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Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of myeloid neoplasms that are characterized by
ineffective hematopoiesis, variable cytopenias, and a risk of progression to acute myeloid leukemia. Most patients with MDS
are affected by anemia and anemia-related symptoms, which negatively impact their quality of life. While many patients
with MDS have lower-risk disease and are managed by existing treatments, there currently is no clear standard of care for
many patients. For patients with higher-risk disease, the treatment priority is changing the natural history of the disease by
delaying disease progression to acute myeloid leukemia and improving overall survival. However, existing treatments for
MDS are generally not curative and many patients experience relapse or resistance to first-line treatment. Thus, there remains
an unmet need for new, more effective but tolerable strategies to manage MDS. Recent advances in molecular diagnostics
have improved our understanding of the pathogenesis of MDS, and it is becoming clear that the diverse nature of genetic
abnormalities that drive MDS demands a complex and personalized treatment approach. This review will discuss some of the
challenges related to the current MDS treatment landscape, as well as new approaches currently in development.

Introduction

Myelodysplastic syndromes (MDS) represent a hetero-
geneous group of myeloid neoplasms that are characterized
by inefficient hematopoiesis, variable cytopenias, and a risk
of progression to acute myeloid leukemia (AML). The
incidence rate of MDS in the general population is 4.5 per
100,000 people per year; incidence is higher in males than
females (6.2 vs. 3.3 per 100,000 people per year) and
substantially rises with age [1]. The incidence rate is low in
individuals aged <40 years, at ~0.1 per 100,000 people per

year, rising to 26.9 per 100,000 people per year in those
aged 70–79 years and further to 55.4 per 100,000 people
per year among those aged ≥80 years [1, 2]. Other risk
factors for MDS include prior treatment with certain che-
motherapy drugs or radiation therapy (known as therapy-
related MDS and classified under therapy-related myeloid
neoplasms) and environmental exposure, such as long-term
workplace exposure to benzene and other chemicals [2–4].
Although familial forms of MDS are rare, genetic predis-
position is increasingly recognized; bone marrow failure
syndromes (e.g., Fanconi anemia, dyskeratosis congenita,
Diamond-Blackfan anemia, and Shwachman-Diamond
syndrome in children) have been shown to significantly
increase the risk of MDS [5]. A better understanding of
genes that may predispose MDS, the development of a
comprehensive list of these genes, and more consistent
testing for these genes may help to improve the manage-
ment of patients with MDS [6].

Most patients with MDS are affected by anemia and
anemia-related symptoms, which negatively impact health-
related quality of life (QoL) [7]. For example, in an online
survey of patients with MDS, 82% of respondents reported
anemia at baseline, with significantly worse patient-reported
outcomes in those with higher-risk than lower-risk
MDS [8]. Further, anemia and transfusion dependence are
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associated with shorter survival in patients with MDS [9]. In
an observational study of patients with lower-risk MDS, the
most important independent predictor of health-related QoL
was hemoglobin level, which is associated with fatigue
levels [7]. Two additional surveys of patients with MDS
provide further support that hemoglobin levels and fatigue
appear to have the greatest impact on patient-reported out-
comes [10, 11]. Results from these studies reinforce the
serious impact of anemia/MDS on patient-reported out-
comes, including the burden of blood transfusions
[8, 10, 11]. While many patients with MDS have lower-risk
disease and are managed by existing treatments or a watch-
and-wait strategy, there is no standard of care for the
majority of these patients; many are not candidates for
approved treatments or experience relapse after first-line
treatment and require further therapy [12]. Thus, there
remain many challenges and unmet needs for patients with
MDS. This review will discuss some of the challenges
related to the current MDS treatment landscape, as well as
new approaches in development for the treatment of MDS.

Pathophysiology and diagnosis of MDS

MDS pathophysiology

The clinical presentation of MDS is usually nonspecific.
Patients present with signs and symptoms associated with
cytopenias, such as fatigue resulting from anemia, infec-
tions due to neutropenia, and/or bleeding and bruising from
thrombocytopenia and thrombocytopathy, which trigger a
diagnostic workup for MDS [13, 14].

Recent advances in molecular diagnostics have improved
our understanding of the pathogenesis of MDS through the
identification of cytogenetic abnormalities and gene muta-
tions. Cytogenetic abnormalities occur in approximately
half of patients with MDS [15], with the most common sole
abnormality being deletion in 5q (del[5q]) [15, 16]. How-
ever, ≥1 DNA mutation may be found in 70–80% of the
patients [17]. Multiple gene mutations have been found in
patients with MDS and involve genes responsible for epi-
genetic regulation (TET2, ASXL1, EZH2, DNMT3A, and
IDH1/2), RNA splicing (SF3B1, SRSF2, U2AF1, and
ZRSR2), DNA damage response (TP53), transcriptional
regulation (RUNX1, BCOR, and ETV6), signal transduction
(CBL, NRAS, and JAK2), and the cohesion complex
(STAG2) [16, 18]. Genetic causes of MDS appear to be
diverse, as no single mutated gene is found in more than a
third of MDS patients [19, 20]. Several gene mutations,
such as TP53, EZH2, ETV6, RUNX1, and ASXL1, are
associated with adverse clinical features and may also hold
independent prognostic value [19, 21–23]. Further, an

assessment of the impact of the allelic state of TP53 on
clinical outcomes in MDS patients suggested bi-allelic, but
not mono-allelic, TP53 mutations are associated with high-
risk disease, poor survival, and rapid transformation to
leukemia [24]. Mutation profiling can thus help to refine
risk categorization and identify appropriate therapies,
including targeted therapies for patients with certain muta-
tions [20]. Large-scale mutation profiling can also refine
prognosis for both low- and high-risk MDS [17, 21, 25, 26].
It is important to note that a patient’s mutation profile
typically changes from diagnosis to relapse after che-
motherapy or hematopoietic cell transplantation (HCT),
with both gains and losses of mutations commonly identi-
fied [27], highlighting the importance of re-evaluating the
mutation profile after relapse and prior to initiating sub-
sequent lines of therapy. Of note, the spectrum of mutations
seen in MDS overlaps significantly with other conditions
related to MDS, such as clonal hematopoiesis of inde-
terminate potential, clonal cytopenias of undetermined sig-
nificance, and, on the other end of the spectrum, AML [28].

MDS is associated with immune dysregulation and an
increased release of inflammatory cytokines, including
tumor-necrosis factor alpha, interferon-gamma, transform-
ing growth factor-ß, and interleukins (e.g., IL-6, IL-10),
which are expressed by mesenchymal stromal cells, hema-
topoietic cells, and T cells in the bone marrow micro-
environment [29, 30]. Mesenchymal stromal cells are
critical for the regulation of hematopoietic stem and pro-
genitor cells, aiding in the reinforcement of clonal dom-
inance of MDS cells, and additionally suppress T-cell
proliferation and activation [30]. MDS is also associated
with an increase in myeloid-derived suppressor cells
(MDSCs), which mediate a pro-inflammatory response and
potently suppress T-cell function [29, 30]. MDSCs are
activated through the binding of S100A8 and S100A9 to
toll-like receptor (TLR)-4 and CD33 and contribute to
innate immune activation. The expression of the secretion
of S100A8 and S100A9 by activated MDSCs results in
autocrine and paracrine stimulation, with downstream acti-
vation of the NLRP3 pattern recognition receptor and sub-
sequent inflammasome assembly and pyroptosis. In MDS
patients who have a del(5q) phenotype, the induction of
S100A8 and S100A9 also leads to a p53-dependent defect
in erythroblast differentiation [29, 30]. In addition to the
pro-inflammatory state and innate immune activation seen
in MDS, adaptive immune cell function is also impaired.
Regulatory T-cell counts are decreased in the peripheral
blood of patients with low-risk MDS but undergo expansion
in patients with higher-risk MDS, indicating progressive
immunosuppression with advancing disease. Cytotoxic
CD8+ T-cell and natural killer cell counts are increased in
MDS patients compared to healthy individuals [30].
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MDS diagnosis and classification

Although abnormal findings on routine blood testing often
lead to suspicion of MDS, diagnosis is confirmed via bone
marrow aspiration (cellular morphology and percentage of
blasts), bone marrow biopsy (cellularity and architecture),
and cytogenetic or molecular genetic analysis [31]. An
analysis of bone marrow cytogenetics is also required to
help calculate a prognosis score and may be helpful in
treatment selection for certain genetic mutations [31].
Although most patients carry ≥1 somatic genetic mutation,
these mutations are not part of the current diagnostic criteria
for MDS, with the exception of SF3B1 mutations [31]. The
2016 World Health Organization (WHO) guidelines iden-
tify seven morphologic subtypes of adult MDS, which are
summarized in Table 1 [19, 32].

Prognostic scoring systems are essential for initial patient
stratification and subsequent treatment decision. The Inter-
national Prognostic Scoring System (IPSS) was developed
in 1997 and includes percentage of blasts, number of
cytopenias, and presence of cytogenetic abnormalities to
classify patients into 4 risk categories (low, intermediate-1
[INT-1], intermediate-2 [INT-2], and high) [33]. The WHO
classification-based Prognostic Scoring System incorporates
the WHO morphologic categories, the IPSS cytogenetic
categories, and the presence or absence of severe anemia
(hemoglobin < 9 g/dl for males and <8 g/dl for females)
to classify patients into 5 risk categories (very low,
low, intermediate, high, and very high) [34, 35]. A revised

version of the IPSS (IPSS-R) is currently the accepted
standard scoring system and includes refined cytogenetic
risk classification, improved stratification by bone marrow
blast counts, and more clearly defined degrees of cytopenias
to classify patients into 5 risk categories (very low, low,
intermediate, high, and very high) [12, 36]. The incor-
poration of molecular data into the IPSS-R is currently
being evaluated. The Lower-risk Prognostic Scoring System
was developed to better identify patients with lower-risk
MDS (including low- and intermediate-risk patients) who
may have poor prognosis and may benefit from early
intervention [37]. Unfavorable cytogenetics, older age (≥60
years), decreased hemoglobin (<10 g/dl), decreased platelet
count (<50 × 109/l), and higher percentage of bone marrow
blasts (≥4%) were associated with worse risk, with age and
low platelet counts being the most important factors [37].
The results from this model show that patients with lower-
risk MDS and poor prognosis may benefit from early
intervention [37].

Despite these prognostic risk classifications, therapeutic
options are limited for the majority of patients with MDS,
and, in particular, patients with intermediate risk represent a
heterogeneous group of patients who may have favorable or
unfavorable disease courses [12]. Risk stratification can be
improved by consideration of gene mutations, comorbid-
ities, and frailty index [19, 21, 38]. Age ≥66 years, per-
ipheral blood blasts ≥2%, and history of red blood cell
(RBC) transfusion have also been identified as stratification
factors for patients with intermediate-risk MDS [39].

Table 1 2016 WHO
classification of MDS [19, 32].

Dysplastic
lineages

Cytopeniasa Blasts
in blood

Blasts in
bone marrow

MDS with single-lineage
dysplasia (MDS-SLD)

1 1 or 2 <1% <5%

MDS with multilineage dysplasia
(MDS-MLD)

2 or 3 1–3 <1% <5%

MDS with ring sideroblasts (MDS-RS)b

MDS-RS-SLD 1 1 or 2 <1% <5%

MDS-RS-MLD 2 or 3 1–3 <1% <5%

MDS with excess blasts (MDS-EB)

MDS-EB1 0–3 1–3 2–4% 5–9%

MDS-EB2 0–3 1–3 5–19% 10–19%

MDS with isolated del(5q) 1–3 1–2 <1% <5%

MDS, unclassifiable (MDS-U)c 0–3 1–3 ≤1% <5%

MDS myelodysplastic syndromes, PB peripheral blood, WHO World Health Organization.
aCytopenias defined as hemoglobin <10 g/dl, platelet count <100 × 109/l, and absolute neutrophil count
<1.8 × 109/l. In rare cases, MDS may present with mild anemia or thrombocytopenia above these levels.
PB monocytes must be <1 × 109/l.
bPatients have ≥15% ring sideroblasts in marrow or ≥5% with SF3B1 mutation.
cMDS-U includes patients with 1% blood blasts, SLD and pancytopenia, or MDS-U based on defining
cytogenetic abnormality.
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Therapeutic approaches for MDS

Treatment goals for patients with MDS are two-fold:
improve peripheral blood values (i.e., increase hemoglobin
levels and reduce bleeding and infections) and change the
natural progression of the disease [40]. The choice of
therapy for newly diagnosed and relapsed/refractory MDS
depends on the individual patient’s risk classification, fit-
ness (including comorbidities), goals and preferences,
caregiver and social support, and suitability for HCT. The
National Comprehensive Cancer Network (NCCN) MDS
Panel recommends stratifying patients with clinically sig-
nificant cytopenia(s) into lower- and higher-risk groups
[19]. Lower-risk patients include those with IPSS low or
INT-1 classification; IPSS-R very low, low, or intermediate
classification up to 3.5 points; or WHO classification-based
Prognostic Scoring System very low, low, or intermediate.
Higher-risk patients are those classified as IPSS INT-2 or
high; IPSS-R intermediate (>3.5 points), high, or very high;
or WHO classification-based Prognostic Scoring System
high or very high [19]. Patients with IPSS-R intermediate
MDS can be managed as low- or high-risk MDS based on
other prognostic factors (e.g., age, performance status,
mutations, serum ferritin levels, and serum lactate dehy-
drogenase levels) [19].

The main treatment goals for lower-risk MDS are
hematologic improvement to prevent complications
(e.g., bleeding and severe infections), decreased trans-
fusion burden, and improved QoL; accordingly, end-
points in trials for lower-risk MDS should therefore also
focus on QoL [12, 19, 41]. For patients with higher-risk
MDS, the treatment priority is changing the natural
history of the disease by delaying disease progression,
improving overall survival, and proceeding to HCT, if
possible, to potentially achieve a cure [12, 19, 41].
Before initiating treatment for high-risk MDS, patients
should be evaluated for candidacy for HCT, including
age and comorbidities (Fig. 1) [41]. All patients,
regardless of risk, should receive supportive care mea-
sures as part of the MDS therapeutic algorithm, com-
prising observation, clinical monitoring, psychosocial
support, and QoL assessment [19]. Supportive care
includes RBC transfusions for symptomatic anemia or
platelet transfusions for bleeding events, antibiotics for
bacterial infections, and iron chelation for iron overload
(for patients with low-risk MDS). For high-risk MDS,
iron chelation is recommended preferentially for those
responding to hypomethylating agent (HMA)-based
therapy or being scheduled for HCT (Fig. 1) [19, 41].
Neutropenia remains an unmet medical need for many
patients with MDS and can be associated with recurrent
and/or serious infection [19, 42]. In low-risk MDS,

granulocyte colony-stimulating factor is recommended
for patients with life-threatening infections. In high-risk
MDS, agents with the ability to change the natural course
of the disease (i.e., HMAs) should be preferred.

Summary of current treatment options

A summary of current treatment options for patients with
lower-risk and higher-risk MDS is provided in Fig. 1.

Erythropoiesis-stimulating and maturing agents (ESAs and
EMAs)

ESAs, such as recombinant erythropoietin or darbepoetin,
are a standard first-line therapy for anemia in patients with
lower-risk MDS [41, 43, 44]. These agents are recom-
mended by the NCCN and European LeukemiaNet (ELN)
for the management of symptomatic anemia in lower-risk
MDS patients with a target hemoglobin range of 10–12 g/dl
[19, 44]. The level of serum erythropoietin (sEPO) is a
strong predictor of clinical response to ESAs; patients with
lower-risk MDS with a sEPO level of <100 U/l have a
response rate of >70%, whereas, for those patients with a
sEPO level of >500 U/l, the response rate is <10% [45]. A
prospective, randomized, phase 3 study compared the out-
comes of patients treated with erythropoietin with or with-
out granulocyte colony-stimulating factor plus supportive
care vs. supportive care alone in 118 anemic patients with
lower-risk MDS. The response rates in the erythropoietin
vs. supportive care alone arms were 36% vs. 10%, respec-
tively, at the initial treatment step; response rate in the
erythropoietin arm increased to 47% following step 4
therapy [46].

Luspatercept and sotatercept (which are not currently
approved for the treatment of MDS) are specific activin
receptor IgG-Fc fusion proteins that act as ligand traps to
neutralize negative regulators of late-stage erythropoiesis
that have shown efficacy in phase 2 and phase 3 clinical
studies [47–49]. In an open-label, phase 2 study in patients
with lower-risk MDS, luspatercept was found to be parti-
cularly effective in the treatment of anemia in patients who
had ≥15% ring sideroblasts, an SF3B1 mutation, or both
[50]. The COMMANDS study is currently evaluating a
head-to-head comparison of luspatercept in patients with
MDS with or without ring sideroblasts (ClinicalTrials.gov
Identifier: NCT03682536). Luspatercept was recently
approved by the US Food and Drug Administration (FDA)
for the treatment of anemia failing an ESA and requiring ≥2
RBC units over 8 weeks in adult patients with very low- to
intermediate-risk MDS with ring sideroblasts or with mye-
lodysplastic/myeloproliferative neoplasm with ring side-
roblasts and thrombocytosis based on the results of the
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phase 3 MEDALIST study [48]. Luspatercept was also
approved by the European Medicines Agency for the
treatment of anemia that requires regular blood transfusions
in adult patients with MDS [51]. Clinical results with
sotatercept are comparable to those with luspatercept [47]
despite differences in ligand affinities.

Low-intensity therapy

Hypomethylating agents Low-intensity therapies include
HMAs or biologic response modifiers. HMAs (azacitidine,
intravenous decitabine, and oral decitabine) are approved by
the FDA for the treatment of MDS; azacitidine is approved

Supportive care including transfusion support and iron chelation

Symptomatic Low-risk MDS

Thrombocytopenia
Anemia in

del(5q)

TPO-RAa

Anemia in
non del(5q)

sEPO >500 IU/L
and RBC-TD

sEPO ≤500 IU/L  

ESA +/- G-CSF

Failure

ESA +/- G-CSF

FailuremTP53

No Yes

LEN

Failure

sEPO >500 IU/L sEPO ≤500 IU/L

Failure Failure

HMAa

LENa

Clinical trial

Allogeneic HCT

RS phenotype/mSF3B1 Hypoplastic

LUSP ATG/CsAaLENb

HMAa

Clinical trial

Allogeneic HCT

Targeted therapy?c

Targeted therapy?c

A.

Supportive care including transfusion support

High-risk MDS

HMA or IC or BSC

Iron chelation

HMA

Failure

Allogeneic HCTd Fit patient
Clinical

trial

Clinical
trial HCT ineligibleHCT eligible

Clinical
trial

sAML
BSC, low-

intensity CTx
sAML

IC or
CPX-351

Targeted
therapy?c

Targeted
therapy?c

B.

Fig. 1 Guideline-
recommended treatment
options for MDS [41].
A Symptomatic low-risk MDS.
B High-risk MDS. aNot
presently approved. bIntensified
disease surveillance. cThese
could be IDH or FLT3 inhibitors
(not presently approved).
dConsider posttransplant
disease surveillance strategies.
ATG antithymocyte globulin,
BSC best supportive care,
CsA cyclosporine, CTx
chemotherapy, ESA
erythropoiesis-stimulating
agent, G-CSF granulocyte
colony-stimulating factor,
HCT hematopoietic cell
transplantation, HMA
hypomethylating agent, IC
induction chemotherapy,
LEN lenalidomide, LUSP
luspatercept, MDS
myelodysplastic syndromes,
RBC-TD red blood cell
transfusion dependence, RS ring
sideroblast, sAML secondary
acute myeloid leukemia, sEPO
serum erythropoietin, TPO-RA
thrombopoietin receptor agonist.
This research was originally
published in Blood; both figures
have been adapted from
the original publication.
U Platzbecker. Treatment of
MDS. Blood. 2019;133:1096-
1107. © the American Society
of Hematology.
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for the treatment of various MDS subtypes (refractory
anemia or refractory anemia with ring sideroblasts, excess
blasts, or excess blasts in transformation, and chronic
myelomonocytic leukemia; IPSS risk category not men-
tioned) [52], and decitabine is approved for IPSS INT-1- or
higher-risk patients (all MDS subtypes) in the United States
[53], and for patients with newly diagnosed de novo or
secondary AML who are not candidates for standard
induction chemotherapy in Europe [54]. HMAs are a first-
line treatment option for higher-risk MDS [12, 41, 43] and
are recommended by the NCCN for patients with IPSS
INT-2- or high-risk disease or IPSS-R intermediate-, high-,
or very high-risk disease with any of the following criteria:
the patient is not a candidate for high-intensity therapy,
potential candidate for allogeneic HCT but for whom delay
in receipt of that procedure is anticipated, or not expected to
respond to (or relapsed after) ESAs or immunosuppressive
therapy [19]. The ELN recommends the use of azacitidine
in patients with IPSS INT-2- or high-risk disease who are
not eligible for AML-like chemotherapy and/or allogeneic
HCT and in fit patients with IPSS INT-2- or high-risk MDS
and poor-risk cytogenetics who lack a donor; it can also be
offered to fit patients without poor-risk cytogenetics who
lack a donor as an alternative to induction chemotherapy
[44]. Possible predictors of response to HMA treatment
have been identified and include gene mutations such as
TET2 in the absence of ASXL1 (presence is associated with
better response), although data are conflicting; clinical
parameters such as older age, male sex, and Eastern
Cooperative Oncology Group performance status >1; high
transfusion burden; and poor cytogenetics (associated with
worse outcomes) [55].

Immunosuppressive therapy The NCCN recommends
immunosuppressive therapy with antithymocyte globulin
(ATG) with or without cyclosporine A in patients aged <60
years with ≤5% blasts or in those with hypocellular mar-
rows, paroxysmal nocturnal hemoglobinuria clone positiv-
ity, or STAT-3 mutated cytotoxic T-cell clones [19]. The
ELN states that ATG plus 6 months of oral cyclosporine A
should be considered in patients aged <60 years with <5%
bone marrow blasts, normal cytogenetics, and transfusion
dependency who are not candidates for hematopoietic
growth factors; ATG is highly recommended in the pre-
sence of a hypoplastic bone marrow [44]. Patients more
likely to respond to ATG are those with MDS with single-
lineage dysplasia with absence of ring sideroblasts, hypo-
plastic marrow, DR15 HLA type, age <60 years, female
sex, trisomy 8, and short duration of transfusion dependence
[41]. In a large, international, retrospective cohort study of
207 patients with low-risk MDS, 76% of patients received
ATG-based combinations, with the most common being
ATG plus prednisone (43%) [56]. The overall response rate

was 49%, including 11% who achieved a complete
response; 30% achieved RBC transfusion independence.
The median duration of transfusion independence was
19.9 months [56].

Immunomodulatory drugs Lenalidomide is approved by
the European Medicines Agency for the treatment of
transfusion-dependent anemia in IPSS low- or INT-1-risk
MDS patients with del(5q) [57] and the FDA for the
treatment of transfusion-dependent anemia in IPSS low- or
INT-1-risk MDS patients with del(5q) with or without
additional cytogenetic abnormalities [58]. The NCCN
Guidelines Panel recommends lenalidomide for patients
with lower-risk MDS with del(5q) chromosomal abnorm-
alities alone or with other cytogenetic abnormality (except
those involving chromosome 7) and symptomatic anemia or
in patients with symptomatically anemic non-del(5q) MDS
with anemia that did not respond to initial therapy [19]. The
ELN recommends lenalidomide in patients with del(5q)
without additional chromosomal abnormalities or excess
blasts with a low or INT-1 IPSS score and transfusion-
dependent anemia who are not candidates for or have failed
treatment with hematopoietic growth factors [44]. Results
from a retrospective cohort study suggest the presence of
TP53 mutations may predict disease progression in MDS
patients with lower-risk del(5q) treated with lenalidomide
[59]. In a randomized, double-blind, phase 3 study in
patients with lower-risk non-del(5q) MDS, RBC transfusion
independence ≥8 weeks was achieved in 27% vs. 2.5% of
patients treated with lenalidomide vs. placebo, respectively,
with a median duration of RBC transfusion independence of
30.9 weeks with lenalidomide [60]. The most frequently
reported adverse events were neutropenia and thrombocy-
topenia [60].

High-intensity therapy

High-intensity therapy includes intensive induction che-
motherapy or HCT. Because of the greater risks of regimen-
related morbidity and mortality with these regimens, these
treatments are recommended only in the context of clinical
trials [19].

Intensive induction chemotherapy The NCCN guidelines
state that intensive induction chemotherapy should be
considered for patients who are eligible for intensive ther-
apy but lack a suitable donor or for patients who need
reductions in bone marrow blast counts [19]. Although
responses are not as high and durable as those observed for
AML, treatment could be beneficial. Intensive chemother-
apy is recommended for patients with ≥10% bone marrow
blasts who are candidates for allogeneic HCT within a
clinical trial or prospective registry [44, 61]. The ELN
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guidance recommends that induction chemotherapy should
be considered for fit patients without a suitable donor who
are ≤65 to 70 years of age and have ≥10% bone marrow
blasts without adverse cytogenetic characteristics [44]. A
retrospective analysis of 299 patients with high-risk MDS or
secondary AML from the Duesseldorf MDS registry
showed that conventional intensive chemotherapy did not
lead to a significant improvement in median overall survival
vs. non-intensive therapy (12.7 vs. 7 months; log rank P=
0.381) [62].

Hematopoietic cell transplantation Important variables to
consider when determining patient eligibility for HCT are
IPSS, IPSS-R, age, comorbid conditions, psychosocial sta-
tus, patient preference, and availability of a suitable donor
and caregiver [19, 44, 61, 63]. The HCT-comorbidity index
is a tool for determining pre-HCT comorbidities that can be
used for predicting outcomes and stratifying patients for
HCT [64, 65]; a composite HCT-comorbidity index/age
index has also been developed that takes into account both
the burden of comorbidities and increasing age when
determining risk assessment [65]. Candidates for allogeneic
HCT are fit, aged ≤65 to 70 years, and IPSS INT-2 or high-
risk, or IPSS INT-1 risk with excess blasts or poor-risk
cytogenetics [44, 61]. The ELN and NCCN both state that
peripheral blood stem cells are the preferred source for
allogeneic HCT from an HLA-matched donor in patients
with MDS [19, 44]. Either an HLA-matched sibling or an
HLA-matched unrelated donor can be considered, as results
are generally comparable (although a recent study suggests
an HLA-matched sibling donor may be preferred, when
available) [19, 66]. No recommendation has been made by
the ELN on the best myeloablative conditioning regimen
[44]. Autologous HCT is not recommended by the ELN for
patients without a suitable donor who are receiving inten-
sive chemotherapy [44]; however, a recent study suggests
cord blood HCT could be considered in MDS patients
without a suitable donor [67]. Of note, a recent study
reported that patients with MDS who had a hypomethylated
epigenomic signature relative to their donor’s profile were
more likely to relapse after HCT [68].
The optimal timing for HCT has not been defined, but it is

generally accepted that blast percentage >10% before HCT
is associated with a higher risk of relapse; thus, if bone
marrow blasts are >10%, cytoreductive treatment prior to
HCT is recommended (i.e., HMA or intensive chemother-
apy) [43]. A study examining HCT strategies in MDS found
the life expectancy of patients with low- or INT-1-risk MDS
was higher when HCT was delayed somewhat but
performed prior to transformation to AML. In contrast,
higher life expectancy for patients with INT-2- or high-risk
disease was achieved when HCT was performed as soon as
possible after diagnosis [69].

The successful management of relapse following HCT
depends at least in part on pre-HCT strategies, and the use of
conventional cytoreductive chemotherapy prior to HCT to
reduce the risk of relapse is still debated due to the potential
to select for resistant clones. A recent study reported similar
post-HCT outcomes in patients who proceeded directly to
HCT and those who had received induction therapy with
HMAs or conventional intensive chemotherapy [70];
however, these results need to be confirmed in additional
studies.

Limitations of current therapies

Challenges relating to the treatment of MDS include chro-
mosomal and/or molecular abnormalities that can cause
pathophysiologic changes that influence the course of the
disease but also offer a variety of therapeutic targets [12].
The number of approved drugs for MDS is limited, and not
all agents have been shown to be highly efficacious and to
improve survival [12]. Based on data from an MDS registry
of 2377 patients, it was estimated that less than half (~44%)
of patients with different MDS types are candidates for
approved treatments [12]. Although many current approa-
ches delay disease progression, they are not curative, and
thus patients will require further treatment [12]. Finally, the
same molecular aberrations that lead to “moving targets” in
MDS may also eventually guide treatment; however, it is
unclear how to incorporate molecular aberrations into the
present treatment algorithm since there are few specific
genotype-directed options available for MDS [40].

For patients with higher-risk MDS, initial responses to
HMA therapy are limited (40–50%) and often short-lived
[41]. Preliminary evidence from an analysis of the Surveil-
lance, Epidemiology, and End Results Program (SEER)-
Medicare database has estimated a median survival after
HMA initiation of 18.4 months for patients with IPSS INT-1
disease and 11.6 months for patients with higher-risk dis-
ease, with transformation from high-risk MDS to AML after
19.3 months [71]. After HMA failure, median survival is
approximately 5 to 6 months in the absence of HCT or novel
clinical trials [43]. Further, real-world data for patients with
high-risk MDS from the Spanish Cooperative Group on
Myelodysplastic Syndromes (GESMD) registry between
2000 and 2013 suggest no notable improvement in survival
during this period despite widespread use of azacitidine [72].
These observations indicate an urgent unmet need to
improve outcomes with HMA-based therapy as well as an
unmet need for patients with MDS after failure of first-line
therapy, including management of ESA or HMA failure.
One potential approach for the former is to identify factors
predictive of response to HMAs [41]. Clinical markers have
provided some insight, indicating that patients with periph-
eral blasts, poor performance status, high transfusion burden,

2188 U. Platzbecker et al.



and poor-risk cytogenetics have worse survival [73]. Studies
examining molecular markers have provided mixed results
[74–76], suggesting more research is needed [41].

Key therapies/regimens in development for MDS treatment

New approaches to treat low-risk MDS There are multiple
novel approaches currently being examined in patients with
low-risk MDS. Most of these agents aim to manage anemia.
The mechanisms of action and key results from clinical
trials published to date are summarized in Table 2.
Roxadustat is a hypoxia-inducible factor prolyl hydro-

xylase inhibitor that is being investigated in a phase 3 study
of anemia in patients with low-risk MDS and low RBC
transfusion burden (NCT03263091 [77]) and a phase 2/
3 study in patients with low-risk MDS (transfusion
independent and ESA naïve; NCT03303066). Preliminary
results of the phase 3 study showed that 9 (38%) patients
with low-risk MDS who received roxadustat achieved
transfusion independence for ≥56 consecutive days within
the first 28 weeks (primary endpoint), with no major safety
signals [77].
Imetelstat, a telomerase inhibitor, is currently being

evaluated in a phase 2/3 study in RBC transfusion-
dependent and ESA-relapsed or refractory low-risk MDS
patients without the del(5q) phenotype, with encouraging
results for 57 patients treated in the phase 2 portion. In the
overall population, 8- and 24-week RBC transfusion
independence rates were 37% and 23%, respectively, with
a median duration of 65 weeks. For the subgroup of patients
who were HMA and lenalidomide naïve, the 8- and 24-
week RBC transfusion independence rates were 42% and
29%, respectively, with a median duration of 86 weeks. The
most common adverse events for both the subgroup and
overall populations were cytopenias, which were typically
reversible within 4 weeks [78].
Thrombopoietin-receptor agonists, such as romiplostim or

eltrombopag, are not formally approved for patients with
MDS but may be a treatment option for thrombocytopenia
in patients with blasts <5% [41]. Results of randomized
trials in low-risk MDS patients treated with eltrombopag or
romiplostim showed platelet responses in ~35–50% of
patients, depending on the response criteria used [79, 80].
Although thrombopoietin-receptor agonists seem to be well
tolerated, there are reports suggesting the risk of transfor-
mation to leukemia [81, 82]. In a randomized phase 2 study
in patients with advanced MDS, AML transformation
occurred in 31/50 (62%) eltrombopag-treated patients
[81]. In a study in 60 patients with lower-risk MDS treated
with romiplostim, the annualized rate of progression to
AML was 2% [82].
A randomized phase 3 trial of CC-486, an oral

azacitidine, vs. placebo in lower-risk MDS patients recently

demonstrated 56-day RBC transfusion independence rates
of 31% vs. 11%, respectively, with median durations of
11.1 vs. 5.0 months. CC-486 was also associated with more
durable platelet and hemoglobin improvements, but also a
higher frequency of hematologic toxicity and early deaths
(primarily due to infection), which led to a decision to close
further enrollment into the study [83]. ASTX727, a second-
generation HMA consisting of a fixed-dose combination of
cedazuridine and decitabine, is also being evaluated in
phase 1/2 studies in lower-risk MDS (NCT03502668,
NCT03906695).
While some patients with low-risk MDS respond well to

immunosuppressive therapy with ATG or lenalidomide,
more recent efforts are focused on modulation of the innate
immune system and pro-inflammatory phenotype. The
expression of TLRs is upregulated in the bone marrow of
MDS patients and TLR signaling by MDSCs is integral to
the pro-inflammatory microenvironment in MDS, and there
has thus been some interest in employing therapies that
target TLR signaling [30]. In addition, MDSCs express high
levels of CD33, and therapies directed against CD33 to
deplete MDSC counts in the bone marrow are in
development, including both a monoclonal antibody against
CD33 (BI 836858) that has been evaluated in preclinical
models [84] and a novel bispecific tetravalent antibody
against CD33 and CD3 (AMV564) that is being evaluated
in a phase 1 study in patients with intermediate- or high-risk
MDS after HMA failure (NCT03516591 [85]). Other
approaches include the use of anti-inflammatory drugs,
such as canakinumab (NCT04239157), which is currently
being explored in combination with azacitidine in sub-
groups of low- and intermediate-risk MDS patients.

New approaches to treat high-risk MDS Due to the high
failure rate of HMA therapy among patients with high-risk
MDS [71], there is an unmet need for additional options for
patients failing HMA therapy. Multiple investigational
therapies and regimens are being examined in this patient
population (Table 2).
Second-generation HMAs are in clinical development for

high-risk MDS. Guadecitabine has shown benefit in selected
patients in a phase 2 study [86] and is being evaluated in a
phase 3 study in patients with MDS failing first-line HMAs
(NCT02907359). In the phase 2 study, among patients with
higher-risk MDS or low-blast count AML after azacitidine
failure, response was achieved by eight (14%) patients,
including two patients with complete response, with an
overall median duration of response of 11.5 months. Forty-
four patients experienced serious adverse events, the
majority (88%) of which were myelosuppression events
[86]. ASTX727 (fixed-dose cedazuridine and decitabine)
was recently approved by the FDA for the treatment of
adults with MDS with various French-American-British
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subtypes and IPSS INT-1, INT-2, or high subtypes based on
the results of a phase 3 trial in patients with MDS or AML
who are candidates for intravenous decitabine
(NCT03306264 [87]), which is ongoing. HMAs are also
being evaluated with novel combination partners in both
HMA-naïve and HMA-failure high-risk MDS patients,
including pevonedistat (NCT03268954, NCT02610777
[88]), isocitrate dehydrogenase inhibitors (enasidenib
[NCT03383575 ([89]), NCT03744390], ivosidenib
[NCT02074839 [90], NCT03503409], and olutasidenib
[FT-2102; NCT02719574 [91]]), venetoclax (NCT
03404193), immune checkpoint inhibitors (durvalumab
[NCT02775903 [92]], atezolizumab [NCT02508870 [93]],
ipilimumab [NCT02530463 [94], NCT02890329], nivolu-
mab [NCT02530463 [94]], and pembrolizumab
[NCT03094637]), the anti-TIM-3 antibody sabatolimab
(NCT03066648 [95]), and the multikinase inhibitor rigo-
sertib (NCT01926587 [96], additional phase 3 study [97]);
many of these HMA-based combinations have shown
promising results (Table 2).
Early results from phase 1 and 2 studies are also showing

encouraging efficacy with isocitrate dehydrogenase inhibi-
tors (ivosidenib and enasidenib) as monotherapy in patients
with IDH1/2-mutated high-risk MDS [89, 90, 98]. For
example, among 17 patients with newly diagnosed or
relapsed/refractory RAEB-1, RAEB-2, or IPSS-R high-risk
MDS who had an IDH2 mutation (NCT01915498), the
overall response rate was 53%, with a median duration of
response of 9.2 months [98].
Glasdegib, a Hedgehog pathway inhibitor, showed

clinical activity in combination with cytarabine/daunorubi-
cin (7+ 3) in a phase 2 study in patients with untreated
AML or high-risk MDS, with a complete response rate of
46% [99]. A phase 2 study of glasdegib plus azacitidine in
patients with untreated MDS, AML, and chronic myelo-
monocytic leukemia is ongoing (NCT02367456).
In early phase studies, the combination of venetoclax and

azacitidine has shown benefit in patients with higher-risk
MDS. In a phase 1b study (NCT02942290) in patients with
treatment-naïve higher-risk (IPSS score ≥1.5) MDS,
venetoclax plus azacitidine demonstrated a response rate
of 70% [100]. In another phase 1b study (NCT02966782) in
patients with relapsed/refractory MDS, a response rate of
50% and 7% was observed in patients in the venetoclax plus
azacitidine and venetoclax alone arms, respectively [92].
CPX-351, a dual-drug liposomal encapsulation of daunor-

ubicin and cytarabine in a synergistic 1:5 ratio, is approved for
the treatment of patients with newly diagnosed therapy-related
AML or AML with myelodysplasia-related changes [101],
which includes patients with de novo AML who have an MDS
karyotype. A subgroup analysis of the pivotal phase 3 study
that supported its approval was performed in patients with
oligoblastic secondary AML, often defined as bone marrow

blasts 20–29%, which shares many biologic and clinical
features with MDS [102]. For this subgroup of patients, CPX-
351 improved median overall survival vs. 7+ 3 (12.50 vs.
5.95 months), supporting further exploration of CPX-351 in
related disease groups, including higher-risk MDS. Treating
MDS in patients who failed or are intolerant to initial HMA
treatment with CPX-351 may overcome HMA resistance and
sensitize the MDS cells to this treatment. This hypothesis
is currently being tested in several studies of CPX-351 in
MDS after HMA failure (NCT03957876, NCT04109690,
NCT02019069, NCT03896269, NCT03672539). CPX-351 is
also being evaluated as a first-line therapy in high-risk
MDS (NCT03572764, NCT04061239) and in oligoblastic
AML/MDS or MDS with excess blasts (NCT03393611,
NCT04061239).
In addition to the HMA combination study mentioned

above, rigosertib, a multikinase inhibitor, is being examined
as monotherapy in a phase 3 study in patients with high-risk
MDS and early HMA failure (≤9 months; NCT02562443),
after results from a previous phase 3 study showed that this
patient subgroup benefited most from rigosertib therapy
[103]. However, the pivotal phase 3 study assessing the
efficacy and safety of rigosertib in patients with high-risk
MDS after failing prior HMAs did not meet its primary
endpoint of improved survival [104].
FLT3 inhibitors, such as midostaurin and gilteritinib, are

approved for patients with newly diagnosed or relapsed/
refractory AML with an FLT3 mutation, respectively, and
may have therapeutic potential in MDS (NCT04097470,
NCT04027309, NCT04140487) [105]. Notably, FLT3 muta-
tions are rarely seen in MDS and are frequently associated
with the transformation of MDS to AML [106, 107].
The oral spliceosome modulator H3B-8800 has been

tested in a phase 1 study that included patients with higher-
risk MDS who were intolerant to or who had relapsed after
HMAs (NCT02841540 [108]). Although H3B-8800 had a
manageable safety profile, no complete or partial responses
were observed [108].
Flotetuzumab, a CD3/CD123 antibody, has shown

encouraging preliminary results in a phase 1 study in
relapsed/refractory AML or INT-2- or high-risk MDS
(NCT02152956), with an overall response rate of 43% [109].
Finally, bemcentinib is a highly selective inhibitor of the

AXL receptor tyrosine kinase that is being investigated in a
phase 2 study in patients with higher-risk MDS or AML
who failed or were refractory to first-line HMA treatment
(NCT03824080). Preliminary results from this study
showed bemcentinib was well tolerated in patients with
MDS and had a response rate of 33% [110].
TP53 has been identified as a relatively common mutation

in MDS patients [16] and is known to confer an adverse
prognosis [19, 21, 22]. As a result, investigational strategies
are targeting patients with TP53-mutated MDS. For
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example, eprenetapopt (APR-246) is a small-molecule
inhibitor of apoptosis in TP53-mutated cancer cells that
has been granted orphan drug designation for MDS by the
FDA and the European Commission. In a phase 1b/2 trial,
the combination of eprenetapopt and azacitidine was well
tolerated in patients with TP53-mutated MDS or AML with
20–30% bone marrow blasts; median overall survival was
10.8 months, and the overall response rate was 71% [111].
Based on promising phase 2 results, the combination is
currently being investigated in a phase 3 trial compared
with azacitidine alone in TP53-mutated MDS
(NCT03745716). However, a recent report indicated this
trial failed to meet its primary endpoint of complete
response rate [112]. Based on preclinical results showing
its ability to target the p53 pathway by inhibiting MDMX
and MDM2, ALRN-6924 is currently being evaluated in a
phase 1 study as monotherapy and in combination with
cytarabine for relapsed/refractory AML or IPSS-R inter-
mediate-, high-, or very high-risk MDS with wild-type
TP53 (NCT02909972 [113]). The CD47-targeted antibody
magrolimab (5F9) has shown robust clinical activity in
combination with azacitidine in an ongoing phase 1 study in
patients with intermediate- to very high-risk MDS
(NCT03248479 [114]), particularly in patients with TP53
mutations; expansion cohorts are ongoing, and registration
trials in MDS are being initiated.
It is also reasonable to consider that recent developments

in elderly AML patients may transfer to high-risk MDS, as
these 2 diseases are thought to represent a “biological
continuum” [41]. New or ongoing studies conducted in
elderly patients with AML may therefore be applicable to
patients with high-risk MDS. CPX-351 has demonstrated
response rates of 47.7% in older patients with AML, and
34.0% of patients proceeded to HCT [115]; as noted above,
CPX-351 is currently being evaluated in patients with high-
risk MDS. The combination of azacitidine or decitabine
plus venetoclax led to a 68% response rate in elderly
patients with AML, with 21/145 (14%) patients proceeding
to HCT [116]. Eprenetapopt in combination with azacitidine
has been examined in elderly patients with TP53-mutated
MDS or AML, with a 75% response rate [117]. However,
further clarity and guidance are needed regarding how to
apply such treatments to MDS.

Understanding the role of monitoring for
measurable residual disease (MRD) in
patients with MDS

With the advances of combination treatments that can achieve
high response rates, MRD-guided approaches have become
an attractive therapeutic strategy for high-risk MDS patients.
Treatment at molecular relapse is, for instance, more effective

than at hematologic relapse after allogeneic HCT [118];
therefore, early detection is important and can be achieved
with regular MRD monitoring after HCT. Sensitive MRD
monitoring techniques are able to determine disease clonal
and subclonal architecture and can detect relapse as early as
possible [119]. For the best accuracy and specificity, a com-
bination of next-generation sequencing-based monitoring and
multicolor flow cytometric monitoring may be favorable
[119]. Although various mutations have been studied as
prognostic factors in MDS, it is unclear whether these
mutations can be used as markers of MRD [119]. Mutations
in genes such as TP53, TET2, DNMT3A, IDH2, and RAS
have been associated with worse outcomes in patients with
MDS, but further research is needed to determine how these
mutations apply to next-generation sequencing and the
prognostic significance and clinical efficacy of measuring pre-
or post-HCT MRD in MDS [119, 120].

A universal MRD marker for MDS is unlikely because of
the genotypic and phenotypic heterogeneity of the disease
[119]. Thus, a more effective strategy may be individualized
MRD monitoring using a targeted next-generation sequen-
cing panel. Rautenberg and colleagues investigated the
value of Wilms’ tumor 1 (WT1) as an MRD marker using a
standardized, ELN-certified assay in patients with AML and
MDS after allogeneic HCT [121]. WT1 expression levels
were measurable by standardized assay and predicted
imminent relapse with high sensitivity and specificity in
most patients with AML and MDS independent of geno-
type. However, the results from this retrospective analysis
need to be confirmed in a prospective study.

The RELAZA2 trial evaluated MRD-guided azacitidine
therapy for the prevention or delay of hematologic relapse
in patients with MDS or AML and measurable MRD after
first-line chemotherapy or allogeneic HCT [122]. Results
from this study showed that MRD monitoring is useful for
identifying patients who are more likely to relapse and that
MRD-guided treatment may prevent or delay relapse [122].

An ongoing observational cohort study is evaluating
individual molecular MRD monitoring for MDS patients
after allogeneic HCT to develop highly sensitive methods
for early detection of relapse based on patients’ unique
mutations (NCT02872662). Another observational cohort
study is being performed to develop assays to determine the
impact of the therapy that patients receive for the treatment
of AML or MDS and to determine if these tests can help
identify those patients who are at greater risk of disease
relapse (NCT01311258).

Monitoring for progression of MDS to AML

The progression of patients from MDS to AML is relatively
common, and regular follow-up visits, including bone
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marrow evaluations with cytogenetic analysis, are necessary
for all patients with MDS; frequency of follow-up depends
on disease risk and choice of treatment [44]. The time frame
and frequency of monitoring for progression to AML
depends on various factors but largely relies on the risk
classification, including the molecular profile, of each
patient and their response to treatment; studies have
demonstrated that this risk can change over time [123].
Patients who progress to AML after MDS are categorized as
AML with myelodysplasia-related changes; these patients
differ with regards to their response to standard induction
chemotherapy compared to de novo disease [32, 124].

Summary and final conclusions

There is a tremendous unmet need for new treatments for
MDS; rates of relapse are high, and many patients are not
eligible for existing approved therapies. Patients should
therefore be offered clinical trial options across all disease
stages [41]. While many studies are evaluating agents with
different mechanisms of action, most are still in early stages
of development. The diverse nature of the genetic mutations
that drive MDS and other myeloid disorders, ranging from
clonal hematopoiesis of indeterminate potential to AML,
means that therapies need to be developed for specific
patient subsets. It is unlikely that there will ever be a uni-
versally effective treatment for MDS. As more is learned
about the molecular pathophysiology of MDS, it is expected
that more effective, personalized treatment options will
become available.
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