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Failure to appropriately develop multisensory integration (MSI) of audiovisual speech may

affect a child’s ability to attain optimal communication. Studies have shown protracted

development of MSI into late-childhood and identified deficits in MSI in children with

an autism spectrum disorder (ASD). Currently, the neural basis of acquisition of this

ability is not well understood. Here, we developed a computational model informed

by neurophysiology to analyze possible mechanisms underlying MSI maturation, and

its delayed development in ASD. The model posits that strengthening of feedforward

and cross-sensory connections, responsible for the alignment of auditory and visual

speech sound representations in posterior superior temporal gyrus/sulcus, can explain

behavioral data on the acquisition of MSI. This was simulated by a training phase during

which the network was exposed to unisensory and multisensory stimuli, and projections

were crafted by Hebbian rules of potentiation and depression. In its mature architecture,

the network also reproduced the well-knownmultisensory McGurk speech effect. Deficits

in audiovisual speech perception in ASD were well accounted for by fewer multisensory

exposures, compatible with a lack of attention, but not by reduced synaptic connectivity

or synaptic plasticity.

Keywords: Hebbian learning rules, McGurk effect, development, multisensory training, neural network, speech

comprehension

INTRODUCTION

As an organism interacts with its environment, objects and events stimulate its sundry
sensory epithelia, providing oftentimes redundant and/or complementary cues to an object’s
presence, location, and identity. The ability to exploit these multiple cues is fundamental
not just for optimized detection and localization of external events, but also for more
demanding perceptual-cognitive tasks, such as those involved in communication. For example,
the intelligibility of speech is significantly improved when one can see the speaker’s
accompanying articulations, a multisensory benefit that is readily demonstrated under noisy
listening conditions (Sumby and Pollack, 1954; Ross et al., 2007) and one that clearly
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impacts the development of human communication.
Multisensory integration (MSI) has a protracted developmental
trajectory that appears to be highly immature at birth (Wallace
and Stein, 1997; Lewkowicz et al., 2015) and that continues to
develop late into childhood (Ross et al., 2007, 2011; Lewkowicz
and Ghazanfar, 2009; Brandwein et al., 2011; Burr and Gori,
2012). While there is substantial work in animal models on
the neural underpinnings of the development of MSI in single
neurons, the majority focus on the emergence of these processes
in anesthetized animals (Wallace and Stein, 1997; Wallace et al.,
2004, 2006; Xu et al., 2012; Yu et al., 2013; Stein et al., 2014).
Thus although great strides have been made in understanding
the neural circuits necessary for the emergence of MSI and
how this is impacted by environment (Wallace and Stein, 1997;
Wallace et al., 2004, 2006; Cuppini et al., 2011b, 2012; Xu et al.,
2012; Yu et al., 2013; Stein et al., 2014), the neural basis of the
development of MSI for complex multisensory signals such as
speech is not yet well understood. To make headway on this
front, here we used a set of previously collected behavioral
data (Foxe et al., 2015; Ross et al., 2015) to test a neuro-
computational model of the development of multisensory speech
perception.

A neural region of particular interest for the maturation
of speech-related MSI is the posterior superior temporal
gyrus/sulcus (pSTG/S), a cortical association area involved in
speech perception (Rauschecker, 2011; Molholm et al., 2014)
that is also implicated in audiovisual multisensory processing
(Beauchamp et al., 2004; Saint-Amour et al., 2007; Matchin
et al., 2014; Erickson et al., 2015). In addition, converging
evidence reveals that MSI also occurs at very early stages of
cortical processing of sensory inputs (Giard and Peronnet,
1999; Molholm et al., 2002; Foxe and Schroeder, 2005; Mercier
et al., 2013, 2015), and it is highly likely that MSI occurs
between auditory and visual unisensory regions prior to auditory
and visual speech information converging on neurons within
the multisensory processing hubs of the pSTG/S. As such the
maturation of MSI in pSTG/S must be considered in the context
of its feedforward inputs from auditory and visual cortices (Foxe
and Schroeder, 2005; Schroeder and Foxe, 2005).Within the
framework of this neural model, we hypothesized that the ability
to benefit from multisensory speech results from a learning
process during which speech representations informed by
feedforward inputs from auditory and visual cortices are refined
in pSTG/S. This model predicts that multisensory experience,
not only improves multisensory perception, but also leads to
comparably improved unisensory speech perception. This is due
to the reinforcement of speech representations in pSTG/S in the
case of feedforward projections, and/or of lower level speech
representations in earlier auditory and visual association cortices
in the case of feedback projections. Further, the reinforcement of
direct cross-sensory connections (for discussion of such cortico-
cortical connectivity see Meredith and Allman, 2009; Meredith
et al., 2009) between auditory and visual speech representations
in unisensory cortices might also play a role in the developmental
trajectory of multisensory influences on speech perception.In
this case, it can be assumed that synaptic connections among
unisensory areas are initially relatively ineffective, but that they

strengthen as a consequence of relevant multisensory experiences
through a Hebbian learning mechanism.

The aim of the present work was to test a neural
network model of multisensory speech perception informed
by neurophysiology and its ability to explain behavioral
speech recognition data. In particular, we wished to
explore possible mechanisms underlying the maturation
of multisensory integration by testing the model’s ability
to reproduce different empirical results reported in the
literature concerning audiovisual speech perception,
including the role of MSI in identification accuracy
(Foxe et al., 2015) and its ability to produce the well-
known audiovisual speech illusion, the McGurk effect
(McGurk and MacDonald, 1976; Saint-Amour et al., 2007).

Moreover, there is compelling evidence that multisensory
processing is substantially impaired in younger children with
an autism spectrum disorder (ASD) (Foss-Feig et al., 2010;
Kwakye et al., 2011; Brandwein et al., 2013, 2015; de Boer-
Schellekens et al., 2013a; Stevenson et al., 2014a,b; Foxe
et al., 2015), but also that these MSI deficits in ASD largely
resolve during the adolescent years (de Boer-Schellekens et al.,
2013b; Foxe et al., 2015). Importantly, multisensory processing
deficits in ASD are likely to represent impairment of neural
processes unique to MSI as it appears that they cannot be
fully explained on the basis of unisensory deficits (Foxe et al.,
2015). As of yet, the neural bases of this impairment remain
unknown, and thus with the present model we also wished to
provide possible explanations of the neural processing differences
underlying the slower maturation of MSI in participants with
ASD.

The model is based on a previous neural network
implemented to study cortical multisensory interactions
(Magosso et al., 2012; Cuppini et al., 2014) and consists of
a multisensory region (assumed here to be pSTG/S) receiving
excitatory projections from two arrays of unisensory neurons: the
first (auditory region) devoted to the representation of auditorily
communicated units of speech and the second (visual region) to
the representation of visually communicated speech (i.e., lip and
face movements; see e.g., Bernstein and Liebenthal, 2014). In the
following, the network is first explained, including mechanisms
underlying multisensory speech integration in pSTG/S neurons.
Subsequently, we describe the trainingmechanisms implemented
to simulate the maturation of speech perception. Parameters of
the learning mechanisms are set to simulate the maturational
trajectory in typically developing (TD) subjects from 5 to 17 years
old, from behavioral data reported in the literature (Foxe et al.,
2015). Finally, alternative hypotheses to characterize the different
maturational trajectories in TD and ASD are critically discussed.
In particular, three different conditions are tested to explain
ASD deficits in speech MSI: reduced multisensory experiences
during the maturation process due to altered attentional biases
in children with autism (attentional bias), altered synaptic
plasticity (learning bias), and decreased connectivity across the
network (architectural bias). We will discuss the plausibility of
these hypotheses as explanations for the delayed development
of speech MSI in ASD, comparing simulated responses with
behavioral data in ASD subjects (Foxe et al., 2015).
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METHODS

In the following, the model structure and the training are
described qualitatively. The mathematical description including
all equations is provided in the Appendix (Supplementary
Material), together with criteria for parameter assignment and
parameter values [see Table 1 in Appendix (Supplementary
Material)].

Basal Model: Qualitative Description
The model consists of 3 arrays of N auditory, N visual and N
multisensory neurons (the number of elements is arbitrary here,
but was set at 100) (see Figure 1).

Neuronal responses to any input are described with a first
order differential equation, which simulates the integrative
properties of the cellular membrane, and a steady-state sigmoidal
relationship that simulates the presence of a lower threshold and
an upper saturation for neural activation. The saturation value
is set at 1, i.e., all outputs are normalized to the maximum.
In the following, the term “activity” is used to denote neuron
output.

Each auditory and visual unit in the model is intended to
represent a collection of neurons that when active together code
for the speech sound and speech gesture of a given phoneme
(for auditory and visual inputs, respectively). Elements in the
unisensory regions are topologically organized according to a
similarity principle. This means that two similar sounds or lip
movements activate proximal neural groups in these areas.

The topological organization in these regions is realized
assuming that each element is connected with other elements of
the same area via lateral excitatory and inhibitory connections
(intra-area connections, La and Lv in Figure 1), described by a
Mexican hat distribution, i.e., proximal units excite reciprocally
and inhibit more distal ones. This distribution produces an
“activation bubble” in response to a specific auditory or visual
input: not only the neural element representing that individual
feature is activated, but also the proximal ones linked via
sufficient lateral excitation. This arrangement can have important
consequences for the correct perception of phonemes, for
instance resulting in illusory perceptual phenomena like the
McGurk effect (see section Results). In this work, it is assumed
that topological maps are already largely developed through
experience (Hertz et al., 1991), and lateral intra-area connections
are not subject to training.

Furthermore, neurons in the auditory and visual regions also
receive input (corresponding to a speech sound and/or a gesture
representation of the presented phoneme). These visual and
auditory inputs are described with a Gaussian function. The
central point of the Gaussian function corresponds to a specific
speech sound/gesture, and its amplitude with the stimulus
intensity; the standard deviation accounts for the uncertainty
of the stimulus representation. In this model, for simplicity,
the two inputs are described with the same function. During
the generation of words, speech gestures tend to onset prior to
their accompanying acoustic energy and to be longer in overall
duration; hence, each auditory stimulus lasts 80ms, whereas each

FIGURE 1 | Architecture of the network. Each circle represents a neural population, i.e., a group of neurons coding for a given phoneme. Dashed lines represent

connections (Wav, Wva) acquired during cross-sensory training, which simulates associative learning between speech sounds and gestures. Neurons belonging to the

same region are also reciprocally connected through lateral connections (La, Lv, and Ls, black solid lines), described by a Mexican Hat function (a central excitatory

zone surrounded by an inhibitory annulus). Neurons in the unisensory regions send excitatory connections, reinforced during the training, (solid lines Wsv, Wsa ) to the

corresponding elements in the multisensory area.
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visual stimulus lasts 130ms, and is presented to the network
50ms before the auditory one. Onset and duration of these
stimuli are chosen to mimic the experimental setup of Foxe
et al. (2015). Moreover, to reproduce experimental variability, the
external input is convolved with a noise component, taken from
a uniform distribution.

Finally, we consider the existence of a cross-sensory
interaction between the two unisensory areas. This cross-sensory
input is computed assuming that neurons of the two areas
are reciprocally connected via long-range excitatory connections
(Wav, Wva), described by means of a weight factor, but also with
the inclusion of a pure latency. The latter represents the time
necessary for information to propagate from one neural unit to
another along the connection fibers, i.e., the time during which
the target neuron has not received the incoming input yet. We
assume that, in the network’s initial configuration, corresponding
to an early period of development, cross-sensory connections
have negligible strength.

The third downstream area simulates multisensory neurons
in a cortical region (pSTG/S) known to be involved in speech
processing and MSI (Beauchamp et al., 2004; Saint-Amour et al.,
2007; Matchin et al., 2014; Erickson et al., 2015). These elements
receive excitatory projections from units in the two unisensory
layers, coding for auditory and visual representations of the
same speech events, and are reciprocally connected via lateral
connections with a Mexican-hat arrangement, implementing a
similarity principle (Ls).

Inputs to the multisensory area are generated by long-range
excitatory connections from unisensory regions (Wsv, Wsa), and
we use a delayed onset (pure latency) to mimic the temporal
aspects of these inputs and a weight factor. We assume that in
the initial configuration, the connections between unisensory and
multisensory regions are symmetrical and characterized by poor
efficacy. We chose this initial synaptic configuration to minimize
the model assumptions and simulate an immature ability of
the network to detect speech percepts, irrespective of sensory
modality.

Finally, the output of the pSTG/S neurons is compared with a
fixed threshold (30% of the maximum neurons’ activity) and the
barycenter of the suprathreshold activity in this layer is computed
(subthreshold activity is just considered noise and is neglected
in this computation), to mimic the perceptual ability to correctly
identify speech (detection threshold). The recognized phoneme is
the one closest to the barycenter. The network performs a correct
recognition if this phoneme is equal to the one provided as input.

Training the Network
Starting from the initial immature configuration, we simulated
the maturation of connections from a fully immature system
to one that was at maturity [e.g., 0 years age to adulthood (17
years)]. To model typical experience with speech stimuli we
made a simplified choice in which during the training period
we stimulated the network with 65% of congruent cross-sensory
auditory and visual stimuli and 35% of unisensory auditory
stimuli. These values were not available in the literature, and
presumably differ considerably across individuals and across the
lifespan depending on circumstances. Unisensory visual cues
were excluded from training since it is rare to encounter a person

speaking without also hearing the corresponding phonemes. We
chose the configuration that best replicated the behavioral results
for TD subjects in Foxe et al. (2015). Extensive simulations
using different proportions showed that multisensory learning
increased as a function of multisensory experience. Training
involved 8,500 exposures, at which point the network produced
mature-like behavior. Stimuli were generated through a uniform
distribution of probability. We used stimuli at their highest
level of efficacy, i.e., able to excite unisensory neurons close to
saturation, in order to speed up the modeling process. During
this period, both the feedforward connections to the pSTG/S area
and the direct excitatory connections between the unisensory
regions were modified by using a simple rule for connection
learning (consisting of Hebbian reinforcement and a decay term).
As specified above, intra-area lateral connections were not subject
to training. In particular, the training algorithm reinforced the
connections on the basis of the correlation between the activities
in the pre-synaptic and post-synaptic neurons (Hebb rule).
The decay term was proportional to the activity of the post-
synaptic neuron, and included a scaling factor that established
the maximum saturation value for the connection (see Appendix
for more details).

The parameters of the synaptic learning rules (the learning
factors, and the upper saturation for the synaptic weight) were
assigned to simulate the data by Foxe et al. (2015) concerning
maturation in the TD group. Moreover, to attain satisfactory
reproduction of the experimental data, we used different values
for these parameters in the feedforward connections (Wsa and
Wsv) compared with the cross-sensory connections (Wav and
Wva). This reflects that cross-sensory inputs to unisensory areas
have been shown to elicit modulatory responses, whereas, as far
as we know, they have not been shown to elicit action potentials
(Allman and Meredith, 2007; Allman et al., 2008; Meredith and
Allman, 2015). It is worth noting, however, that we used the same
parameters in the auditory and visual branches of the network;
therefore differences in network abilities in cases of auditory and
visual stimulation emerge as a consequence of differences in the
sensory experience with speech stimuli during the training phase
(not in the parameters).

Finally, in order to compare our results with those of
Foxe et al. (2015), we needed to relate the number of epochs
during training with the subject’s age. This choice, of course,
depended on the values used for the learning rate (the higher
the learning rate, the smaller the number of epochs). In the
network’s initial state, there was no speech-detection ability.
With the parameters used, training with 2,500 epochs led to an
architecture configuration yielding unisensory and multisensory
performance comparable to the 5-year-old subjects (the first
data point present) in Foxe and colleagues’ data (Foxe et al.,
2015). Therefore, in what is undoubtedly an oversimplification,
500 epochs of training were assumed to correspond to 1 year
of experience. According to this linear approach, 8500 epochs
corresponded to exposures of a 17 year old, the oldest age
represented in Foxe et al. (2015).

After training, the model behavior was assessed as described
in the next sub-section. Finally, we implemented and tested
different structural or functional assumptions to simulate the
delayed development of speechMSI in ASD children. Specifically,
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we trained the network assuming: (1) reduced attention/exposure
to visual articulatory information (due to, for example, reduced
fixations to the face due to face avoidance perhaps, intact
fixation but reduced attention, both, and so forth), simulated
by eliminating ¼ of visual inputs in case of multisensory
experience (hence, cross-sensory inputs become merely auditory
in ¼ of cases). We assumed that attentional biases are partly
and progressively overcome by interventions and/or naturally
occurring developmental changes. In accordance with this
notion, the number of multisensory events was progressively
increased with age, to reach a TD-like multisensory experience in
the final stage of the development. (2) A different level of synaptic
plasticity, with the learning rate set 2 times lower for modeling of
the ASD behavior. (3) Reduced interregional connectivity, with
fewer connections among all regions of the model (i.e., 10% of
connections are lacking).

Assessment of Network Performance
We performed several simulations to test network behavior
before, during, and at the end of the training process, modeling
performance for unisensory (auditory-alone and visual-alone)
andmultisensory inputs (congruent and incongruent audiovisual
representations).

Speech Recognition Task
The network was stimulated with inputs simulating an
auditory-alone, a visual-alone, or a congruent visual-auditory
(multisensory) speech event. As described above, the speech
event was assumed to be correctly recognized if the barycenter
of the evoked activity above the detection threshold (30% of
the maximum activity) in the pSTG/S area matched the element
coding for the speech event presented as input to the model. We
used different levels of auditory input amplitude, ranging from
ineffective (whichminimally activated the auditory speech region
and generated 0% correct identifications in the model, efficacy
level of 1) to a maximum level (able to saturate the auditory
evoked activity and generated more than 80% correct phoneme
identification in the adult, efficacy level of 7). The use of different
auditory efficacy levels allowed us to mimic speech recognition
at different auditory signal to noise ratios, as in previous work
(Ross et al., 2011; Foxe et al., 2015). In contrast, the efficacy of the
visual stimulus was held constant: we chose a visual level so that,
in the adult configuration, the model presented a poor ability to
detect speech based on visual information alone. Critically, this
mimicked what we see in our experimental work (Foxe et al.,
2015).

Since the presence of noise introduced variability in the
network’s outcome, for every level of efficacy of auditory input,
unisensory and multisensory speech-detection abilities were
evaluated for 100 speech events. To evaluate the acquisition
of speech perception under unisensory and multisensory
conditions, we computed the mean responses across all levels of
input efficacy at different epochs of training.

Speech Recognition Time
The network was stimulated with an auditory or a congruent
visual-auditory (multisensory) speech representation and we

evaluated the time necessary for the pSTG/S neuron coding for
the specified speech unit to reach the detection threshold (30%
of its maximum activity). The configuration of the inputs and
the simulations were the same as in the previous task. The
mean response (in terms of recognition time) over all the 100
outcomes at each level of efficacy was computed separately for the
unisensory and multisensory conditions. Moreover, we evaluated
these data both at an early stage of maturation (after 2,500
training epochs), and in the mature configuration.

McGurk Effect Simulations
We assessed whether the network was able to reproduce
the McGurk effect, whereby conflicting auditory and visual
speech inputs lead to an illusory speech percept that did not
correspond to the percept evoked by the same auditory input
when presented in isolation. In this case, the network was
stimulated with mismatched visual-auditory speech inputs, with
the visual representation shifted by 4 positions (i.e., outside
the receptive field of the veridical corresponding speech unit)
with respect to the auditory one. During these simulations:
(i) we verified whether the activity in the multisensory area
overcame the detection threshold; (ii) in case of detection,
phoneme recognition was assessed by computing the barycenter
of the supra-threshold activity in the multisensory region,
and approximating the closest phoneme. We assumed that
the McGurk effect occurred when the detected phoneme was
different from that used in the auditory input. Each phoneme was
stimulated 20 times by its auditory representation at each level
of efficacy, coupled with a visual representation of a 4 position-
distance phoneme, and the network response was averaged over
all phoneme representations and all levels of auditory input
efficacy. We also assessed whether the network was sensitive to
the McGurk effect at different training epochs.

RESULTS

In the following we critically analyze the network behavior
at different stages of training to highlight the developmental
trajectory of MSI until the model reaches its final adult-
like synaptic configuration. To this end, the network was
repeatedly stimulated with auditory, visual or visual-auditory
representations of speech events, at different levels of efficacy
(corresponding to different SNR levels). Mean response in terms
of correct speech recognition in cases of auditory presentations
are compared with the correct speech identifications in cases of
multisensory stimuli for all the different training epochs analyzed
to compute the acquired MSI abilities of the network. Finally,
additional multisensory tasks were simulated (see methods for
details) to better characterize the acquisition of integrative
abilities by the network.

Modeling the Development of Audiovisual
Speech Perception: Training the Network
In a first set of simulations, we analyzed the modifications
of the network’s architecture as a consequence of the training
conditions. In addition, the effects of different “perturbations”
(either in terms of sensory experience, network parameters,
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or network architecture) to the network on the developmental
trajectories of unisensory and audiovisual speech perception are
considered in order to test possible explanations of the delayed
development of speechMSI that is seen in ASD (Foxe et al., 2015).
In Figure 2, we present the maturation of the networks excitatory
projections under the four different conditions: in the case of
so-called typical development (solid lines); training with lower
efficacy multisensory experiences (dashed lines); training with
reduced plasticity of the network’s connections (dotted lines); and
training of the network under conditions of reduced connectivity
(dash-dotted lines). These four trainings produced substantially
different patterns of maturation of the excitatory projections.
The upper panels report the sum of all the connections targeting
the visual region, coming from the auditory region (Wva, left
panel) and the sum of all the connections targeting the auditory
elements, coming from the visual region (Wav, right panel). The
lower panels report the sum of the feedforward projections (Wsa

and Wsv) targeting the multisensory elements, from the two
unisensory regions.

In the first case, by using a configuration of parameters and
training experience that mimicked typical development (solid
lines, audio-visual stimuli 65% and auditory-alone stimuli 35%),
the network presented a quick increase of the feedforward
and the cross-sensory connections. It is worth noting that due
to the chosen training rule and the kind of experience used
during this phase, the feedforward and cross-sensory connections
coming from the auditory region are always stronger than the
corresponding connections coming from the visual region, and
this persists throughout maturation, much as one would expect.
Reduced multisensory experience (dashed lines, 25% less of
audio-visual stimuli at the beginning of the training period)
produced a slower maturation of the connections in the network,
which led to a weaker synaptic configuration for both the
feedforward and the cross-sensory connections, as compared
with the resulting connectivity after the basal multisensory
training. In the case of reduced plasticity (50% of the learning
rate used in the TD training), the final configuration of the
network presented very poor synaptic efficacy. Finally, in the
case of limited connectivity (90% of intact synapses, dash-dotted
lines), the maturation of network’s connections followed a profile
similar to the case of reduced multisensory experience over the
initial training epochs, but the feedforward synapses, especially
from the auditory area, were found to be less effective in the final
configuration of the model (adult stage).

Testing Network Behavior against
Empirical Data
In the following, we first analyze the abilities acquired after
training under “typical” conditions. Then we compare these
results with those of the same simulations but with (1) reduced
multisensory exposures, (2) lower synaptic plasticity, and (3)
lower connectivity. Figure 3 illustrates the behavior of the
network in the cases of unisensory (auditory, dashed lines, and
visual, dotted lines) and multisensory (solid lines) simulations.
Each panel describes the activities of the central neurons in
each area (between positions 30 and 70) at maturity. External

FIGURE 2 | Synaptic maturation vs. multisensory experience. Examples of the

reinforcement of cross-sensory connections (upper) and of feedforward

connections (bottom) during the training phase in case of TD training (solid

lines, AV 65%, A 35%) and trainings with (1) reduced multisensory experience

(dashed lines, AV 40%, A 60% in the initial stage of training phase); (2) reduced

synaptic plasticity (dotted lines, 50% of the learning rate used in the TD

training); and (3) reduced connectivity (with 90% of intact synapses,

dash-dotted lines). In panels, x-axis reports the simulated age (1 simulated

year corresponds to 500 training epochs) and y-axis reports the sum of all the

excitatory connections targeting all elements in the post-synaptic region. In the

left upper panel, we report the sum of connections, Wva, from all auditory

elements targeting the visual area; the right panel represents the sum of all the

connections, Wav, targeting the auditory area, from all visual elements. The

two bottom panels show the sum of the connections targeting the

multisensory area from the elements in auditory region (connections Wsa, left)

and from the elements in the visual area, (connections Wsv, right).

sensory inputs, described through a Gaussian function, elicit the
activation of unisensory representations in the corresponding
areas, which in turn excite the multisensory elements through the
feedforward projections. The barycenter of the supra-threshold
evoked activity in this region determines the phoneme identified
by the network. This particular simulation refers to the mature
network, i.e., after 8,500 training epochs, under basal (TD-
simulating) conditions. Worth noting is the strong enhancement
in the pSTG/S area in case of multisensory inputs.

Developmental Process and Audio-Visual
Speech Recognition
The network’s ability to correctly identify speech events was
evaluated at different levels of efficacy and different phases of
maturation. Figure 4 describes the network behavior, in terms
of correct speech detection (red solid lines), under conditions
of unisensory (auditory, A, and visual, V) and congruent
auditory-visual (AV) stimulation. Moreover, the lower-right
panel shows the multisensory gain, computed as the difference
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FIGURE 3 | Auditory-alone, visual-alone, and audio-visual stimulation. Three exempla of network activity, in the different layers, in response to unisensory (auditory or

visual) or cross-modal stimulation. When stimulated by an auditory or a visual unisensory input (dashed and dotted lines, respectively), the network in its mature

configuration exhibits a low activity in the multisensory area. This is a condition of difficult speech-detection. Depending on the noisy component added to the external

input, the overall activity in the multisensory area may remain below the detection-threshold (fixed at the 30% of its maximum value, black dotted line), or moderately

rise above it. Conversely, when the network receives a multisensory input (solid lines), the activity in the two modality-specific regions exhibits a further increase (due to

cross-sensory connections) and the evoked activity in the multisensory area reaches the maximum value, well above the detection threshold (multisensory

enhancement), simulating a condition of more likely speech-recognition.

between auditory-visual and auditory-alone performance (AV-
A). For every condition, the model behavior was averaged over all
speech representations and all levels of auditory input efficacy to
assess the performance of the model. This was done at different
phases of training, simulating years of age (from no training to
near asymptotic model performance, i.e., adult condition).

The output of the network was compared with the acquisition
of audio and audiovisual speech-recognition capabilities as
described by Foxe et al. (2015). The agreement is good, as
expected, since the parameters of the model were set to
reproduce these data. In both cases (see Figure 4, behavioral
data, dashed lines, and simulation results, solid lines), speech-
perception exhibited similar maturational trajectories, both in
the case of visual-alone and auditory-alone stimulation as
well as in the enhanced speech recognition for multisensory
inputs. The network reached “adult-like” abilities in the case of
unisensory stimulations after 5,000 training epochs (approximate
corresponding age: 10 years), and multisensory speech-detection
abilities after 6,500 epochs (simulating 13 years of age). Under
unisensory conditions, the capacity to correctly perceive speech
from visual gestures remains much smaller than the capacity to

perceive words from auditory information, even in the mature
stage of the network.

It is worth noting that the maturation of unisensory
abilities does not fully mirror the developmental trajectory of
multisensory speech abilities. Indeed, the acquisition of the
former reflects only the reinforcement of the within-modal
feedforward connections (i.e., the feedforward auditory, Wsa, in
the case of phoneme detection, and the feedforward visual, Wsv,
in the case of gesture detection). Conversely, the development
of multisensory speech recognition reflects two simultaneous
mechanisms: (i) the presence of cross-sensory connections (Wav

and Wva) among elements in the unisensory areas, which
potentiate the unisensory activities; (ii) the enhancement in the
multisensory region, due to the simultaneous cross-convergence
of auditory and visual feedforward excitation to the same neuron,
causing multisensory enhancement. In particular, as shown in
Figure 3, even moderate activities in unisensory regions can
evoke strong multisensory activity if they occur in temporal
proximity.

To test the role of cross-sensory connections, we repeated
the previous simulations without cross-sensory links, (i.e., we set
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FIGURE 4 | Speech recognition performance in the auditory-alone (A), visual-alone (V), and audiovisual (AV) conditions, and AV gain (AV–V), as a function of training

epochs. Average speech recognition performance of the model (% correct) evaluated at different epochs during the training (red solid lines). The network results are

compared with experimental data from Foxe et al. (2015) where the speech-recognition tasks were evaluated at different ages (5–17 years) during the adolescence

(blue dashed lines). The upper and lower left panels report the percentage of correct speech recognition (y-axis) when the network was stimulated with the auditory

input only (A) and visual input only (V), at different epochs of maturation. Upper right panel shows results of simulations with congruent visual and auditory

representations simultaneously presented to the network [multisensory stimulation (AV)]. Finally, lower right panel depicts the maturation of the multisensory gain,

computed as the difference between the percentage of correct detections in case of multisensory stimulations and its counterpart in case of auditory-alone stimuli

(AV-A). These data represent the mean of correct recognitions over 700 different presentations at each training stage.

Wav
=Wva

= 0). The results are reported in Figure 5 (red lines,
simulations with the intact network, black lines, simulations
with ineffective cross-sensory connections). While the speech-
perception abilities in case of unisensory stimuli are almost the
same, multisensory performance is reduced by the impaired
cross-sensory connections.

Simulation of Multisensory Facilitation of
Speech Recognition Times
In a subsequent series of simulations, we simulated recognition
times for speech under unisensory (auditory) vs. multisensory
conditions. Figure 6A shows an example of the network temporal
response under multisensory vs. unisensory stimulation. The
figure displays the evoked activities in the multisensory region
(red lines) and in the auditory area (green lines) in response to
a sample auditory stimulus of middle efficacy presented alone
(dashed line) or coupled with a visual stimulus (solid line).
In the multisensory case, the visual input sent an additional
excitatory component to the auditory units through the mature
connections among elements of the unisensory regions; this led
to quicker activation of the auditory area. Activation of the
pSTG/S area, under multisensory conditions, is even quicker
due to two combined phenomena: the quicker response in the
auditory area, and the convergence of two feedforward inputs to
the same multisensory region, resulting in strong enhancement.
The overall effect of thesemature excitatory connections was thus
to speed up the activation of pSTG/S in response to audiovisual
speech, and correspondingly to reduce the speech recognition

time. In particular, in response to multisensory stimulation, the
network recognized the speech input after just 64ms; while
the presentation of the auditory-alone speech inputs led to
recognition times that were delayed by 21ms (reaction-times
presented here should be considered relative to each other rather
than veridical). Correct recognition time was defined as the
time when the activity elicited in a neuron in pSTG/S region
overcomes the “detection threshold,” fixed at 30% of itsmaximum
value.

Figure 6B summarizes mean speech recognition time
computed for each level of stimulus efficacy. A number of
notable observations emerge. First, the simulations showed
faster reaction times under less noisy/more effective stimulation
conditions, and this was the case for all conditions. This
phenomenon was observed both with the unisensory auditory
and multisensory inputs, as well as in immature (5 years) and
in mature (17 years) configurations. Second, the simulations
showed multisensory facilitation of reaction times even in the
immature network, but recognition times were faster for the
mature configuration.

As in our earlier simulations, in the case of auditory-alone
inputs, network performance was poor when stimulus efficacy
(i.e., intensity or signal to noise ratio) was low; thus, there were
no data-points for this condition for the 4 lowest input efficacy
levels in the immature condition. For all other efficacy levels
and conditions, recognition times ranged from 60 to 150ms
(This should not be thought of as veridical reaction time since it
would be very rapid). For efficacy level 5, for which there were
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FIGURE 5 | Speech recognition performance with ineffective cross-sensory connections. Average word recognition performance of the model (% correct) evaluated at

different phases during the training (solid lines) in case of A-alone, V-alone and AV stimuli. The red lines represent the same results as in Figure 4, with all connections

intact. The black lines have been obtained assuming no reinforcement of cross-sensory connections (γ c = 0 and so Wav
= Wva

= 0). The results are compared with

experimental data from Foxe et al. (2015). These data show that the cross-sensory connections have a negligible effect in the unisensory conditions, but they affect

the multisensory abilities of the network. As in Figure 4, these data represent the mean of correct recognitions over 700 different presentations at each training stage.

recognition times for all conditions considered, mean time of
recognition ranged between 61ms for the mature network under
conditions of multisensory speech and 128ms for auditory-alone
speech in the immature stage of the network. As illustrated in
Figure 6B, the benefit of audiovisual multisensory stimulation,
if compared with the unisensory input, was as large as 12–
80ms for the mature network, and 20–50ms in the immature
condition with the larger improvement in cases of stimuli at
the lower levels of intensity. If one were to extrapolate from
neural facilitation to behavioral facilitation, these values are in
general agreement with experimental data on multisensory based
facilitation of neural responses, in speech perception tasks, from
Besle et al. (2008) and Arnal et al. (2009). Moreover, the model
RTs are in agreement with behavioral data reported in Besle et al.
(2004), showing faster responses in cases of audiovisual speech
stimulation.

Effects of Different “Perturbations” to the
Network on the Development of MSI
As discussed previously (see Figure 2), different perturbations to
the network will affect the maturation of the model’s architecture
differently. How each of these structural modifications translates
into different model’s behaviors in terms of speech-recognition
abilities is displayed in Figure 7. The figure reports results of
the simulated speech-recognition task, for each impaired training
condition, at different training epochs, compared with behavioral
results in ASD children described by Foxe et al. (2015) (light-blue
dashed lines). Moreover, for each type of perturbation and each
input configuration (A-alone, V-alone, congruent AV), Figure 7
displays the discrepancy between the model’s behavior and the

behavioral data, evaluated as the average absolute error between
the simulation’s results and experimental data reported by Foxe
et al. (2015), for each age-group.

In the following, we critically analyse each training condition
and the corresponding results, in order to identify which
perturbation better explains the behavioral data of ASD subjects
and their delayed MSI maturation.

Reduced Multisensory Exposures
Multisensory experience during the developmental period is
fundamental for the acquisition of multisensory integrative
abilities (Stein et al., 1999, 2014; Bahrick and Lickliter, 2000;
Pons et al., 2009; Lewkowicz, 2014; Rowland et al., 2014;
Xu et al., 2015). The same is correct also for this network.
Not reported here for briefness, extensive simulations using
different proportions between multisensory and unisensory
stimuli showed that multisensory learning increased as a function
of multisensory experience. Hence, we can suppose that one
possible explanation for reduced MSI in ASD, is that these
individuals experience fewer multisensory exposures, possibly
due to how attention is allocated (e.g., suppression of unattended
signals; selectively focusing on one sensory modality at a time;
not looking at faces consistently). We therefore tested the impact
of percentage of multisensory vs. unisensory exposures on the
maturation of MSI. It is worth noting that, in these simulations,
we just modified the percentage of cross-modal inputs, without
any additional parameter change compared with the TD case.
Specifically, we trained the network starting with 40% of AV
stimuli and 60% A, and then we increased the multisensory
experience by 1.5% every 500 epochs (simulating 1 year).
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FIGURE 6 | Recognition times. (A) Auditory-alone vs. multisensory

simulations. Activities in the auditory (green lines) and in the multisensory (red

lines) areas of the model, evoked in case of auditory-alone (dashed lines) and

visual-auditory (solid line) stimulus, and compared with the detection threshold

(equal to the 30% of the maximum evoked activity). The unisensory

configuration is able to generate a phoneme recognition at about 85ms after

the auditory presentation, while the multisensory stimulation leads to a correct

phoneme recognition 21ms earlier than the unisensory case. It is worth noting

the effect of the visual component on the auditory neurons through the mature

cross-sensory connections Wav: in case of an AV stimulation the model

presents a quicker and stronger activity in the auditory area. The quicker

activation of the multisensory region depends both on the quick auditory

activity and, above all, to multisensory enhancement. (B) Unisensory vs.

multisensory condition, at 5 years old and in the adult configuration. Mean

times for a correct speech recognition have been computed at different input

levels in case of stimulations with auditory representations only (green lines),

and with auditory and visual representations simultaneously (red lines), in an

early training stage, 5 years of age, (dashed lines) and in the adult phase (solid

lines). The multisensory configuration produces faster responses also in the

immature stage. Moreover, with the adult network architecture, a multisensory

presentation leads to speech recognition 12–70ms earlier than a

corresponding auditory stimulation, in agreement with results by Arnal et al.

(2009).

In this condition, the network received a TD-like multisensory
experience only at the end of the training period.

As already shown in Figure 2, reduced multisensory
exposures led to weaker connectivity among the regions of the
network. The speech-recognition abilities acquired by the model
as result of such training are displayed in Figure 7 (red solid
lines). It is worth noting that the maturation of the network’s
ability to detect phonemes follows a similar profile as the ASD
subjects, for every stimulus condition. Moreover, comparing

FIGURE 7 | Speech recognition performance in the auditory-alone (A),

visual-alone (V), and audiovisual (AV) conditions, in case of different

“perturbations” to the network. Average speech recognition performances (%

correct) evaluated at different epochs during “perturbed” synaptic maturation

with: (1) reduced multisensory experience (40% AV in initial training

condition—red solid lines); (2) reduced synaptic plasticity (50% learning

rate—green solid lines); (3) reduced number of synaptic connections (90% of

synapses—blue solid lines). The network results are compared with

experimental data on ASD children during adolescence, as reported in Foxe

et al. (2015) (light-blue dashed lines). The meaning of all panels is the same as

in Figure 4. Histograms on the right report the discrepancy between model

predictions and the experimental data on ASD children. The discrepancy is

evaluated as the mean absolute error between simulated points and

experimental points, for each perturbed training and each stimulation condition

(A, V, AV).

these results, obtained with a lower multisensory experience,
with the simulated TD condition reveals that: in case of auditory
inputs, after a slower development in the first few years, both
conditions follow a similar profile and reached mature levels of
behavior (see Figure 4) at the same age (after 10-years of age).
Conversely, in the ASD condition the network displayed a slower
acquisition of the visual ability to detect speech gestures, and
a delayed maturation of MSI capabilities. However, although
the ability to detect speech from visual inputs remains lower
at the end of training (8,500 training epochs) compared to
the basal condition, the network was able to reach almost
the same TD-like behavior in terms of benefiting from MSI
speech.
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Reduced Synaptic Plasticity
Another explanation for differences in MSI in ASD is less
effective learning mechanisms. To test this possibility, we
explored the effects of reduced plasticity on the model and
determined how good a fit to the actual data this provided, and
how it compared with an attentional account as described above.
It is worth noting that for these simulations, we only modified
the learning rate of every trained connection of the network,
while the percentage of cross-modal inputs and any additional
parameter value did not change compared with the basal
case.

Results reported in Figure 7 (green solid lines) of the
simulated speech-recognition task display that reduced plasticity
(50% than that used in the simulated TD condition) affects
the maturation of both unisensory and multisensory abilities
in a similar way. That is, both unisensory and multisensory
performance is considerably impaired compared to the basal
condition (Figure 4). In this condition, all maturation capacities
(either unisensory or multisensory) became comparable to the
TD condition only at the very end of the training period (8,500
training epochs). Conversely, in the behavioral results, auditory
capacity develops more rapidly than the multisensory one.

To explore the effect of this parameter, we also performed
a simulated development by using a plasticity equal to 70%
of the basal value. Results are not displayed for briefness, but
they support the previous finding: unisensory and multisensory
abilities are equally impacted by this modification. As such, this
does not provide a good account of the pattern of deficits seen in
ASD, which are considerably greater for MSI.

Impaired Integrity of Excitatory Projections between

Regions
To test the idea that impaired structural connectivity may lead
to atypical multisensory speech performance in children with
ASD, the model was trained with a structural bias such that 10%
of the cross-modal and feedforward excitatory projections could
not be strengthened. These, chosen randomly, were maintained
always at zero. This connectivity pattern resulted in behavioral
deficiency that could not be overcome even at the end of
the training. Unisensory and multisensory performance of the
model (solid blue lines in Figure 7) is considerably impaired
compared to the basal condition and differs significantly from
ASD behavioral data, as shown in Figure 7, even in its final
configuration (after 8,500 training epochs).

As done in the previous case, also for this parameter, we
ran a number of simulated developments with different degrees
of structural impairment (30% and 50% impaired connections).
Results are not shown for briefness, but supported our findings:
the greater the impairment, the worse the unisensory and
multisensory speech performance of the network.

Simulation of the McGurk Effect in
“Typical” Development and ASD
Development
An important consequence of training in our model is that
the audio-visual interference becomes stronger as training

proceeds, because of connection reinforcement (Figure 4). This
change should have important implications for the development
of audio-visual speech illusions, the best-known of which
is perhaps the McGurk illusion (McGurk and MacDonald,
1976; Saint-Amour et al., 2007). Moreover, since the network
predicts different developmental trajectories for the synapses,
it might provide different predictions as to the occurrence of
the McGurk effect in the case of “typical” development and
perturbed developments. In the network, the McGurk effect is
evaluated by computing the network response to mismatched
(at four-position distance) auditory-visual speech inputs. In our
simulation, an outcome is considered a McGurk effect when the
detected phoneme computed as the barycenter of activity in the
multisensory regions is different from that used in the auditory
input (see section Methods for details).

First, we simulate the McGurk effect under “typical”
developmental conditions (Figure 8A). The network trained with
a rich multisensory experience quickly shows the influence of
the visual modality on speech perception. After 2,500 training
epochs (5-years of age), percent correct phoneme identification
is about 50%. However, by 5,000 training epochs (10-years of
age), when the network reaches “adult-like” abilities for auditory-
alone and visual-alone stimulations, the McGurk effect is already
clearly evident (percent correct phoneme identification at about
33%), although not as strong as in its final configuration. After
8,500 epochs of training (17-years), percent correct phoneme
identification is about 25%. In this last state, in more than the
60% of the cases, the speech percept is a fusion of the two stimuli,
and in about 15% of cases, the network identifies the visual
phoneme.

As described in the previous section, in our network, reducing
multisensory exposures leads to better agreement with the ASD
data than the other two perturbations (Figure 7), providing
support for an attentional account of impaired MSI in ASD.
We follow this up by testing how well fewer multisensory
exposures would impact the McGurk illusion compared to
“typical development,” and whether network performance would
align with the finding that children with ASD are less vulnerable
to this illusion (Taylor et al., 2010; Irwin et al., 2011; Bebko et al.,
2014; Stevenson et al., 2014b). To this aim, the same simulations
as in Figure 8A are repeated at different training epochs using
synapses trained under reduced multisensory experience and
results are shown in Figure 8B (simulations of the McGurk
effect for the other two perturbed developments are presented
in the SupplementaryMaterial). Reducedmultisensory exposures
lead to fewer McGurk illusions. At 2,500 training epochs (∼5-
years), the percentage of correct auditory phonemes is still more
than 65% vs. ∼50% in the basal condition, and then reduced
to 50% at 5,000 training epochs (10-years of age) vs. ∼33%
in the basal condition. A greater McGurk effect appears only
at the end of the training period (correct auditory phoneme
recognition less than 45%, vs. ∼25% in the basal condition).
This aligns well with experimental findings in ASD children,
who generally show reduced susceptibility to the McGurk
effect compared with their TD counterparts (Taylor et al.,
2010; Irwin et al., 2011; Bebko et al., 2014; Stevenson et al.,
2014b).
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FIGURE 8 | Simulation of the McGurk effect in typical development and in case of poor multisensory experience. Network response to McGurk-type situation,

evaluated at different epochs of the network training in case of typical development (A) and in case of development under poor multisensory experience (B). In both

cases, mismatched (at four-position distance) auditory-visual speech inputs are used to test the network abilities. We define that the McGurk effect is evident when

the detected phoneme (computed as the barycenter of activity in the multisensory region) is different from that used in the auditory input. Histograms (from top to

bottom) show the percentage of auditory classifications for the network (see Methods for details) averaged over all phoneme representations and all auditory stimulus

efficacies, in an early stage of training (5 years, upper panel), in an intermediate stage (10 years, middle panel), and in the adult (17 years) configuration (lower panel).

X-axis shows the relative positions of the detected phonemes with respect to the position of the auditory representation. (A) (Typical development)—After 5,000

training epochs (10 years of simulated age) the model already shows a strong McGurk effect (percentage of correct phoneme detection as low as 33%), although this

is not as strong as in its final configuration (simulations after 8,500 epochs of training, corresponding to 17 years). In this last configuration, the model presents the

McGurk effect in almost 75% of cases. It is worth noting that when the network fails to recognize the correct phoneme, it identifies different phonemes that are a

fusion of the visual and auditory inputs, but only rarely identifies the visual one. (B) (Development under poor multisensory experience)—The network results less

susceptible to the McGurk illusion than the simulated TD condition. The network, even after 5,000 training epochs (corresponding to 10 years, Middle histogram), is

characterized by a poor visual influence on the auditory percept; the correct auditory phoneme is still recognized in more than 55% of the cases. Only at the end of its

maturation (Lower histogram), the network presents a greater McGurk effect, even if it is not yet comparable with that in the simulated TD condition (correct auditory

phoneme recognition in 45% of the simulations).
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DISCUSSION

The present work was designed with two fundamental goals
in mind: to realize a model of audio-visual speech integration
and its maturation in neurotypical individuals that can provide
a preliminary account of several sets of empirical data in the
literature; and to investigate the possible origins of differences in
audiovisual perception that have been observed in children with
an ASD.

It is well known that congruent visual articulatory information
enhances an observer’s speech perception abilities, improving
the number of correct identifications (Sumby and Pollack,
1954; Calvert et al., 1998), and, conversely, that observation of
incongruent speech gestures can rather dramatically alter what is
perceived (McGurk and MacDonald, 1976). Traditionally, these
multisensory interactions were considered to occur in high-
level heteromodal association cortices (such as the pSTG/S). In
recent years, however, several studies showed that integration can
also occur at very early stages of cortical processing in regions
that were traditionally considered to be unisensory (Foxe et al.,
2000; Falchier et al., 2002, 2010; Molholm et al., 2002; Foxe and
Schroeder, 2005; Smiley and Falchier, 2009; Molholm and Foxe,
2010).

The present model, in its mature architecture, effectively
incorporates both mechanisms. The network realizes an adult
configuration in which a two-step process of multisensory
integration is implemented. While this is surely highly simplified
given the extensive nature of MSI that is known to occur
throughout subcortical and cortical structures, we submit that
it represents the essential processes involved in the development
of audiovisual multisensory speech perception. To recapitulate,
the first process is at the level of unisensory areas where speech
features are represented, and MSI occurs due to the presence of
cross-sensory connections between visual and auditory neurons
coding for the same (or similar) speech units. The second is
at the level of a higher-order multisensory area known to be
involved in multisensory speech processing, and here MSI is due
to the presence of convergent feedforward connections from the
aforementioned unisensory areas.

An important feature of the model is its capacity to mimic the
increase in MSI performance that is observed across childhood
development. The model assumes that connections are plastic
and can be trained using Hebbian mechanisms of connection
potentiation and depression. The latter aspect is not only useful
to understand how multisensory speech recognition capabilities
may improve with age, but can also contribute to understanding
differences between neurotypical children and children with an
ASD. Training parameters were assigned to simulate results of a
recent study by our group that investigated audio-visual speech
recognition abilities in TD children (Foxe et al., 2015). Several
aspects of our maturation results in the TD configuration deserve
attention:

(i) Performance in response to auditory unisensory stimuli
improves significantly during the first epochs of training
(first 2,000–2,500 epochs, corresponding to an age
approximately below 5 years). Subsequently, improvement

becomes very modest and almost completely ceases above
4,500–5,000 epochs (approximately 9–10 years). The model
explains this behavior via a quick reinforcement of auditory
feedforward connections, as a consequence of a 100%
presence of the auditory input, and with the presence of an
upper saturation for connection strength.

(ii) Performance in response to visual unisensory input remains
quite modest throughout the training period, but improves
progressively above 2,000 epochs (4 years). This is a
consequence of the smaller percentage of visual inputs used
during training.

(iii) For multisensory stimulation, gain (AV-A) improves
significantly until approximately 6,500 epochs (13 years
of age), reflecting the two mechanisms: the progressive
improvement of the feedforward visual connections, and
the strengthening of the cross-sensory connections between
the two unisensory areas. Hence, the Hebbian mechanisms
of learning can fully account for the maturation of
multisensory speech perception observed in behavioral
studies.

Moreover, with the mature TD configuration, the model could
account for several additional results. We simulated the temporal
pattern of previously observed cortical responses quite well, in
the presence of both auditory and audio-visual speech inputs
(Besle et al., 2008); wemimicked the decrease in the latency of the
response (about 10ms) observed in electrophysiological data in
the presence of combined audio-visual speech stimuli compared
with the auditory input only (Arnal et al., 2009); and finally, we
simulated the main aspects of the McGurk effect.

It is worth noting that whereas in the present instantiation of
the model we did not introduce feedback from the multisensory
region to the unisensory areas, in order to minimize model
complexity, inclusion of a feedback mechanism may be required
to simulate additional aspects of the data (for instance, the
presence of delayed cortical responses, see Arnal et al., 2009). This
point may be the subject of future model extensions (see section
Discussion below).

Since the mechanism underlying decreased efficacy of MSI
in ASD remains in question, the second part of this work
was committed to identifying what perturbations of the system
provided the best fit for the observed ASD data. We used the
model to test three alternative scenarios: a reduced number of
multisensory exposures simulating reduced attention/exposures
to facial gestures; a reduced learning factor for the reinforcement
of connections in the Hebbian rule; and finally, a decreased
number of synaptic connections among the regions in the
network.

In the last two scenarios, the mature network abilities for
speech recognition disagreed with previous empirical findings
from Foxe et al. (2015). In the case of impaired connectivity, the
simulations showed very poor performance for both unisensory
and multisensory stimuli. Auditory stimuli, presented alone,
reached a correct detection rate of just 25% at the end of
training, compared to the 35% correct recognition rate seen in the
experimental results. Similarly, cross-modal stimulations reached
a peak of about 45% correct recognition in the final architectural
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configuration, which was far from simulating the behavioral data
(more than 60% correct recognition rate).

In the case of a lower learning factor, the developmental
profile of speech MSI abilities was similar to that observed
in ASD children: in both cases, there was delayed maturation
of correct speech-detection followed by a linear improvement,
which reached TD-like abilities during the final epoch of training
(simulating the 17-year-old population). Problematic here is the
similar profile shown for auditory-alone and visual-alone speech
perception. These results suggest that impaired learning would
affect not only the acquisition of the MSI capabilities, but also
the maturation of unisensory abilities, a result not seen in the
empirical data of Foxe et al. (2015).

Conversely, the first scenario, a reduced proportion of
multisensory experience, is the only one that produced results
comparable with the empirical data. The notion of reduced
attention to faces during speech perception in individuals
with autism finds support in the literature. For example,
studies have shown that infants at risk for ASD and children
with a diagnosis of ASD pay less attention to a speaker’s
face (see for instance, Guiraud et al., 2012; Grossman et al.,
2015), and that toddlers with a diagnosis of autism have a
reduced bias toward faces in comparison to typically developing
controls (Klin et al., 2009; Chawarska et al., 2010). Clearly
such behavioral tendencies would lead to reduced multisensory
speech experiences during development. This tendency may
be overcome in later adolescence/adulthood by the extensive
intervention that individuals with ASD often receive, and/or due
to shifting priorities in adolescence.

To simulate reduced attention to multisensory experience
here, during training a higher proportion of auditory-only
stimuli were presented as compared to audiovisual stimuli. Due
to the Hebbian rule used to train connections, the relative lack
of multisensory experiences greatly affected the maturation of
the connections, both between the unisensory regions (cross-
sensory connections) and from the visual region targeting the
multisensory elements. As a result, there was poorer capacity
to recognize visual gestures (see Figure 7, second panel) and
poorer performance when stimulated with a multisensory input.
Conversely, auditory capacity was almost equal in the TD and
ASD groups. These MSI differences, however, were significantly
attenuated at the end of training.

These results agree very well with observations in Foxe
et al. (2015) (see Figures 4, 7) and with other data in the
literature. In particular, Smith and Bennetto (2007) observed
that, in auditory only conditions, individuals with autism
exhibited a similar threshold of speech-to-noise ratio (at 50%
word recognition) compared with TD controls. Conversely,
with the addition of visual information, the group with autism
showed a smaller improvement in performance compared with
controls. Furthermore, these authors observed reduced lip-
reading capacity in their ASD group. All these behavioral data
substantially agree with our model results (see Figures 4, 7).

As an additional consequence of weaker connectivity between
the visual and multisensory area following reduced multisensory
experiences, and ensuing reduced cross-sensory connectivity, the
model showed fewer McGurk illusions, a result that has been

consistently reported in previous studies on autism (Smith and
Bennetto, 2007; Mongillo et al., 2008; Taylor et al., 2010; Irwin
et al., 2011; Bebko et al., 2014; Stevenson et al., 2014b) and that
finds indirect support from fMRI data fromNath and Beauchamp
(2012). These authors found that the level of activity in pSTG/S
was correlated with the likelihood of the McGurk effect. The
same is present in this model where the highest probability
of McGurk effect appears at the end of the training condition
with high multisensory experience. This produces the strongest
connectivity in the network, and leads to the highest activity in
pSTG/S in cases of AV stimulation. Vice versa, in cases of training
with reduced multisensory experience, the network presents less
effective connections, and this leads to lower activity elicited in
the pSTG/S region during multisensory stimulation.

One might ask how MSI in ASD compares with MSI function
in individuals who are born functionally blind (i.e., deprived of
one sense) but later recover visual function. Work from Roder
et al. (Putzar et al., 2010b; Guerreiro et al., 2015, 2016) suggests
that for individuals with congenital cataracts (CC patients) that
are subsequently removed within the first 2 years, there is atypical
development of MSI. For these individuals it has been shown
that even when typical visual-only identification of the visual
component of McGurk syllables is seen in adulthood (a subset
of the participants studied), there is reduced susceptibility to the
McGurk effect. In contrast, in autism there is recovery of MSI in
adulthood in ASD for speech stimuli. MSI deficits for speech in
childhood but not adulthood are seen not only in our data, but
also in studies looking at the McGurk effect (Taylor et al., 2010;
Irwin et al., 2011; Bebko et al., 2014; Stevenson et al., 2014b).
This difference may reflect that, whereas in congenital cataract
patients there is a period of complete visual deprivation, such a
period is not present in autism. Consequently, cataract patients
may undergo long-lasting reorganization within the visual cortex
(Putzar et al., 2010a; Guerreiro et al., 2016) that impacts MSI.
Therefore, the maturation of MSI in ASD patients and in cataract
patients may be affected by different phenomena, mainly reduced
attention to visual stimuli in ASD (as suggested by our model),
but altered connectivity in the visual circuitry in sight-recovered
humans. Obviously this is highly speculative and remains to be
specifically tested.

OTHER MODELS OF MULTISENSORY
SPEECH PERCEPTION, AND FUTURE
DIRECTIONS

We should point out that a number of computational models
have been developed in recent years to investigate the general
problem of multisensory integration in the brain (Cuppini et al.,
2011a; Ursino et al., 2014). Some of these models assume that
integration is an emergent property based on network dynamics
(Patton and Anastasio, 2003; Magosso et al., 2008; Ursino et al.,
2009). Others have been realized to deal with the problem
of multisensory integration in semantic memory and to link
semantic content with lexical aspects of language (Rogers et al.,
2004; Ursino et al., 2010, 2011, 2013, 2015). But the majority
of these computational efforts to tackle multisensory integrative
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abilities and their maturation in the brain are based on a Bayesian
approach (Anastasio et al., 2000; Ernst and Banks, 2002; Alais
and Burr, 2004; Knill and Pouget, 2004; Shams et al., 2005;
Körding et al., 2007; Rowland et al., 2007) in agreement with
several psychophysical studies, showing that human behavior in
a variety of tasks is nearly Bayes-optimal (Battaglia et al., 2003;
Alais and Burr, 2004; Shams et al., 2005). Specifically for the
problem of speech recognition, Ma and colleagues implemented
a Bayesian model of optimal cue integration that could explain
visual influences on auditory perception in a noisy environment,
in agreement with experimental evidence (Ma et al., 2009).
They analyzed the role of signal reliability in the formation of
the multisensory likelihood function, and explained different
experimental behaviors in the multisensory perception of words
based on their representation as a collection of phonetic features
in a topographically organized feature space.

Although it is quite clear that multisensory integration
operates quasi-optimally when dealing with stimulus uncertainty,
and despite all these efforts, very little is still known about the
neural mechanisms engaged in this optimality. In particular,
none of the previous computational models explained either
the maturation of integrative abilities in speech perception or
the different developmental trajectory for ASD, and how these
capabilities might be instantiated in neural circuitry.

The present model is built to overcome these limits. It suggests
a possible neural implementation of multisensory integration
in speech perception that accounts for different experimental
findings, without a direct connection with Bayesian inference.
Moreover, this network is able to account for the experimental
evidence of the differences in speech-detection performance in
ASD subjects and the maturation of these processes in ASD over
the course of development. It will be very interesting in future
work to analyze which aspects of the model may be reconciled
with Bayesian models and attempt to fuse the two approaches
into a single model.

Finally, we wish to point out some lines for future
investigation. First, in the present version of the model, the
unisensory speech events are described by the samemathematical
implementation and they are differentiated only by their position
in unisensory regions. Thus, we simulated them all as equally
detectable. In future versions of the model, we can make
use of more detailed and biologically realistic descriptions of
unisensory auditory and visual representations of words, for
instance describing them as collections of sensory features, as in
Ma et al. (2009) and other recent computational representations
of sematic/lexical memory (Rogers et al., 2004; Ursino et al.,
2010, 2013, 2015). In this way, one might better account for
the correlation between speech events (i.e., events having some
common or similar features) and simulate their differential
detectability.

Another improvement may include the presence of feedback
connections from the multisensory region to the unisensory
ones. Such feedback may be especially important to describe
model behavior over a longer temporal window: in our model
the multisensory region is active after about 60–150ms from
the onset of auditory stimulation, a time in agreement with
several experimental results (see for instance, Besle et al.,

2008; Arnal et al., 2009; Brandwein et al., 2013). Hence, the
effect of feedback from the multisensory to the unisensory
areas should be apparent (assuming a 15ms time constant and
a 50ms time delay for the feedback, as in the feedforward
connections, see Table 1 in the Supplementary Material) by
about 130ms or later; this may be useful to analyse the
late aspects of the observed responses in the aforementioned
work.

An important challenge for a future analysis will be to
reconcile the present model results with results concerning
temporal acuity, not manipulated here (see for example van
Wassenhove et al., 2007). Impairments in temporal processing
are well documented in ASDs, indicating that individuals with
ASD may have a larger audiovisual temporal binding window,
i.e., they tend to perceive highly asynchronous stimuli as
synchronous, hence as originating from the same event (Brock
et al., 2002; Stevenson et al., 2014a). Moreover, the temporal
binding window continues to decrease across development, even
in TD individuals, and is smaller in adults than in children and
adolescents (Hillock-Dunn andWallace, 2012). Finally, the width
of the temporal binding window seems to be inversely correlated
with the McGurk effect (Wallace and Stevenson, 2014).

CONCLUSION

(1) The simple architecture of the model, with 2 main
mechanisms, cross-modal and feedforward connections, is
able to explain and account for the maturation of speech-
perception abilities. Reinforcement of feedforward connections
is responsible for the quick acquisition of mature unisensory
speech-perception, but it also represents the first step for the
attainment of effective multisensory integrative abilities. This is
fully accomplished only thanks to the concurrent strengthening
of cross-sensory connections that produces the complete
maturation of speech MSI. (2) The model was used to explore
possible specific impairments responsible for the different
developmental trajectory in children with an ASD, and it not
only pointed at the more appropriate one, but it also discounted
two alternate possibilities. As such, the model has been helpful
in clarifying what accounts for multisensory speech integration
deficits in ASD, and suggests possible training strategies to
improve the development of multisensory speech processing in
this population. Among the different hypotheses tested with this
network, different attention/exposures to facial gestures provided
the best fit for the observed empirical data on differences
between typically developing children and children with an
ASD. (3) The same architecture underlying the acquisition of
MSI can support/explain other integrative phenomena: such as
speeded RTs under conditions of multisensory stimulation and
susceptibility to multisensory speech illusions (i.e., the McGurk
effect).
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