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Trends
Some RNA viruses possess miRNA-
binding sites in a range of locations
within the viral genome, including the
50 and 30 non-translated regions.

Host cell miRNAs can bind to RNA
virus genomes, enhancing genome
stability, repressing translation of the
viral genome, or altering free miRNA
levels within the cell.

miRNAs contribute to viral pathogen-
esis by promoting evasion of the host
antiviral immune response, enhancing
viral replication, or, potentially, altering
miRNA-mediated host gene regulation.

RNA virus infection can lead to wide-
spread changes in the host transcrip-
tome by modulating cell-specific
miRNA levels.
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microRNAs (miRNAs) are non-coding RNAs that regulate many processes
within a cell by manipulating protein levels through direct binding to mRNA
and influencing translation efficiency, or mRNA abundance. Recent evidence
demonstrates that miRNAs can also affect RNA virus replication and pathogen-
esis through direct binding to the RNA virus genome or through virus-mediated
changes in the host transcriptome. Here, we review the current knowledge on
the interaction between RNA viruses and cellular miRNAs. We also discuss how
cell and tissue-specific expression of miRNAs can directly affect viral patho-
genesis. Understanding the role of cellular miRNAs during viral infection may
lead to the identification of novel mechanisms to block RNA virus replication or
cell-specific regulation of viral vector targeting.

Introduction
RNAi evolved in plants and invertebrates as an antiviral mechanism, combating viral infections
through degradation of viral RNA into siRNAs that bind viral nucleic acids and thus inhibit viral
replication [1]. In vertebrates RNAi functions as an antiviral mechanism in non-differentiated
embryonic stem cells only [2,3]. In differentiated vertebrate somatic cells, type I interferon (IFN)
(see Glossary) and the antiviral effectors IFN-stimulated genes (ISGs) have evolved to mediate
the majority of cellular antiviral responses [4]. The vertebrate RNAi system regulates the function
of cellular mRNA through tissue- and cell-specific expression of host-cell-encoded miRNAs that
bind mRNAs and alter their translation or abundance [5]. To date >5500 miRNAs have been
predicted throughout the human genome [6] with many limited to specific tissues [5]. Inverte-
brates also use miRNAs to regulate mRNA translation and control protein abundance (reviewed
in [7]). Recent evidence indicates that host miRNAs also bind to RNA virus genomes, regulating
their translation and replication and altering viral pathogenesis. RNA virus infection can mediate
changes in the expression of cellular miRNAs leading to downstream changes in the host
transcriptome that can be advantageous to the virus. However, changes in miRNA expression
can also lead to increases in antiviral effector activities resulting in decreased viral replication. This
review focuses on recent advances in our understanding of RNA viruses and how they have
evolved to use host miRNAs to evade antiviral immune responses, leading to enhanced viral
replication and pathogenesis.

Factors Influencing miRNA–RNA Virus Interactions
miRNAs are small noncoding RNAs located primarily within the introns of both coding and
noncoding host RNAs (Box 1). miRNAs bind to miRNA-binding sites within mRNAs and viral
genomes to mediate miRNA function [8,9]. Naturally occurring miRNA-binding sites within viral
genomes are generally located in the 50 [10] and 30 non-translated regions (NTRs) [11] but
have recently been found in the coding regions of viral proteins [12,13]. Increasing the number of
miRNA-binding sites in a viral 30 NTR with perfect complementarity to the target miRNA has led
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Glossary
Borna disease virus: non-
segmented, negative-strand RNA
virus that can establish persistent
infection in human neuronal cells.
Bovine viral diarrhea virus (BVDV):
a member of the Pestivirus genus
that is an important pathogen of
livestock due to its ability to affect
reproduction.
Coronavirus: enveloped, positive-
strand RNA virus that can infect
humans and other animals and can
cause the common cold and
pneumonia in the elderly. Severe
acute respiratory syndrome-related
coronavirus (SARS-CoV) and Middle
East respiratory syndrome virus
(MERS) are related coronaviruses.
Enterovirus 71 (EV71): the genome
of this virus contains a single
polyprotein that encodes both
structural and nonstructural proteins.
EV71 causes hand–foot and mouth
disease primarily in young children
and elderly, but can also cause
disease in adults.
Human T cell leukemia virus, type
I (HTLV-1): a positive-sense RNA
retrovirus that can cause adult T cell
leukemia/lymphoma in humans.
Influenza PB1 protein: a
component of the RNA-dependent
RNA polymerase complex that is
required for influenza virus replication.
Interferon-stimulated genes
(ISGs): genes that are upregulated
by IFN after recognition of viral
infection by pattern-recognition
receptors leading to innate immune
responses.
miRNA: noncoding RNAs of 21–23
nucleotides that bind to cellular
mRNAs and viral RNAs mediating
translational repression or RNA
degradation and thereby reducing
protein levels within the cells.
Noncanonical miRNA target sites:
contain at least one nucleotide
mismatch between the miRNA seed
sequence and the miRNA-binding
site in the target mRNA.
Non-translated regions (NTRs):
regions of mRNAs and viral genomes
that do not encode proteins. These
are typical locations within the mRNA
and genomes for miRNA binding.
Pattern-recognition receptors:
intra- and extracellular receptors that
recognize pathogen-associated
molecular patterns leading to the
initiation of innate immune responses.
P bodies: structures within a cell that
process mRNA. miRNA binding to

Box 1. Biochemistry of miRNA–RNA Virus Interactions

miRNA genes are transcribed by RNA polymerase II into primary miRNA (pri-miRNA) transcripts containing a stem–loop
structure encompassing the miRNA of interest [82]. Within the cell nucleus, pri-miRNA is digested enzymatically by the
Drosha protein into pre-miRNA containing a hairpin structure, which is exported from the nucleus into the cytoplasm
(Figure 1) [83]. Subsequently, the Dicer protein cleaves the terminal loop structure of the hairpin leaving a small, 21–23-
nucleotide miRNA duplex. The argonaute protein then associates with one strand of the miRNA duplex to form the RISC,
mediating translational repression or mRNA destabilization [84,85]. Each strand in the miRNA duplex can function as an
miRNA and be loaded into the RISC; however, the strand that is more thermodynamically unstable at the 50 end is
incorporated preferentially [86]. For a more detailed review of miRNA processing, see [82].

A seed sequence located at nucleotide positions 2–8 of the 50 end of the miRNA binds complementary sequences
within the 30 NTR of either a host mRNA or the genome of an invading RNA virus [87]. A single miRNA can possess
binding specificity for many different target mRNAs based on the cell type and the pattern of mRNA expression [88]. A
perfect match between the miRNA and the entire mRNA target sequences leads to RNA cleavage, albeit rarely in
mammals [87]. More commonly, an exact seed sequence match, – a canonical miRNA-binding site without complete
complementarity in the remainder of the target mRNA – results in translation inhibition and, eventually, RNA destabiliza-
tion and degradation [84,85]. Recently, noncanonical binding sites have also been described that have imperfect seed
sequence complementarity. As an example, noncanonical miRNA-binding sites are thought to comprise up to 40% of the
total miR-155 miRNA-binding sites in host mRNAs [89]. However, although noncanonical binding sites may mediate
miRNA binding to the mRNA, these sites may not fully suppress mRNA translation [90]. If miRNAs can functionally inhibit
RNA viruses through noncanonical interactions, the number of potential miRNA–RNA virus interactions would drama-
tically increase. Mutational analysis of known miRNA-binding sites into noncanonical target sequences will be required to
determine whether such noncanonical interactions can mediate productive miRNA–RNA virus interactions.
to increased translational repression in vitro and greater attenuation in mice [14]. In similar
studies, cooperativity between two or more miRNA-binding sites enhanced repression of mRNA
translation via an unknown mechanism when sites were separated by 13–35 nucleotides [15].
Therefore, the location and number of miRNA-binding sites within a viral genome can influence
miRNA function. Naturally occurring viral miRNA-binding sites within viral RNAs may not be
uniformly distributed or have perfect complementary to the miRNA. Further experimental
validation will be required to determine whether cooperativity between viral miRNA-binding
sites leads to enhanced transcriptional repression. Furthermore, empirical studies are needed
for all miRNA–viral interactions identified in silico – as computational methods might not fully
recapitulate the cellular environment – to identify interactions that are not functional due to
higher-order target RNA structures or other nucleic acid interactions.

Transcriptional, epigenetic, and environmental conditions drive miRNA gene transcription lead-
ing to temporal and cell-specific miRNA expression [16]. Common laboratory practices can also
alter the miRNA environment within a cell. For example, culturing cells can reduce miRNA levels
compared with primary tissues [17] and cells at a higher confluency can exhibit increased miRNA
levels compared with less confluent cells due to increased cell–cell contact [18]. Compared with
cells isolated from primary tissues, it is commonly known that cancer cell lines have different
expression patterns of miRNAs that can contribute to carcinogenesis [19]. C6/36 cells derived
from Aedes albopictus mosquitoes do not efficiently cleave viral RNA into siRNAs for use in the
antiviral RNAi pathway but can still process miRNAs [20]. By contrast, Aag2 cells derived from
Aedes aegypti mosquitoes have a functional double-stranded RNA processing pathway and
can generate both siRNAs and miRNAs [21]. Furthermore, studies that globally inhibit the RNAi
pathway in single cell types [22] are likely to fail in detecting cell/tissue-specific miRNA–viral
interactions and can underestimate the impact of cell-specific miRNA–viral interactions occur-
ring in infected hosts. Finally, in vitro models may not fully characterize how miRNA–viral
interactions alter global cellular miRNA levels [23], which could possibly lead to important
changes in paracrine or autocrine signaling in intact hosts [11]. Knowledge of the pathobiological
features of a viral infection within a specific host (e.g., unexplained restriction in particular tissues)
and using disease-relevant cell lines that express an miRNA of interest might also lead to the
identification of cell-specific miRNAs that contribute to viral pathogenesis.
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target mRNAs can direct these
mRNAs to P bodies for storage or
decay through decapping
mechanisms or 50–30 exonuclease
activity mediating translational
repression.
Primate foamy retrovirus type 1
(PFV-1): establishes lifelong
persistent infection in humans and
primates without causing signs of
disease, which is unique to PFV.
Prodrome: the initial set of clinical
symptoms that a viral infection elicits
in an infected animal’ may progress
to different or more severe
manifestations of infection.
Retinoic acid-inducible gene I
(RIG-I): RNA helicase and pattern-
recognition receptor that recognizes
single-stranded RNA containing a 50

triphosphate molecule leading to a
signaling cascade initiating innate
immune responses.
While miRNA–RNA viral genome interactions are governed by many of the same mechanisms
governing miRNA–mRNA interactions, investigation of their role in viral pathogenesis should take
into account cell specificity, the role of noncanonical miRNA target sites, the potential for mild
alteration of viral activities at the cellular level leading to large effects in the host, and the potential
for miRNA inhibition to alter cell–cell signaling in the complex environment of an infected animal.
These ideas are explored in greater detail below.

miRNA Interactions with the RNA Viral Genome
Evidence is accumulating that host miRNAs can bind to a broad range of RNA viruses, directly
regulating their pathogenesis (Table 1). A positive-strand RNA virus genome mimics cellular
mRNAs allowing direct binding of the miRNA to the viral RNA, and potentially the regulation is
analogous to that of host mRNAs. Two outcomes of these interactions have thus far been
identified where viral replication is directly altered: (i) inhibition of translation of the viral genome
preventing viral replication [11]; and (ii) stabilization of the virus RNA thereby enhancing replica-
tion (Figure 1, Key Figure) [10,24]. Both of these mechanisms reveal a novel method for
regulating RNA virus replication within specific cells and/or tissues. In addition to expression
of the virus receptor on the cell surface, miRNA-mediated virus repression may be another
mechanism for determining cell permissiveness to infection. Another commonality of these two
RNA-induced silencing complex
(RISC): functional set of cellular
proteins including argonaute proteins,
which associate with the miRNA seed
sequence to mediate binding of the
RISC to complimentary sequences in
target RNAs. The binding of the RISC
to target RNAs leads to translational
repression or destabilization of the
target RNA.
Seed sequence: nucleotides 2–8 at
the 50 end of an miRNA that
determine the target specificity of the
miRNA by binding to complementary
sequences in the target RNA. A
single miRNA can bind to many
different target RNAs based on the
seed sequence.
Translational repression: a
functional outcome of miRNA binding
to target RNA that results in reduced
translation of the RNA leading to
lower protein levels within the cell.
Type I interferon (IFN): a primary
antiviral molecule that functions in
both an autocrine manner – by
upregulating ISGs leading to
increased IFN production within the
same cell – and a paracrine manner
by priming naïve cells via the
upregulation of antiviral ISGs.
Viral quasispecies: viruses that
arise due to mutation of the virus
genome; they compete for a fitness
advantage within the host.

Table 1. Direct Binding of miRNAs to the RNA Virus Genome

Virus miRNA Phenotype Refs

EEEV miR-142-3p # Viral translation and replication, myeloid cell
replication, serum IFN-//b, lymph node replication
" Virulence

[11]

PFV-1 miR-32 # Viral translation [28]

HTLV-1 miR-28-3p # Viral translation in T cells, transmission between
humans

[29]

HIV miR-28-5p, miR-150,
miR-223, miR-382

# Viral translation
" Latency in T cells

[30]

miR-29a " Association with RISC and P bodies
# Viral replication

[31]

Influenza miR-323, miR-491,
miR-485, miR-654,
miR-3145

# PB1 RNA levels [12,33,34]

let-7c # Matrix protein [35]

EV71 miR-296-5p # Viral replication, VP1 and VP3 protein levels [13]

miR-23b # Viral translation and replication [32]

Infectious bursal
disease virus

miR-21 # VP1 protein levels [38]

PRRSV miR-181, miR-206 # Viral translation and replication [39]

miR-23, miR-378,
miR505

# Viral translation and replication
" IFN-//b

[40]

HCV miR-122 " RNA stability, viral replication, cell proteins
repressed by miR-122
# Free miR-122

[10,24,48]

BVDV miR-17, let-7c " RNA stability and viral translation, cell proteins
repressed by miR-17
# Free miR-17

[23]

", Increase; # decrease.
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Key Figure

Direct and Indirect Interactions between Cellular miRNAs and RNA Viruses
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Figure 1. miRNAs are transcribed in the nucleus by RNA polymerase II (Pol II) into a primary miRNA (pri-miRNA) that is cleaved by Drosha resulting in a pre-miRNA. The
pre-miRNA is exported from the nucleus into the cytoplasm and is enzymatically cleaved by Dicer into the miRNA duplex. One strand of the miRNA duplex is recognized
by the argonaute proteins to form the RNA-induced silencing complex (RISC). Direct interaction: After infection, the RNA virus genome is released into the cytoplasm
where the miRNA-loaded RISC binds via the miRNA seed sequence to complementary nucleotides in the viral 50 non-translated region (NTR), 30 NTR, or coding regions.
miRNA binding to the 50 NTR leads to RNA stability and increased viral replication. miRNA binding to the 30 NTR can lead to inhibition of viral translation or increased RNA
stability and viral translation. Indirect interaction: Viral RNA is recognized by pattern-recognition receptors, Toll-like receptor (TLR)3, TLR7, and retinoic acid-inducible
gene I (RIG-I) or melanoma differentiation-associated protein 5 (MDA5), leading to induction of the interferon (IFN) signaling cascade and upregulation of IFN-/, IFN-b, and
other IFN-stimulated genes (ISGs) that inhibit viral replication. Viral infection and IFN and ISG induction can also lead to changes in miRNA expression within a cell. These
upregulate or downregulate proteins involved in the IFN signaling cascade or ISG expression and function, as well as cellular proteins required for viral replication.
Collectively, these virus-mediated changes in miRNA levels result in either a proviral or an antiviral environment.
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mechanisms is that both lead to a fitness advantage for the virus at the level of the infected host,
either directly by increasing replication – as with hepatitis C virus (HCV) [10,24] – or indirectly by
suppressing innate immune responses and leading to increased overall host-level replication, as
in the case of eastern equine encephalitis virus (EEEV) [11]. Considering the ability of RNA viruses
to rapidly alter their genomes in the face of selective pressure [25], it may be that productive
miRNA–RNA viral interactions are maintained only when a significant replicative advantage is
conferred on the virus. Below, the outcomes of direct binding of miRNA to RNA viral genomes
are discussed in detail.

Translational Inhibition of the RNA Viral Genome by Direct miRNA Binding
Alphaviruses. EEEV, an alphavirus, causes the most acutely virulent mosquito-borne viral
disease in the USA, with a >30% mortality rate in humans and long-term neurological sequelae
in surviving individuals [26]. In humans EEEV infection is characterized by a limited disease
prodrome before the manifestation of encephalitis due to the inability of EEEV to replicate in
hematopoietic cells and to elicit a strong innate immune response [11,27]. EEEV is a positive-
sense RNA virus that encodes three canonical and one noncanonical miRNA-binding sites in the
30 NTR that are specific for the hematopoietic cell-specific miRNA miR-142-3p [11]. miR-142-3p
expression has been shown to prevent translation of the incoming EEEV genome and prevent
virus replication in both human and murine macrophages as well as dendritic cells [11]. This
inhibition of myeloid cell replication prevented IFN-//b induction in vivo, directly contributing to
the extreme virulence of EEEV that is seen in mice, and presumably in humans [11]. Mutation of
the miR-142-3p-binding sites in the EEEV genome has been shown to allow virus translation and
replication in both human and murine myeloid cells, which was shown to lead to systemic IFN-
//b production and virus attenuation in mice. Presumably, strong selective pressure has
maintained these miR-142-3p-binding sites, since 17 of 23 North American EEEV strains
isolated from nature have the same sequence and location of miR-142-3p binding sites within
the 30 NTR [11].

Retroviruses. Retroviruses are single-stranded, positive-sense RNA viruses with two different
points in the virus life cycle where miRNAs can bind to virus RNA: the genomic RNA and the RNA
transcribed from integrated DNA. For example, primate foamy retrovirus type 1 (PFV-1)
encodes a binding site for miR-32 in the 30 NTR of multiple protein transcripts that can inhibit PFV-
1 replication. To evade miR-32 repression, PFV-1 encodes a transactivator protein, Tas, that
nonspecifically suppresses the miRNA processing pathway and potentially inhibits the production
of miRNAs that might limit virus replication, including miR-32 in infected mammalian cells [28].
Human T cell leukemia virus, type I (HTLV-1) translation is inhibited in resting human T cells by
miR-28-3p. A single nucleotide variant in the miR-28-3p target sequence of the Japanese ATK-1
strain has been shown to confer miR-28-3p translational repression resistance, increasing virus
replication as well as transmission between individuals, occurrences not normally seen with other
HTLV-1 strains [29]. miRNA can also contribute to retroviral latency within T cells by preventing
translation of the virus RNA and suppressing virus replication. For example, during HIV-1 infection
of CD4+ T cells in vitro, expression of miR-28-5p, miR-150, miR-223, and miR-382 has been
found to mediate translational repression of HIV-1 RNA [30]. Another miRNA, miR-29a, functions
through a different mechanism to restrict viral replication during HIV-1 infection by binding to the 30

NTR leading to its increased association with the RNA-induced silencing complex (RISC) and
P bodies and thus preventing virus translation [31].

Picornaviruses. Similar inhibition of virus translation and replication occurs following upregulation
of miR-296-5p by the positive-sense picornavirus family member enterovirus 71 (EV71). miR-
296-5p negatively regulates virus replication in a human neuronal cell line due to the presence of
two miR-295-5p-binding sites in the coding regions of virus proteins VP1 and VP3 [13]. Natural
variants of EV71 bear mutations in the miR-296-5p-binding sites rendering this virus insensitive
84 Trends in Molecular Medicine, January 2017, Vol. 23, No. 1



to miR-296-5p restriction [13]. EV71 also contains a binding site for miR-23b; however, miR-23b
is naturally downregulated during EV71 infection of monkey epithelial cells, preventing miR-23b
binding to the virus genome and inhibiting virus replication [32].

Orthomyxoviruses. miRNAs can also bind to negative-strand RNA viruses after transcription of
the negative-strand RNA genome into the positive-sense RNA intermediate needed for virus
replication. For instance, miR-323, miR-491, miR-485, miR-654, and miR-3145 have been
shown to bind to the coding region of the influenza PB1 gene segment leading to RNA
degradation in infected human and canine epithelial cell lines in vitro [12,33,34]. Similar degra-
dation of virus RNA was found when the miRNA let-7c bound to the 30 NTR of the influenza
matrix protein in human alveolar epithelial A549 cells [35]. Other potential miRNA-binding sites in
the influenza RNA genome have been computationally predicted; however, they have yet to be
experimentally validated [36,37]. Although an miRNA may restrict influenza virus replication in cell
culture, it may not be constitutively expressed in infected cells in vivo and therefore may not
necessarily affect viral pathogenesis in vivo [33].

Other Viruses. Finally, interactions between miRNAs and RNA viruses also occur with nonhuman
viruses. In chickens infectious bursal disease virus replication is inhibited by miR-21 due to miR-
21-binding sites in the coding region of the VP1 protein [38]. In pigs naturally minimally
permissive cells can express multiple miRNAs that inhibit replication of porcine reproductive
and respiratory syndrome virus (PRRSV) [39,40]. Treatment with a miR-181 mimic limits PRRSV
replication in vivo leading to extended infected-pig survival times, thus demonstrating the
therapeutic potential of this miRNA during an RNA virus infection [39]. While these studies
suggest widespread negative regulation of RNA virus replication by host cell miRNAs, the
capacity for RNA viruses to mutate rapidly to eliminate miRNA binding [9,41,42] indicates that
direct antiviral activities of miRNAs may be limited to particular cells or to a subset of viral
quasispecies present at any given time within the host. Therefore, any antiviral effects at the
cellular level should be considered in the context of the overall effect of tissue-specific viral
inhibition on viral quasispecies fitness in the intact host and on transmission between hosts.

miRNA-Mediated Stabilization of RNA Virus Genomes: A Focus on Flaviviruses
A noncanonical interaction between miRNAs and RNA viruses has been identified that leads to
increased stability of the viral RNA. The most studied interaction of this type was first identified in
2005 and occurs between liver-specific miR-122 and HCV. Rather than binding to the 30NTR,
miR-122 bound to the 50 NTR of HCV [10] preventing 50 host exonuclease activity and RNA
degradation in the infected human hepatocarcinoma-derived cell line Huh-7 [24]. Moreover,
removal of miR-122 from Huh-7 cells could reduce HCV replication [10]. Thus, miR-122 is
currently an active target for antiviral therapeutics in the treatment of chronic HCV infection
[10,43]. Recently, miRNAs were also found to increase RNA stability through interactions with
the 30 NTR; miR-17 and let-7c both bound to the 30 NTR of the bovine viral diarrhea virus
(BVDV) genome increasing virus translation and RNA stability rather than causing translational
repression [23]. Interestingly, let-7 sites are present within several RNA viruses, including
alphaviruses [23]. The ability of two diverse members of the Flaviviridae family, HCV and BVDV,
to utilize host miRNAs to help stabilize virus RNA through two different sites within the virus
genome suggests that this interaction might have evolved independently. It will be interesting to
determine whether other virus families use miRNAs in a similar manner to help stabilize viral RNA.

Modulation of Host miRNA Levels during Viral Infections
Recognition of viral infection by pattern-recognition receptors initiates the innate immune
response signaling cascade leading to transcription factor activation and changes in the cell
transcriptome, including changes in miRNA expression (Figure 1) [44]. It has been proposed that
a critical role for miRNAs during a viral infection is in the modulation of cytokine responses, either
Trends in Molecular Medicine, January 2017, Vol. 23, No. 1 85



by augmenting productive responses or by suppressing potentially damaging responses [45].
Specific miRNA expression patterns have been associated with pathogenic versus attenuated
influenza virus [46] and hantavirus (Hantaan) [47] infections. Viruses may also alter global miRNA
activity by binding and sequestering free miRNA. For example, miR-122 binding to HCV has
been shown to sequester and reduce free miR-122 inside Huh-7 cells leading to changes in
expression of the cellular proteins that are normally repressed by miR-122 [48]. Although both
miR-17 and let-7c can bind the BVDV genome, only miR-17 sequestration has been reported to
lead to changes in the host transcriptome, demonstrating that not all miRNA–RNA interactions
lead to similar results [23]. Such changes in the host transcriptome due to sequestration may
positively or negatively affect viral replication and pathogenesis and may vary depending on the
cell and tissue expression of each miRNA. Finally, RNA viruses can encode proteins that
modulate the miRNA or RNAi pathway, especially in invertebrates (Box 2). Moreover, as
discussed below, RNA virus infection can lead to many changes in miRNA expression (Table 2)
influencing viral replication as well as host immune responses.

miRNA-Mediated Changes in Protein Expression That Alter Host Responses to Infection
In addition to tissue-specific changes in miRNA expression during viral infections (Box 3), other
important changes in miRNA-mediated protein expression can occur. For instance, IFN-//b is a
key cytokine induced by viral infection that leads to the downstream upregulation of antiviral
ISGs. Viruses have evolved multiple mechanisms to evade the IFN system to establish a
productive infection. Typically, during an infection viral proteins inhibit either pattern-recognition
receptor recognition or downstream signaling cascades to prevent ISG induction [49]. However,
a role for virus-mediated regulation of the IFN signaling cascade through changes in host miRNA
levels has recently been proposed. For example, EV71 [50], dengue virus (DENV) [51], and
Japanese encephalitis virus (JEV) [52] induction of miR-146a in infected cells has been shown to
negatively regulate the IFN signaling protein tumor necrosis factor receptor-associated protein 6
(TRAF6), thus preventing the induction of IFN-//b. In addition, downregulation of miR-432 by
JEV infection has been reported to increase expression of the negative regulator of cytokine
signaling suppressor of cytokine signaling 5 (SOCS5) in infected human microglial cells, thereby
dampening the antiviral response [53]. Induction of miR-29c, miR-451, and miR-485 in influ-
enza-infected cells has also been found to limit cytokine and chemokine responses through
inhibition of various antiviral proteins (Table 2) and to prevent overactive IFN and inflammatory
responses [34,54,55]. HCV infection can upregulate miR-758 [56], miR-130a [57], and miR-373
[58], inhibiting various components of IFN signaling to decrease IFN-//b production (Table 2).
Another example is avian leukosis virus subgroup J infection, which in chicken spleen was
shown to lead to miR-23b expression and downregulation of both IFN regulatory factor 1 (IRF1)
Box 2. Viral Proteins That Inhibit the RNAi Machinery

RNA viruses can also encode proteins that inhibit the miRNA processing pathway. These proteins lead to changes in host
miRNA and protein levels that modulate innate immune and other cell stress responses, causing more rapid and
extensive viral replication during acute infections, decreased virus clearance, and enhanced immunopathology. Although
miRNAs do not appear to have a host-protective direct antiviral role against RNA virus infection in vertebrates [2,3], some
animal virus proteins have the capacity to suppress the miRNA pathway. The Ebola virus VP35 [91] and VP30 proteins
[92] and the HCV core protein [93] interact with Dicer or Dicer-interacting proteins to prevent final processing into
miRNAs. The HIV-1 Tat [94] and influenza NS1 [95] proteins have also been proposed to suppress the RNAi pathway
through inhibition of Dicer and binding to double-stranded RNA, respectively; however, other reports have failed to
support this hypothesis [96,97].

In invertebrates many viruses encode proteins that inhibit the RNAi machinery at multiple steps, all leading to suppression
of the antiviral RNAi pathway and increased viral replication. These steps include preventing the processing of RNAs into
siRNAs by Dicer proteins, inhibiting the function of argonaute proteins, and inhibiting the final formation of the RISC
(reviewed in [98]). Evidently, further studies will be required to determine the exact role of RNAi-suppressing viral proteins
in animal virus pathogenesis.
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Table 2. Changes in Cellular miRNA Expression after RNA Virus Infection

Virus miRNA Protein target Phenotype Refs

EV71 " miR-146a # TRAF6, IRAK1,
SOS1

# IFN-//b
" Apoptosis

[50]
[107]

" miR-141 # eIF4E # Host translation [70]

# miR-370 " GADD45b " Apoptosis [107]

" miR-526a # CYLD " IFN-//b
# Viral replication

[66]

DENV " miR-146a # TRAF6 # IFN-//b [51]

" miR-30e* # IkB/
" IFN-b, OAS1,
MxA, IFITM1

# Viral replication [61]

JEV " miR-146a # TRAF6 # IFN-//b [52]

# miR-432 " SOCS5 # IFN-//b [53]

" miR-155 # SHIP1 " IFN-b, proinflammatory
cytokines

[99]

" miR-15b # RNF125 " RIG-I [101]

" miR-29b # TNFAIP3 " Proinflammatory cytokines [100]

Influenza
virus

# miR-24 " Furin " Hemagglutinin cleavage [68]

# miR-548an " NS1-binding
protein

# Apoptosis [69]

# miR-4276 " COX6C " Caspase-9
# Viral replication

[109]

" miR-485 # RIG-I # IFN-//b [34]

" miR-29c " TNFAIP3 # Proinflammatory cytokines [54]

" miR-451 # YWHAZ/14-3-3z # IL-6, TNF, CCL5, CCL3 [55]

HCV " miR-758 # TLR3/7 # IFN-//b [56]

" miR-373 # JAK1, IRF9 # IFN-//b [58]

" miR-130a " ISG15, USP18, MxA
# miR-122
# IFITM1

" IFN-//b
# Viral replication
" Viral replication

[60]

[57]

" miR-146a-5p N.D. " Viral assembly
and egress

[71]

Hendra virus " miR-146a # RNF11 " NF-kB
" Viral replication

[110]

WNV " miR-532-5p # SESTD1, TAB3 # Viral replication [62]

" miR-6124 # CTCF, ECOP " Apoptosis [108]

Coxsackie
B3 virus

" miR-19b # GJA1 " Pathogenesis,
myocarditis

[105]

" miR-1 # GJA1, KCNJ2 " Pathogenesis,
myocarditis

[105,106]

RSV # miR-221 " NGF, TrKA # Apoptosis
" Viral replication

[72]

" let-7f # SOCS3, ELF4,
DYRK2, CCND1

" Viral replication [67]

" let-7b, let-7i,
miR-30b

N.D. " IFN-b
# Viral replication

[65]

Coronavirus
OC43

# miR-9 " NFKB1 " NF-kB [64]

Trends in Molecular Medicine, January 2017, Vol. 23, No. 1 87



Table 2. (continued)

Virus miRNA Protein target Phenotype Refs

Avian leukosis
virus J

" miR-23b # IRF1 # IFN mRNA
" Viral replication

[59]

Borna disease
virus

# miR-155 " SOCS3 # IFN-b
" Viral replication

[63]

N.D., not determined; " increase; # decrease.
IRAK1, interleukin 1 receptor-associated kinase 1; SOS1, SOS Ras/Rac guanine nucleotide exchange factor 1; eIF4E,
eukaryotic translation initiation factor 4E; GADD45b, growth arrest and DNA damage-inducible protein 45b; CYLD, CYLD
lysine 63 deubiquitinase; OAS1, 20-50-oligoadenylate synthetase 1; MxA, MX dynamin-like GTPase 1; SHIP1, Src homology
2-containing inositol phosphatase 1; RNF125, ring-finger protein 125; E3 ubiquitin protein ligase; TNFAIP3, TNF alpha-
induced protein 3; COX6C, cytochrome c oxidase subunit 6C; YWHAZ/14-3-3z, tyrosine 3-monoxygenase/tryptophan 5-
monoxygenase activation protein; CCL, C-C motif chemokine ligand; TLR, Toll-like receptor; JAK1, Janus kinase 1; ISG15,
ISG15 ubiquitin-like modifier; USP18, ubiquitin-specific peptidase 18; RNF11, ring-finger protein 11; CTCF, CCCTC-
binding factor; ECOP, epidermal growth factor receptor-coamplified and overexpressed protein; GJA1, gap junction protein
alpha 1; KCNJ2, potassium voltage-gated channel subfamily J member 2; NGF, nerve growth factor; TrKA, tyrosine
receptor kinase A; ELF4, E74-like ETS transcription factor 4; DYRK2, dual-specificity tyrosine phosphorylation-regulated
kinase 2; CCND1, cyclin D1; NFKB1, nuclear factor kappa B subunit 1.

Box 3. Tissue-Specific Changes in miRNA Expression during Viral Infection

Tissue-specific changes in miRNA expression can also contribute to virus-induced pathology in mice. For instance, JEV
and WNV infection of the central nervous system [99–102] and influenza virus infection of the lung [103,104] can lead to
changes in multiple miRNAs implicated in the regulation of proinflammatory responses. Upregulation of miR-19b and
miR-1 by Coxsackie B3 virus infection was found to downregulate the expression of gap junction proteins – required for
cell-to-cell contact – in human and mouse cardiomyocytes, leading to the development of viral myocarditis [105,106].
Another study documented that induction of miR-146a and downregulation of miR-370 following EV71 infection and
miR-6124 expression after WNV infection led to increased cellular apoptosis and cell death through the regulation of
apoptotic and antiapoptotic proteins [107,108]. Obviously, changes in miRNA levels associated with viral infection can
contribute to pathological and/or protective responses. However, as with antiviral activities, the role of these effects in the
replication and disease process should be considered carefully with respect to the effects on single cells or tissues and
the overall pathogenesis of the virus in a given host, as well as host–host transmission mechanisms.
levels and innate immune induction [59]. It is likely that future work will identify more miRNAs that
are involved in downregulating the innate immune response during RNA virus infections.

Viral infection may also increase the levels of miRNAs leading to the upregulation of antiviral
molecules that are detrimental to viral replication. For example, while miR-130a can downregulate
IFN-induced transmembrane protein 1 (IFITM1) protein levels after HCV infection to increase virus
replication [57], miR-130a induction can also lead to antiviral ISG expression, increased IFN
production, and reduced virus replication in Huh-7.5.1 hepatocarcinoma cells [60]. These results
demonstrate that the same miRNA can have pleiotropic effects during virus infection, which may
be due to two different mechanisms: direct targeting of a cellular protein (IFITM1) [57] or targeting
of an unknown master regulator that controls the expression of many ISGs [60]. Interestingly,
upregulation of miR-130a following HCV infection can also downregulate the expression of miR-
122, providing a second mechanism to limit HCV replication [60]. Following DENV infection of a
human monocyte cell line, miR-30e* induction has been shown to suppress virus replication by
downregulating nuclear factor kappa B (NF-kB) inhibitor alpha (NFKBIA or IkB/) leading to
continual NF-kB activation and upregulation of ISGs and IFN-//b production [61]. Finally, rather
than modulating ISG levels, miR-532-5p upregulation during West Nile virus (WNV) infection has
been shown to lead to downregulation of SEC14 and of spectrin domain-containing 1 (SESTD1)
and TGF-beta-activated kinase 1/MAP3K7-binding protein 3 (TAB3), two proteins required for
virus replication in infected human embryonic kidney (HEK) 293 cells [62].

With some viruses, virus-encoded proteins can inhibit the upregulation of miRNAs that are
triggered after viral infection to suppress the innate immune response. For example, the borna
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disease virus phosphoprotein was shown to inhibit the expression of a known regulator of
innate immune responses, miR-155, limiting the induction of IFN-//b during infection in human
oligodendroglioma cells [63]. Also, the coronavirus OC43 nucleocapsid protein has been found
to bind the NF-kB negative regulator miR-9 in HEK293T cells, allowing continual NF-kB
translation; however, the role of this activity during coronavirus infection remains unclear
[64]. The respiratory syncytial virus (RSV) NS1 and NS2 proteins can antagonize let-7i and
miR-30b induction through the inhibition of innate immune signaling proteins in human bronchial
epithelial cells [65]. EV71 3C protein can block the upregulation of miR-526a by degrading IRF7
and preventing enhancement of retinoic acid-inducible gene I (RIG-I) signaling [66]. Finally,
virus protein expression can also lead to the upregulation of miRNAs, as in the case of the RSV G
protein, which can increase let-7f expression, negatively regulating IFN production and delaying
virus clearance in human alveolar epithelial A549 cells [67]. Potentially, viral protein-mediated
changes in miRNA expression may occur through an indirect mechanism governed by viral
inhibition of the innate immune response rather than a direct interaction between the viral protein
and the transcription factors that regulate miRNA expression, but further experiments would be
required to elucidate this point.

miRNA-Mediated Changes in Protein Expression That Promote Viral Replication
As described above, miRNA sequestration and/or alteration of expression levels by RNA viruses
can lead to cellular transcriptome changes that promote favorable conditions for viral replication.
For example, influenza virus infection has been shown to downregulate miR-24 in A549 cells
leading to increased furin protease levels and, thus, increased cleavage of the influenza
hemagglutinin protein, leading to increased numbers of infectious influenza particles [68]. Also
in A549 cells, influenza virus downregulation of miR-548an was shown to lead to increased NS1-
binding protein levels and increased RNA stability by decreasing cellular apoptosis [69]. In
another study EV71 infection increased miR-141 levels in human rhabdomyosarcoma cells,
leading to the downregulation of eukaryotic translation initiation factor 4E protein and thus
contributing to the switch from cap-dependent translation of cellular mRNAs to cap-indepen-
dent translation of virus RNAs [70]. Furthermore, miR-146a-5p upregulation after HCV infection
of human hepatocytes and in liver tissues from HCV-infected patients has been shown to
promote the assembly of virus particles and egress from an infected cell, increasing HCV
infection, through an unknown mechanism [71]. In another example RSV infection of human
bronchial epithelial cells resulted in the downregulation of miR-221 levels, preventing infected cell
apoptosis and leading to increased virus replication [72]. Finally, transfection of miRNAs into cells
before virus infection has led to the identification of novel proteins involved in virus replication,
such as heterogeneous nuclear ribonucleoprotein C (C1/C2) (hnRNP C) and leukemia inhibitor
factor (LIF) in poliovirus [73] and influenza infections, respectively [74]. The use of miRNA
expression screens to identify novel cellular proteins involved in RNA virus replication will be
more common in the future. However, confirmation of the role of these miRNAs in vivo will be
needed to determine their specific functional contribution to viral replication and pathogenesis.

Maintenance of miRNA-Binding Sites in the RNA Virus Genome
RNA viruses can mutate rapidly due to the lack of proofreading activity in the RNA polymerase
[75]. Therefore, positive selection, or at least the absence of negative selection, is likely to be
required to maintain the miRNA-binding sites within the virus genome. For example, EEEV
replication in a non-miR-142-3p-expressing mammalian cell line resulted in a 238-nucleotide
deletion in the 30 NTR encompassing all of the miR-142-3p-binding sites [41]. Similarly, artificially
inserted miRNA-binding sites in the 30 NTR of DENV [42] and tick-borne encephalitis virus (TBEV)
[14] were deleted in vivo during infection in mice. These results demonstrate that miRNA-binding
sites in the 30 NTR without a positive influence on virus replication can be rapidly deleted in vivo.
Therefore, it is unclear how sites that negatively impact replication might be retained in virus
populations. With EEEV, replication in the mosquito vector appears to provide positive selection
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Outstanding Questions
For arthropod-borne viruses, what role
do miRNAs play in determining host,
reservoir, or vector range during the
viral transmission cycle?

Is location within the genome or the
number of miRNA-binding sites the
key factor determining translational
repression and, consequently, the sup-
pression of viral replication?

Do viral noncanonical miRNA-binding
sites mediate miRNA binding and
translational repression?

How does viral infection mediate
changes in miRNA levels within the cell
and does this affect cellular gene
regulation?

Can knowledge regarding the role of
miRNAs during RNA virus infection
lead to the development of miRNA
therapeutics or targeted viral expres-
sion vectors?

Box 4. The Clinician's Corner

miRNAs play a role in many different processes within a cell by regulating the production of cellular proteins. miRNA
regulation of the innate immune response modulates the production of antiviral molecules by enhancing their response
during the initiation of innate immunity, but also by downregulating this response to prevent aberrant physiological
responses and/or immunopathology in a host.

Cell-specific miRNA expression directly contributes to the pathogenesis of medically important viruses either by
promoting avoidance of the innate immune response (e.g., EEEV) or by stabilizing the viral genome and enhancing
viral replication (e.g., HCV).

Other miRNAs can be regulated via viral infection to establish a pro- or antiviral environment. miRNA expression patterns
can be used to identify a viral infection and help to determine whether a viral strain is pathogenic or attenuated.

In the future miRNAs might be used as antiviral therapeutics to prevent certain viral infections. Furthermore, the
incorporation of tissue-specific miRNAs into viral vaccine and gene therapy vectors might enhance the specific targeting
of viral proteins and/or, hopefully, limit adverse reactions due to infection.
for retention of miR-142-3p-binding sites, as deletion of the sites decreased virus replication in
mosquito cell cultures and greatly suppressed acquisition by mosquito vectors [11]. By contrast,
site removal has no impact on replication in mammalian cells that do not express the miRNA.
Mosquitoes do not express miR-142-3p [76], suggesting that another, unknown mechanism
underlies the requirement for these sites for efficient replication.

The presence of miRNA-binding sites within many different RNA viruses may suggest a positive
selective pressure for retention of these sites within the genome occurring at the cellular or
organismal level or during virus transmission between hosts, particularly in instances where
replication is inhibited at the single-cell level. Consequently, miRNA repression of viral replication
may exert powerful effects on the composition of RNA virus quasispecies during different phases
of virus residency within a host. One potential selective pressure to maintain miRNA-binding sites
may result from tempering of viral replication in certain cells or tissues that enables efficient virus
dissemination without severe detrimental effects to the host. However, it is clear that more
research is needed to fully understand how the replication-inhibiting miR-142-3p-binding sites in
EEEV, and specific sites in other viruses, can be maintained throughout the virus replication/
transmission cycle.

Concluding Remarks
miRNAs regulate many processes within cells, including RNA virus infections. Direct binding of
miRNAs to viral genomes that leads to an antiviral effect may be rare due to the high mutation
rate of RNA viruses, unless there is a strong selective pressure to maintain the miRNA-binding
sites within the viral genome. It may be more common for RNA viruses to manipulate the levels of
particular miRNAs within the cell to establish a proviral environment that enhances viral replica-
tion and dissemination within and between hosts. In addition, changes in miRNA levels after viral
infection are clearly an important component of the host response to infection, sculpting both the
initiation and the resolution phases of the antiviral response.

Over the past few years, there has been a large expansion in the number of studies identifying
miRNAs as modulating factors during RNA virus infections. Future work (see Outstanding
Questions and Box 4) will help to define the role of miRNAs during these processes. However,
knowledge regarding the role of miRNAs has already been applied to the development of antiviral
therapeutics [43] and gene therapy vectors (reviewed in [77]). An miRNA therapeutic for Ebola
virus was used during the recent outbreak in Africa; however, testing was ultimately suspended
as the drug did not demonstrate a significant role in patient recovery [78]. Also, insertion of
tissue-specific miRNA-binding sites has been used as an effective mechanism to prevent virus
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replication in particular tissues as an attenuation mechanism for vaccines, helping to limit
adverse events [79]. Furthermore, recent evidence suggests the presence of virus-derived
small RNAs during infection of both mammalian and arthropod cells [80,81]. While controversial,
their presence and function during animal infections will need to be further examined. Viral
interactions with the miRNA system can affect cellular miRNA and transcriptome levels as well as
viral replication within a cell expressing a specific miRNA; these may indirectly modulate cytokine
expression and tissue responses throughout an infected host. Consequently, future approaches
tackling these questions are likely to emerge from this exciting area of investigation.
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