN) or a CCR5 entry inhibitor (EI). Eligible individuals were also required to have a CD4

count and a pVL measured within six months of initiating cART.

CD4 cell counts were measured by flow cytometry, followed by fluorescent monoclonal anti-

body analysis (Beckman Coulter, Inc., Mississauga, Ontario, Canada). CD4 data was obtained

from different laboratories across BC, covering>85% of all tests done in the province. All pVL

measurements were done at the St Paul’s Hospital virology laboratory. Because of the systematic

differences in measurement in the low pVL range, BC’s HIV treatment guidelines now use the

threshold�250 copies/mL by Taqman v2.0 to define virologic suppression [10, 11]. Thus, all

our analyses paid special attention to the data below this cut-off. In BC, approximately 90% of

patients have clade B subtype, and only a small number have other subtypes (mostly clades A

and C subtypes).

Analysis

The first analysis consisted of examining all pVL measurements for each patient during their

follow-up to detect any pattern in pVL results from each assay. Second, for estimating the ME

of these assays, we restricted the data to the first six months of follow-up, since thereafter, the

majority of our patients would have achieved viral suppression, and thus measuring the ME

would be difficult since we do not have the exact pVL value below the assay’s limit of quantifica-

tion. The third analysis consisted in examining the distribution of pVL measurements, between

the lower limit of quantification of these assays and 1000 copies/mL, to assess whether there was

evidence that some low level pVL measurements may simply be assay "false positive" values,

rather than resulting from other factors such as intermittent periods of treatment non-adher-

ence. Note that this is the same range used to define a viral load “blip” [12, 13].

Based on these assays, we stratified the data and analysis into three mutually exclusive periods

in which only one assay was used: Period 1 (Amplicor; range of quantification 50–100,000 cop-

ies/mL): March 8, 2000 to February 1, 2008; Period 2 (Taqman v1.0; 40–1,000,000 copies/mL):

January 7, 2010 to March 6, 2012; Period 3 (Taqman v2.0; 40–1,000,000 copies/mL): March 7,

2012 to June 30, 2014.

The outcome in this study was log10-transformed pVL measured longitudinally from start

of cART up to six months. Explanatory variables, measured at baseline, included: age (continu-

ous), gender (male or female), history of injection drug use (yes, no or unknown), CD4 cell

count, adherence level measured between baseline and 12 months since cART initiation (<40%,

40% to<80%, 80% to<95% or�95%), and regimen (NNRTI, bPI or IIN/EI). We used the

adherence measured at 12 months since it is a more reliable measure than that measured at six

months due to different prescription refill patterns across patients. Adherence level was esti-

mated by dividing the number of months of medications dispensed by the number of months of

follow-up. In different studies, this adherence measure was associated with virologic outcomes

in the short and long terms [14, 15]. We also included in the model the follow-up (in months)

from baseline to the date in which each pVL was measured.

To estimate the ME inherent in each assay, we used generalized additive models with ran-

dom effects [16–18], assuming a first-order autoregressive correlation structure. The advantage

of using these models rely on the fact that they: (1) provide flexibility in modeling non-linear

trends in pVL measurements; (2) adjust for both the inter- and intra-patient variation that, oth-

erwise, can bias our results; (3) are flexible to accommodate unbalanced data (i.e., different

number of pVL measurements per patient); and (4) control for correlated pVL data collected

for each patient over time. This methodology has been previously used to estimate the ME in

CD4 cell count measurements and can be extended to estimating the ME in any PCR (Polymer-

ase Chain Reaction)-based assays. We run these models in R© version 3.2.2. Multivariable

Measurement error in viral load assays
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explanatory models were built using a modified backward stepwise technique based on the

Akaike Information Criterion and Type III p-values [19]. We used a cubic regression spline to

smooth the non-linear time trend. Goodness-of-fit assessment was based on the adjusted R2,

the percentage of the deviance explained, and a test to check the appropriateness of the number

of knots in the model [16, 17].

Thus, for each period, we fitted the following model:

log10 ðPlasma HIV� 1 RNA LevelijÞ

¼ b0i þ b1i Timeij þ b0 þ sðTimeijÞ þ b1 Agei þ b2 Genderi
þ b3 History of Injection Drug Usei þ b4 CD4i þ b5 Adherencei þ b6 Regimeni þ εij

where β0, . . ., β6 represent fixed effect parameters; b0i � Nð0; s2
0iÞ and b1i � Nð0; s2

1iÞ are nor-

mally distributed random effect parameters with mean zero and variance s2
0i and s2

1i, respec-

tively; s( ) denotes the cubic regression spline function; and εij ~ N(0,σ2) are the residuals

which is assumed to be normally distributed with mean zero and variance; for i = 1,. . .,N (i.e.,

the number of patients), j = 1,. . .,Ti (i.e., the number of pVLs per patient). Note that in this

case, the random effect terms were responsible for modeling the inter- and intra-patient varia-

tion, the cubic regression spline function were responsible for modeling the non-linear pVL

trends, and the ME were estimated by taking the square root of the estimated variance of the

residuals (i.e., σ). Note that the residuals are calculated by taking the difference between the

observed and fitted pVL values, and they are the random noise in the model.

Results

We longitudinally followed 1933 patients in Period 1, 979 in Period 2, and 429 in Period 3.

Overall, in all periods of observation, patients were more likely to be male, to have no history

of injection drug use, to have started treatment on a bPI-based regimen, and to have adherence

�95% during the first year on therapy (Table 1). In terms of CD4 cell count at cART initiation,

in Period 1, 60% of patients had CD4 cell count<200 cells/mm3, while in the other periods,

the distribution of baseline CD4 cell count was quite similar across all categories. Additionally,

in all periods, at the start of cART, the median age was just over 40 years, median pVL was

approximately 5.0 log10 copies/mL, and the median number of pVL measurements per patient

ranged from 2 to 3 (Table 1). The trajectories of the mean pVL (and associated 95% confidence

interval) for these periods from start of cART up to six months were very similar and they are

presented in Fig 1.

Based on the multivariable model, the estimated ME for all periods was fairly similar rang-

ing from 0.52 to 0.55 log10 copies/mL (Table 2). Secondly, we examined the frequency of all

pVLs, across all patients, between 50–1000 copies/mL for Period 1 and between 40–1000 cop-

ies/mL for Periods 2 and 3. We noted that pVL measurements closest to the lower limit of

quantification of each of the assays were strongly systematically overrepresented (i.e., not ran-

dom), with the prevalence decreasing monotonically as the reported pVL value increased. To

illustrate this point, we calculated summary statistics for each reported pVL value in the strata

50–99 or 40–99, 100–249, 250–499 and 500–1000 copies/mL (Table 3). For example, in Period

1, we observed that the median number of repeated observations per pVL value in each of

these strata was, respectively, 24 (Q1-Q3: 19–32), 9 (Q1-Q3: 7–12), 4 (Q1-Q3: 2–5) and 2

(Q1-Q3: 1–3). Looking at the non-stratified pVL data we observed that there were 33 observa-

tions of “51 copies/mL”, 50 observations of “52 copies/mL”, 49 observations of “53 copies/

mL”, 31 observations of “54 copies/mL”, while approximately 87% of individual pVLs between

500–1000 copies/mL had 0, 1, 2 or 3 observations.

Measurement error in viral load assays
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In the last analysis, we examined the model residuals to assess whether the pVL measure-

ments may have been susceptible to different degrees of random noise along the range of

quantification of the assays (Table 4). Based on the residual analysis, to address our second

objective, we stratified the model residuals using the cut-off 250 copies/mL. In Period 1, for

example, we observed that the median model residuals for pVL�250 copies/mL was -0.313

(Q1-Q3: -0.514; -0.184), and for pVL >250 copies/mL the median was 0.142 (Q1-Q3: -0.113;

0.390), which in absolute terms, this last value was 2.2 times lower than that for the lower

range. Note that for the other periods, the model residuals in comparing these two pVL strata

were slightly more distinct, being 3.5 and 2.4 times in Periods 2 and 3, respectively.

Table 1. Patient demographic and clinical characteristics by period of plasma HIV-1 RNA level measurements. Period 1 (Amplicor): March 8, 2000 to

February 1, 2008; Period 2 (Taqman v1.0): January 7, 2010 to March 6, 2012; Period 3 (Taqman v2.0): March 7, 2012 to June 30, 2014.

Variable Period 1 Period 2 Period 3

N = 1933 N = 979 N = 429

Gender, n(%)

Male 1584 (82%) 793 (81%) 334 (78%)

Female 349 (18%) 186 (19%) 95 (22%)

History of Injection Drug Use, n(%)

No 869 (45%) 451 (46%) 181 (42%)

Yes 762 (39%) 292 (30%) 91 (21%)

Unknown 302 (16%) 236 (24%) 157 (37%)

Baseline CD4 (cells/mm3), n(%)

<200 1157 (60%) 249 (25%) 99 (23%)

200 to 349 589 (30%) 285 (29%) 94 (22%)

350 to 499 130 (7%) 241 (25%) 110 (26%)

�500 57 (3%) 204 (21%) 126 (29%)

Adherence during first year of follow-up, n(%)

<40% 140 (7%) 42 (4%) 16 (4%)

40% to <80% 246 (13%) 124 (13%) 53 (12%)

80% to <95% 240 (12%) 156 (16%) 66 (15%)

�95% 1307 (68%) 657 (67%) 294 (69%)

First antiretroviral regimen, n(%)

NNRTI 852 (44%) 490 (50%) 183 (43%)

bPI 1081 (56%) 468 (48%) 214 (50%)

IIN/EI 0 (0%) 21 (2%) 32 (7%)

Age (years)

Median 42 41 41

25th–75th percentile 36–49 33–48 32–49

Baseline plasma HIV-1 RNA level (log10 copies/mL)

Median 5.0 4.6 4.8

25th–75th percentile 4.6–5.0 4.1–5.2 4.3–5.2

Number of plasma HIV-1 RNA level measurements per patient

Median 2 3 3

25th–75th percentile 1–3 2–4 2–4

Minimum–Maximum 1–10 1–8 1–10

Footnote: NNRTI: non-nucleoside reverse transcriptase inhibitor; bPI: ritonavir (dose of <400mg/day) boosted protease inhibitor; IIN: integrase inhibitor;

EI: CCR5 entry inhibitor.

doi:10.1371/journal.pone.0171155.t001
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Fig 1. Trajectory in the mean log10 transformed plasma HIV-1 RNA levels (pVL), and associated 95% confidence interval for the mean (grey area

around each trajectory), from antiretroviral treatment initiation to six months of follow-up. Period 1 (Amplicor): March 8, 2000 to February 1, 2008;

Period 2 (Taqman v1.0): January 7, 2010 to March 6, 2012; Period 3 (Taqman v2.0): March 7, 2012 to June 30, 2014.

doi:10.1371/journal.pone.0171155.g001
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Discussion

Based on this study, the estimated ME associated with each assay was approximately 0.50 log10

copies/mL, which is consistent the literature [20]. Thus, patients and physicians should be

aware that a pVL of 50 copies/mL really means that it is likely that the “true” pVL is between

16 and 158 copies/mL, or a pVL of 250 copies/mL really means that it is likely that the “true”

pVL is between 79 and 791 copies/mL. We also observed that there is substantial increase in

random noise in measuring pVLs <250 copies/mL, especially close to the lower level of detec-

tion of each assay. Interestingly, we also detected a pattern such that pVLs near each assay’s

lower limit of quantification were over-represented than values�500 copies/mL. There are

different possible explanations for this finding. First, each of these repeated measurements

may be a genuine representation of underlying distribution of pVLs. Second, repeated pVL

testing improves the likelihood of testing below the limit of quantification. Thus, due to ME, a

patient whose “true” pVL remains above the limit of quantification can test below this cut-off

by chance. Consequently, the more tests are performed in a given patient with a low detectable

pVL, the higher the likelihood that at least one measurement will be below the limit of quantifi-

cation. Finally, low detectable values near the limit of quantification could represent assay’s

“false positive” results [12, 13]. As important clinical decisions (e.g., change in drug regimen

due to virologic failure) are made based on this range, this study highlights the fact that single

pVL results are not reliable given the ME and random noise pertaining to currently used

Table 2. Estimated measurement error from the multivariable generalized additive mixed effects models. Period 1 (Amplicor): 08/03/2000-01/02/

2008; Period 2 (Taqman v1.0): 07/01/2010-07/03/2012; Period 3 (Taqman v2.0): 08/03/2012-30/06/2014.

Time Periods Measurement Error (95% Confidence Interval) Goodness-of-fit Statistics

Adjusted R2 Percent of Deviance Explained

Period 1 0.55 (0.53–0.57) log10 copies/mL 0.70 78%

Period 2 0.53 (0.51–0.55) log10 copies/mL 0.83 88%

Period 3 0.52 (0.49–00.55) log10 copies/mL 0.84 89%

doi:10.1371/journal.pone.0171155.t002

Table 3. Number of observations per plasma HIV-1 RNA levels (pVL) between the lower limit of quantification of each assay and 1000 copies/mL.

Period 1 (Amplicor): 08/03/2000-01/02/2008; Period 2 (Taqman v1.0): 07/01/2010-07/03/2012; Period 3 (Taqman v2.0): 08/03/2012-30/06/2014.

Plasma HIV-1 RNA levels (copies/mL) Number of Observations per Value in Each Strata

Minimum Median 25th Percentile 75th Percentile Maximum

Period 1

50–99 11.0 24.0 19.0 32.0 50.0

100–249 2.0 9.0 7.0 12.0 23.0

250–499 1.0 4.0 2.0 5.0 11.0

500–1000 1.0 2.0 1.0 3.0 9.0

Period 2

40–99 3.0 11.0 8.0 15.0 22.0

100–249 1.0 4.0 2.0 5.0 11.0

250–499 1.0 2.0 1.0 2.0 10.0

500–1000 1.0 1.0 1.0 2.0 4.0

Period 3

40–99 1.0 5.5 4.0 8.3 16.0

100–249 1.0 2.0 1.0 3.0 9.0

250–499 1.0 1.0 1.0 1.3 4.0

500–1000 1.0 1.0 1.0 1.0 3.0

doi:10.1371/journal.pone.0171155.t003

Measurement error in viral load assays
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assays, and the likelihood of a pVL being equal to 51 copies/mL, for example, is very small.

Instead, physicians should rely on confirmatory retesting to ascertain pVL-based outcomes in

patients.

There are some features of this study worth mentioning. Our cohort is unique in that it was

built within a population-based program where all patients had access to the same free cART

options, medical care and laboratory monitoring, with no co-payments or deductibles. This

minimizes treatment access as a possible confounding factor. Second, our database is compre-

hensive as it captures 100% of cART refills and pVL measurements, and approximately 85% of

CD4 cell counts done in BC. Third, this study was based on cART-naïve patients, thus making

our results not influenced by confounding by previous therapy use. Fourth, we relied on covari-

ates measured at baseline to estimate the ME. As shown, all models had at�78% of their deviance

explained, which is considerable, however it also suggests that there is room for improvement by

means of considering additional covariates (if available). One of these covariates could be CD4

cell count measured longitudinally. However, since CD4 cell counts are also susceptible to ME,

more complex models can be used to assess whether model fit can be improved. Additionally,

since our analyses were restricted to pVL measured up to the sixth month of follow-up, we can

extend this analysis to adjust for left-censored data. However, these models are highly complex

and currently available statistical software is not capable of handling these models. We also should

acknowledge that some of these pVL assays may be susceptible to artefacts such as viral diversity,

virus subtype, and primers used in primary plasma preparation tubes, which may contribute to

the measurement variability here described [21–26]. Although these are legitimate concerns, it

should be noted that the virology laboratory does not use these tubes, the same primers were used

in all measurements, and>90% of our patients have clade B subtype. Some may argue whether

pVLs of patients during acute HIV infection could have contributed to the over-representation of

viral loads close to the limits of quantification. To address this concern, given that in our data-

base there is no precise date in which the patient tested positive for HIV, the first pVL date is the

best proxy we have. Thus, we decided to examine the distribution of the first pVL of patients

(before start of ART), overall and for those with CD4>500 and>750 cells/mm3 at the time in

which the first pVL was obtained. We did this analysis for all three periods. We observed that the

first pVL was high for the overall cohort (�3.81 log10 copies/mL) although slightly lower than

the pVL at the start of ART. Also at the time of first pVL, only a small number of patients had

CD4>750 cells/mm3 (i.e., indicative of recent infection) and their viral load was�2.78 log10 cop-

ies/mL. Thus, we do not think that there was an over-representation of pVLs of patients during

acute infection. Finally, only by looking at thousands of pVL measurements, we were able to

observe the high frequency of pVLs values below 250 copies/mL, especially close to the lower

limit of quantification of these assays. To our knowledge, this is the first study able to identify

this phenomenon.

In conclusion, our results demonstrate that although the ME was stable across assays, there is

substantial increase in random noise as the pVL approaches the assays’ lower level of detection.

Table 4. Distribution of residuals from the generalized additive mixed effects models. Period 1 (Ampli-

cor): 08/03/2000-01/02/2008; Period 2 (Taqman v1.0): 07/01/2010-07/03/2012; Period 3 (Taqman v2.0): 08/

03/2012-30/06/2014.

Plasma HIV-1 RNA level

category

Difference between observed and fitted plasma HIV-1 RNA level

valueMedian (25th-75th percentile)

Period 1 Period 2 Period 3

� 250 copies/ml -0.313 (-0.514;

-0.184)

-0.124 (-0.277;

-0.003)

-0.164 (-0.322;

-0.027)

> 250 copies/ml 0.142 (-0.113; 0.390) 0.035 (-0.198; 0.284) 0.068 (-0.135; 0.269)

doi:10.1371/journal.pone.0171155.t004

Measurement error in viral load assays
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These findings have important clinical significance, as they validate the use of the 250 copies/mL

cut-off to define virologic suppression, and reinforce the fact that confirmatory pVL measure-

ments should be used to inform clinical decisions, especially when the pVL is close to the lower

limit of quantification of the assay.
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