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Abstract
Background: Disseminated soft tissue sarcoma still represents a therapeutic dilemma because
effective cytostatics are missing. Therefore we tested TRAIL and Tarolidine (TRD), two substances
with apoptogenic properties on human fibrosarcoma (HT1080).

Methods: Viability, apoptosis and necrosis were visualized by TUNEL-Assay and quantitated by
FACS analysis (Propidiumiodide/AnnexinV staining). Gene expression was analysed by RNA-
Microarray and the results validated for selected genes by rtPCR. Protein level changes were
documented by Western Blot analysis. NFKB activity was analysed by ELISA and proliferation
assays (BrdU) were performed.

Results and discussion: The single substances TRAIL and TRD induced apoptotic cell death and
decreased proliferation in HT1080 cells significantly. Gene expression of several genes related to
apoptotic pathways (TRAIL: ARHGDIA, NFKBIA, TNFAIP3; TRD: HSPA1A/B, NFKBIA, GADD45A, SGK,
JUN, MAP3K14) was changed. The combination of TRD and TRAIL significantly increased apoptotic
cell death compared to the single substances and lead to expression changes in a variety of genes
(HSPA1A/B, NFKBIA, PPP1R15A, GADD45A, AXL, SGK, DUSP1, JUN, IRF1, MYC, BAG5, BIRC3). NFKB
activity assay revealed an antipodal regulation of the several subunits of NFKB by TRD and
TRD+TRAIL compared to TRAIL alone.

Conclusion: TRD and TRAIL are effective to induce apoptosis and decrease proliferation in
human fibrosarcoma. A variety of genes seems to be involved, pointing to the NFKB pathway as
key regulator in TRD/TRAIL-mediated apoptosis.
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Background
Fibrosarcoma is a rare entity within the heterogeneous
group of soft tissue sarcomas. It accounts for approxi-
mately 2.6% of soft tissue sarcomas which themselves
have an incidence of about 2–4/100000 [1]. Surgical
resection is the key factor in primary treatment and radia-
tion can improve local control, but once the disease has
spread, the remaining treatment options are very limited.
Response rates to established chemotherapeutic agents
like doxorubicin and ifosfamide (with up to 30% at best)
are still disappointing [2]. Therefore, new agents are being
sought to broaden the therapeutic armament.

TRAIL (tumor necrosis factor receptor apoptosis inducing
ligand) has previously been associated with apoptosis in a
variety of malignant cells [3] and in HT1080 as well [4].
Whereas FasL (Fas Ligand) and TNF caused significant
side effects by unselective apoptogenic effects on normal
cells [5], TRAIL proved to be much less toxic and at least
equally effective.

Many substances, including established chemotherapeu-
tics like 5-Fluorouracil, cisplatin, doxorubicin, etoposide
and others, like vitamime E succinate and alpha-Tocoph-
eryl succinate have been shown to sensitize tumor cells to
TRAIL-induced apoptosis [6-9]. Recent studies revealed
apoptotic effects of another substance, Taurolidine, that
was originally used as an antiinfective in peritonitis. Tau-
rolidine exerted apoptotic activity on a variety of malig-
nant cells in vitro and in vivo [10-12]. First reports of
successful treatments of glioblastoma and advanced gas-
tric cancer without systemic side effects in humans are
promising [13,14]. Taurolidine has previously been
shown to enhance Fas-Ligand mediated cell death [15]
and a xenograft study using recombinant TNF in the treat-
ment of mouse fibrosarcoma revealed that Taurolidine
reduced the toxicity of TNF without decreasing the anti-
tumor efficacy of TNF [16]. The detailed mechanism of
action is still unclear, but inhibition of Bcl-2 and an
increased efflux of cytochrome-c, an activation of the cas-
pases, and an increased PARP (poly (ADP-ribose)
polymerase) cleavage seem to be involved [10,17,18]. By
comparison, other authors found Fas-ligand dependent
mechanisms or an inhibition of tumor angiogenesis to be
responsible for the inhibition of tumor growth [15,19].

In contrast to established chemotherapeutics, the absence
of toxicity makes Taurolidine candidate for co-treatment
with TRAIL. Inspired by previous studies that showed syn-
ergistic effects of TRAIL in combination with Taurolidine
inducing apoptotic cell death in human colon and
esophageal carcinoma cells [20,21], we examined the
effects of these two substances on human fibrosarcoma.

Methods
Cell line
Human fibrosarcoma cells, HT1080, were purchased from
ATCC (Cell line CCI 121, Wesel, Germany) and main-
tained with modified Eagle's medium (MEM) and NEAA
(non-essential amino acids) + 10% FBS supplemented
with 1% penicillin (100 U/ml) and streptomycin (100 μg/
ml), 1% Sodium Pyruvate and 1% L-Glutamine. Cells
were cultured in a humidified atmosphere with 5% CO2
at 37°C in 25 cm2 flasks.

Reagents
Taurolidine (TRD) (Taurolin® 2%, Boehringer Ingelheim,
Germany) containing 5% Povidon was used as supplied
by the manufacturer. A 5% Povidon solution (K16 Povi-
don, generously provided by Geistlich Pharma AG, Wol-
husen, Switzerland) in equal volume served as control for
the TRD group. Recombinant human TRAIL/Apo2L
(Bender MedSystems, Vienna, Austria) was dissolved in
distilled water according to the manufacturer's instruc-
tions. Distilled water in equal volume served as control in
the TRAIL experiments.

Dose-finding study
Cells were incubated with TRD (50, 100, 250, 500 μmol/
l) or recombinant human TRAIL (10, 50, 100, 500 ng/ml)
and the respective controls (Povidon/H2O) for 2, 6, 12, 24
h to identify effective single concentrations and the time
dependency of the effects. All experiments were repeated
with 3 consecutive passages.

The lowest effective single concentration TRAIL 50 ng/ml
that induced apoptosis but no significant necrosis and
TRD 250 μmol/l, that showed the highest apoptotic rates
and was most effective reducing viable cells were then
used as single substances and in combination to identify
a possibly synergistic effect. As time points 2, 6, 12, and 24
h were chosen. All experiments were repeated with 3 con-
secutive passages. Cells for gene expression were harvested
after 2 h.

Flow cytometry analysis
At the indicated incubation time, floating cells were col-
lected together with the supernatant and adherent cells
which were harvested by trypsinization. Cells were sedi-
mented by centrifugation, resuspended in 195 μl binding
buffer (Bender MedSystems, Vienna, Austria) and incu-
bated with 5 μl Annexin V-FITC (BD Biosciences, Heidel-
berg, Germany) and 10 μl Propidiumiodide (PI) (Bender
MedSystems, Vienna, Austria) following the manufac-
turer's manual. Cells were analyzed immediately using a
FACS flow cytometer (FACS Calibur BD Biosciences, Hei-
delberg, Germany). For each measurement, 20.000 cells
were counted. Dot plots and histograms were analyzed by
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CellQuest Pro software (BD Biosciences, Heidelberg, Ger-
many). Annexin V positive cells were considered apop-
totic; Annexin V and PI positive cells were identified as
necrotic. Annexin V and PI negative cells were termed via-
ble.

Cell morphology
Morphology of adherent cells and cells suspended in cul-
ture medium was studied and documented using a phase
contrast microscope, Zeiss Axiovert 25 (Karl Zeiss, Jena,
Germany).

TUNEL-assay
Apoptosis was evaluated by terminal deoxynucleotidyl
transferase-mediated dUTP-nick end-labeling (TUNEL)
using the In Situ Cell Death Detection Kit, Fluorescein
(Roche Applied Science, Mannheim, Germany) according
to the manufacturer's instructions and analyzed by fluo-
rescence microscopy (Leica DM4000B, Leica Microsys-
tems, Nussloch, Germany).

Annexin-PI staining for fluorescence microscopy
Cells were incubated and prepared as for the TUNEL assay
but stained with 5 μl Annexin V-FITC and 10 μl PI. Photos
were taken immediately after staining using fluorescence
microscopy (Leica DM4000B, Leica Microsystems, Nuss-
loch, Germany).

Proliferation-assay
To determine and quantitate the effects of the different
substances on cell proliferation, a colorimetric cell prolif-
eration BrdU (5-bromo-2'-deoxyuridine)-ELISA (Roche
Applied Science, Mannheim, Germany) was used accord-
ing to the manufacturer's instructions. Based on the incor-
poration of the thymidine analogue BrdU during DNA-
synthesis, the amount of newly synthesized DNA and thus
of proliferation cells is detected using a microplate
absorbance reader Sunrise™ (Tecan trading AG, Switzer-
land) after applying anti-BrdU conjugated with peroxi-
dase (POD) and enhancing a specific substrate reaction.
For this experiment, cells were incubated with the differ-
ent substances for 8 h.

Statistical analysis
Results of FACS-analysis for percentages of viable, apop-
totic and necrotic cells are expressed as means ± SD of at
least three independent experiments with consecutive
passages. In this study, comparisons between experimen-
tal groups (single agent application in different doses and
single agents versus combined treatment at various time
points) were performed using one way measures of vari-
ance (one way ANOVA) over all time points (Tukey). P-
values ≤ 0.05 were considered as statistically significant
and indicated in the figures as follows: *** p ≤ 0.001, **
p ≤ 0.005, * p ≤ 0.05. The indications in figures 1, 2, 3

refer to TRD 250 μmol/l, TRAIL 50 ng/ml, and TRD250
μmol/l+TRAIL50 ng/ml compared to the control.

Oligonucleotide microarray analysis
To identify the changes on gene expression level caused by
the treatment with TRAIL and TRD, total RNA was puri-
fied from the cells after incubation with the different sub-
stances for 2 h using the RNeasy KIT from Qiagen (Hilden,
Germany), as specified by the manufacturer. RNA integ-
rity was assessed using the Agilent 2100 Bioanalyzer (Agi-
lent Technologies).

For microarray analyses, we used the Affymetrix Gene-
Chip platform employing a standard protocol for sample
preparation and microarray hybridization. Total RNA (5
μg) was converted into biotinylated cRNA according to
the Affymetrix standard protocol version 2, purified, frag-
mented and hybridized to HG-U133Plus_2.0 microarrays
(Affymetrix). The arrays were washed and stained accord-
ing to the manufacturer's recommendation and finally
scanned in a GeneChip scanner 3000 (Affymetrix).

Array images were processed to determine signals and
detection calls (Present, Absent, Marginal) for each
probeset using the Affymetrix GCOS1.4 software (MAS
5.0 statistical algorithm). Arrays were scaled across all
probesets to an average intensity of 1000 to compensate
for variations in the amount and quality of the cRNA sam-
ples and other experimental variables of non-biological
origin. Pairwise comparisons of treated versus control
samples were carried out with GCOS1.4, which calculates
the significance (change p-value) of each change in gene
expression based on a Wilcoxon ranking test. To limit the
number of false positives, we restricted further target iden-
tification to those probesets, which received at least one
present detection call in the treated/control pair.
Probesets exhibiting a significant increase or decrease
were identified by filtering using the Affymetrix Data Min-
ing Tool 3.0.

Real-time PCR for microarray data validation
Microarray data validation was performed for selected
candidate genes (ARGHGDIA, BIRC3, GADD34, HSPA1A,
HSPA1B, MAP3K14, MAP3K1). These were identified as
the most differentially regulated ones in microarray anal-
ysis. Total RNA (2 μg) was reverse transcribed using the
High Capacity cDNA Archive Kit (Applied Biosystems).
Realtime PCR was done with a 7900 HT SDS system
(Applied Biosystems) in 20 μl reaction volume containing
1× Master Mix, 1 μl assay and cDNA equivalent to 2 ng
total RNA. All reagents and realtime PCR assays (ARGHG-
DIA Hs00976924 g1, BIRC3 Hs00154109 m1, GADD34
Hs00169585 m1, HSPA1A Hs00359163 s1, HSPA1B
01040501 +sH, MAP3K14 Hs01089753, MAP3K1
Hs00394890 m1) used were purchased from Applied Bio-
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Effects of TRAIL on viability, apoptosis and necrosis in HT1080 cells measured by FACS-analysis: Cells were incubated with TRAIL in the concentrations indicated and with H2O (control) for 24 hFigure 1
Effects of TRAIL on viability, apoptosis and necrosis in HT1080 cells measured by FACS-analysis: Cells were incubated with 
TRAIL in the concentrations indicated and with H2O (control) for 24 h. The percentages of viable, apoptotic and necrotic cells 
were determined by FACS-analysis for Annexin V-FITC and Propidiumiodide. Values are means ± SD of 3 independent exper-
iments with consecutive passage (*** p ≤ 0.001, ** p ≤ 0.005; one way ANOVA). The indicators of significance refer to the dif-
ference between the 50 ng/ml and the control series. The scales of the y-axis were adjusted to the different values for clarity 
and therefore vary.
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Effects of TRD on viability, apoptosis and necrosis in HT1080 cells measured by FACS-analysis: Cells were incubated with TRD in the concentrations indicated and with Povidon 5% (control) for 24 hFigure 2
Effects of TRD on viability, apoptosis and necrosis in HT1080 cells measured by FACS-analysis: Cells were incubated with TRD 
in the concentrations indicated and with Povidon 5% (control) for 24 h. The percentages of viable, apoptotic and necrotic cells 
were determined by FACS-analysis for Annexin V-FITC and Propidiumiodide. Values are means ± SD of 3 independent exper-
iments with consecutive passages. (*** p ≤ 0.001, ** p ≤ 0.005, * p < 0.05; one way ANOVA). The indicators of significance 
refer to the difference between the 250 μmol/l and the control series. The scales of the y-axis were adjusted to the different 
values for clarity and therefore vary.
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Effects of TRD, TRAIL and combination of both agents on viability, apoptosis and necrosis in HT1080 cells measured by FACS-analysis: Cells were incubated with 250 μmol/l TRD and 50 ng/ml TRAIL alone and in combination as well as with Povidon 5% + H2O (control) for 2 h, 6 h, 12 h, and 24 hFigure 3
Effects of TRD, TRAIL and combination of both agents on viability, apoptosis and necrosis in HT1080 cells measured by FACS-
analysis: Cells were incubated with 250 μmol/l TRD and 50 ng/ml TRAIL alone and in combination as well as with Povidon 5% 
+ H2O (control) for 2 h, 6 h, 12 h, and 24 h. The percentages of viable, apoptotic and necrotic cells were determined by FACS-
analysis for Annexin V-FITC and Propidiumiodide. Values are means ± SD of 3 independent experiments with consecutive pas-
sages (*** p ≤ 0.001, ** p ≤ 0.005; one way ANOVA). The indicators of significance refer to the difference between the TRD 
250 μmol/l + TRAIL 50 ng/ml and the control series. The differences in the values compared to the single dose experiments 
are caused by experimental variability. The scales of the y-axis were adjusted to the different values for clarity and therefore 
vary.
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systems. Reactions were performed in duplicates and ana-
lysed by the deltadeltaCT method. Human GAPD was
used for normalization.

Western Blot
To validate the findings of changed gene expression on
protein level, Western Blots were performed using an SDS-
page gel and the following antibodies (rabbit): Rho GDIα/
ARGHGDIA (C-21), GADD 45α (H-165), c-IAP2/BIRC3
(H-85), GADD 34/PPP1R15A (S-20), NIK/MAP3K14 (H-
248), and IκB-α/NFKBIA (C-21), purchased from Santa
Cruz Biotechnology Inc. (Heidelberg, Germany). Total
protein was purified from the cells after incubation with
the different substances for two different time points (2 h
and 4 h); for this purpose floating cells were collected
together with the supernatant, adherent cells were har-
vested by trypsinization and added to the solution. Cells
were sedimented by centrifugation. After removal of the
supernatant, the probes were incubated with 50 μl Cell
Culture Lysis Reagent (Promega Corporation, Mannheim,
Germany) each for 1 h on ice; the cell remnants then sed-
imented by centrifugation and the supernatant containing
the purified protein deep frosted until further use.

Nuclear extract was derived from cells treated with the dif-
ferent substances for 4 h using the Nuclear Extract Kit
(Aktive Motif Europe, Rixensart, Belgium) according to
the manufacturer's instructions.

NFKB-activity-ELISA
The transcription factor NFKB activity was detected and
quantified using the TransAM™ NFKB Family Transcrip-
tion Factor Assay Kit (Aktive Motif Europe, Rixensart, Bel-
gium) according to the manufacturer's instructions and
analyzed using a microplate absorbance reader Sunrise™
(Tecan trading AG, Switzerland). Nuclear extract, derived
as specified above from cells treated with the different
substances for 2 hours, was applied on a 96-well plate, to
which oligonucleotide containing an NFKB consensus
binding site has been immobilized. Activated NFKB spe-
cifically binds to these and was detected by using a pri-
mary antibody that is directed against the subunits p50,
p52, p65, c-Rel, and RelB. An HRP-conjugated secondary
antibody provided a colorimetric readout that was specto-
photometrically analysed.

Results
HT1080 fibrosarcoma cells are TRAIL sensitive. TRAIL as
single agent caused apoptotic cell death time and dose
dependently. TRAIL 100 and 500 ng/ml significantly
induced early apoptosis after 2 h and resulted in a signifi-
cant increase of necrotic cells at the following time points.
TRAIL 50 ng/ml, with 77.1% apoptotic cells, after 6 h
reached almost the same efficiency concerning apoptosis
but did not lead to comparable necrosis rates. Addition-

ally, the effect on apoptosis lasted longer than in the 100
and 500 ng/ml group. At no time point did the percentage
of necrotic cells significantly exceed the rates of necrotic
cells of the control group. The lowest TRAIL concentration
used (10 ng/ml) was significantly less effective in reducing
viable cells than the other three concentrations (fig. 1).
Therefore, TRAIL 50 ng/ml was used for the combination
therapy.

TRD also induces apoptotic cell death in human HT1080
fibrosarcoma cells. The apoptogenic and necrosis induc-
ing effects were dose and time dependent. The highest rate
of apoptotic cells (after 12 h, 62.0%) and the most effec-
tive reduction of viable cells (after 12 h, 21.1%) was seen
at a single concentration of 250 μmol/l. The apoptotic and
necrotic effects of TRD 50 μmol/l were only moderate and
did not reach significance at any time point compared to
the control. TRD 100 and TRD 500 μmol/l also induced
significant apoptotic cell death but were less effective than
the 250 μmol/l concentration over all time points. (fig. 2).
Therefore, TRD 250 μmol/l was chosen to be applied
together with TRAIL 50 ng/ml.

Combination of TRAIL 50 ng/ml and TRD 250 μmol/l
After 6 h a significant increase of apoptotic cells (62.6%)
was detected compared to TRAIL (p = 0.049) and TRD (p
= 0.001) as single substances as well as compared to the
control (p < 0.001), while necrosis was not significantly
increased. After 12 h and 24 h, the necrotic proportion of
cells increased and was significantly higher than in the
single substances and the control group (p < 0.001), while
the amount of apoptotic cells decreased again. The com-
bination therapy reached the peak of apoptotic rates ear-
lier and could transduce apoptotic cells to cell death more
quickly, thereby reducing the proportion of viable cells
more effectively (after 12 h, viable cells: 14.3%) than the
single substances. TUNEL assay and cytochemistry also
showed qualitatively against the control that cells treated
with TRD/TRAIL, TRAIL, and TRD underwent apoptotic
cell death (data not shown).

TRD and TRD/TRAIL induce morphological changes and 
cell detachment
TRAIL incubation did not change the cells' morphology
and did not cause a detachment of the cells from the
ground as shown by bright-field microscopy. TRD as sin-
gle substance and the combination of TRD and TRAIL
resulted in shrinkage of the cells, followed by complete
cell detachment (fig. 4).

TRD, TRAIL and the combination therapy reduced prolif-
eration of HT1080 significantly compared to the control
(p < 0,001) as indicated by the BrdU-Assay (fig. 5). The
combination therapy could not add to this effect com-
pared to the incubation with TRD alone (p = 1.0), but
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reduced proliferation significantly compared to TRAIL
alone (p < 0.001). The anti-proliferative potency of TRD
was significantly higher than that of TRAIL (p < 0.001).

Gene expression
In this experiment we selectively focussed on apoptosis
related probesets. Out of 621 of those probesets, 174, rep-
resenting 138 apoptosis related genes, showed expression
changes (fig. 6). TRD alone induced differences in the
expression of 67 apoptosis related genes, of which 22 were
"upregulated"; by comparison, TRAIL as a single sub-
stance caused expression changes of 36 genes related to
apoptotic pathways, "upregulating" 22 of them. TRD and
TRAIL in combination induced changes in the expression
of 65 genes (29 upregulated, 28 downregulated) A list of
these genes, including the log ratios of the expression
changes, is given in table 1. Further filtering of the results,
leaving only the genes whose expression changes that had

a signal log ratio above 1 or below -1, reduced the number
of differentially regulated genes in this experiment to 21
(25 probe sets) (fig. 7). The expression of selected candi-
date genes was re-evaluated by rtPCR, revealing a largely
good correlation (table 2a/b).

Further analysis of the translation of the candidate genes
after 2 and 4 h tested in the rtPCR was performed by West-
ern Blot. The results are presented in figure 8. The results
for NFKBIA, PPP1R15A, MAP3K14corresponded well to
the rtPCR and microarray data, whereas the findings for
ARHGDIA were partly oppositional to them. The other
proteins (GADD45A, BIRC3) showed no such noticeable
changes.

The transcription factor NFKB activity was measured by
quantifying its subunits p50, p52, p65, c-Rel, and RelB. The
results for the several subunits are illustrated in figure 9.

Phase contrast microscopic photographs showing morphologic changes induced by TRD, TRAIL and combination of both agents after 2 h: Cells were incubated with Povidon 5% + H2O (control) (a), 50 ng/ml TRAIL (b), 250 μmol/l TRD (c) and a combination of TRD/TRAIL (d)Figure 4
Phase contrast microscopic photographs showing morphologic changes induced by TRD, TRAIL and combination of both 
agents after 2 h: Cells were incubated with Povidon 5% + H2O (control) (a), 50 ng/ml TRAIL (b), 250 μmol/l TRD (c) and a 
combination of TRD/TRAIL (d).
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Although the changes of the single substances and the
combination therapy compared to the control were not
significant, it is noteworthy that the changes of TRD and
TRAIL/TRD were always more pronounced than those of
TRAIL as single substance.

Discussion
To date, several reports suggested TRAIL as a promising
substance in the treatment of sarcoma, especially when
combined with other cytostatics.

Several studies found, that TRAIL was effective inducing
apoptotic cell death and that the combination therapy of
TRAIL and doxorubicin could overcome TRAIL resistance
in a variety of soft tissue sarcoma cells [22].

In this study, TRAIL as a single substance effectively
induced apoptotic cell death in HT1080 fibrosarcoma

cells. Notably, only three genes (ARHGDIA, TNFAIP3,
NFKBIA) were differentially up-regulated more than two-
fold compared to the control: ARHGDIA (Rho Guanosine
Diphosphate-Dissociation Inhibitor A), that inhibits dis-
sociation of Guanosine Diphosphate (GDP) from RhoA,
thereby preventing it from binding GTP (Guanosine Tri-
phosphate) and inactivating it. RhoA, an important regu-
lator of the cytoskeleton, cell adherence and cell motility,
is associated to the occurrence of metastases in several
tumors [23,24]. In HT1080 cells that show high levels of
Rho-GTP the inhibition of Rho by fasudil, a Rho kinase
inhibitor, leads to decreased tumor cell motility and
growth [25]. The findings that gene expression of ARHG-
DIA was decreased by the combination therapy and by
TRD, whereas the protein could be detected at much
higher cytosolic concentrations after treatment with
TRAIL and TRD, so far cannot be explained but may be the
reason for cell detachment and the changes in cell mor-

Effects of TRD, TRAIL and combination of both agents on proliferation were measured by BrdU cell proliferation-assayFigure 5
Effects of TRD, TRAIL and combination of both agents on proliferation were measured by BrdU cell proliferation-assay. Cells 
were incubated for 8 h with Povidon 5% + H2O (control) (a), 50 ng/ml TRAIL (b), 250 μmol/l TRD (c) and a combination of 
TRD/TRAIL (d). A blank negative control (e) was used to document absence of proliferation.
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Table 1: Additional information about the genes whose expression was changed more than two-fold in the experiments.

Gene 
Symbol

Ta250 vs 
Co Signal 
Log Ratio

Gene 
Symbol

TR50 vs Co 
Signal Log 

Ratio

Gene 
Symbol

Ta+TR vs 
Co Signal 
Log Ratio

Gene 
Symbol

Ta+TR vs 
Ta250 Signal 

Log Ratio

Gene 
Symbol

Ta+TR vs 
TR50 Signal 
Log Ratio

HSPA1A/B 2,99 ARHGDIA 1,19 HSPA1A/B 3,28 TIE1 0,89 HSPA1A/B 2,96
NFKBIA 2,03 NFKBIA 1,17 NFKBIA 2,47 AXL 0,85 GADD45A 1,55
GADD45A 1,33 TNFAIP3 1,11 PPP1R15A 1,55 IRF2 0,76 SGK 1,45
SGK 1,22 JUN 0,89 GADD45A 1,46 ERBB2 0,71 NFKBIA 1,3
JUN 1,2 EGFR 0,86 AXL 1,41 RELA 0,69 PPP1R15A 1,22
PPP1R15A 0,95 CALR 0,85 SGK 1,37 TIAF1 0,69 AXL 1,16
MCL1 0,94 TP53 0,64 DUSP1 1,33 TIMP3 0,67 MYC 1,01
DUSP1 0,82 TNK2 0,58 JUN 1,31 DUSP5 0,66 DUSP1 0,98
MYC 0,78 PPP2CB 0,57 IRF1 1,23 PPP1R15A 0,61 IRF1 0,84
BTG1 0,7 BAX 0,51 MYC 1,05 LITAF 0,6 BTG1 0,84
IRF1 0,69 IRF1 0,47 BTG1 0,85 IRF1 0,6 BCL2A1 0,52
AXL 0,64 IKBKG 0,44 DUSP5 0,65 TP53 0,57 BAG1 0,46
RPS3A 0,48 BCL2L1 0,44 TIE1 0,63 TYRO3 0,55 NEU1 0,41
LDHB 0,44 AXL 0,42 NEU1 0,63 LTBR 0,55 JUN 0,39
ESD 0,43 PPP2R1A 0,41 HD 0,63 TYK2 0,54 ANXA4 0,37
HSPD1 0,42 CD44 0,38 TNFAIP3 0,55 SIPA1 0,54 GSTP1 0,31
RPS3A 0,41 TIE1 0,37 CDKN1A 0,55 TRAF4 0,53 CROP -0,24
NME1 0,41 DUSP3 0,37 ACTN4 0,5 DOCK1 0,53 CASP8 -0,24
LGALS1 0,4 ACTN4 0,34 EPHA2 0,48 CSK 0,52 PPM1D -0,31
ENO1 0,38 PEA15 0,32 GSTP1 0,47 ACIN1 0,52 API5 -0,32
STK17A 0,3 DAPK3 0,31 PPM1G 0,45 ARHGDIA 0,49 TNFRSF10B -0,34
API5 -0,14 ACIN1 0,31 TIAF1 0,44 ABCA2 0,48 FOXO1 -0,37
DDR2 -0,15 BID -0,23 CFL1 0,4 TNFRSF25 0,47 RAD21 -0,38
PDCD4 -0,17 MAP3K5 -0,27 LITAF 0,37 TNFRSF1A 0,47 EGFR -0,39
E2F1 -0,18 FER -0,27 PINK1 0,36 FGFR1 0,47 DUSP10 -0,45
LITAF -0,2 FAS -0,3 RPS3A 0,35 DNM2 0,47 NFKB1 -0,46
EPHB2 -0,21 CROP -0,33 LGALS1 0,32 NFKBIA 0,45 FOXO3 -0,46
FGFR1 -0,22 HSPA9 -0,37 PPP1CA 0,29 EPHB2 0,45 RYBP -0,49
RIPK1 -0,22 CHUK -0,4 ENO1 0,28 IRF3 0,42 MCL1 -0,49
CSK -0,25 LYN -0,43 MAP3K1 -0,04 DDR2 0,42 DUSP3 -0,53
TIE1 -0,25 CUL2 -0,47 DUSP10 -0,21 WEE1 0,38 BCLAF1 -0,56
TNFRSF21 -0,25 TIA1 -0,49 FAS -0,22 E2F1 0,36 TP53 -0,58
ACIN1 -0,28 PPM1B -0,55 MCL1 -0,26 BAK1 0,36 HELLS -0,61
PPP3CB -0,28 CASP8 -0,68 CUL4A -0,26 PPM1G 0,34 PPP2CB -0,62
CHUK -0,29 MCL1 -0,7 FADD -0,27 FYN 0,31 DAPK3 -0,64
DAPK3 -0,29 TIA1 -0,28 RYK 0,3 TNFAIP3 -0,67
PPP2R1B -0,29 PAWR -0,29 DUSP1 0,3 SOCS2 -0,71
YWHAH -0,29 PPP3CC -0,31 ACTN4 0,3 CLK1 -0,72
RYK -0,34 FOXO3 -0,32 CTSB 0,28 IKBKG -0,74
MAP3K11 -0,35 TIA1 -0,34 HSPA1A/B 0,25 BAG5 -0,97
BCLAF1 -0,36 RIPK2 -0,34 SART1 0,24 BCL2L1 -0,99
DOCK1 -0,4 SOCS2 -0,37 DHCR24 0,24 CLK4 -1,02
F2R -0,4 CASP7 -0,37 JUN 0,23 MET -1,05
SIAH1 -0,41 CALR -0,37 PPP4C 0,22 CALR -1,23
AHR -0,44 WEE1 -0,38 PPP2R1A 0,21 MAP3K1 -1,32
CASP8 -0,47 API5 -0,39 GSTP1 0,21 MAP3K14 -1,34
DUSP10 -0,48 MAP2K4 -0,41 YWHAH 0,2 CASP2 -1,7
MET -0,51 ABL2 -0,42 PDCD4 0,18 ARHGDIA -1,95
TP53 -0,52 CUL2 -0,44 FXR1 -0,24 BIRC3 -2,32
ABL2 -0,54 PPP2R1B -0,45 PHB -0,28
IKBKG -0,54 SIAH1 -0,46 YES1 -0,29
RELA -0,54 PPM1D -0,46 CUL2 -0,38
ARHGDIA -0,55 CHUK -0,5 CUL4A -0,39
SOCS2 -0,55 BCL2L1 -0,54 CASP7 -0,42
TIMP3 -0,55 TIA1 -0,56 BCLAF1 -0,42
CASP2 -0,59 CASP2 -0,56 CASP8 -0,49
CROP -0,59 RYBP -0,63 MET -0,53
PRF1 -0,64 BCLAF1 -0,64 TFG -0,84
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phology. The fact that the Western Blot findings after 4 h
corresponded much better to the findings after 2 h may be
caused by the time translation takes to increase cytosolic
protein concentration.

TNFAIP3, that was found to be up-regulated by TRAIL in
our study, is an inhibitor of the NFKB pathway [26] and
may thereby promote apoptosis but, on the other hand, it
was shown to decrease TNF-mediated apoptosis and
necrosis [27], leaving its specific influence unclear.

NFKBIA is an inhibitor of NFKB, which has been associ-
ated with resistance to chemotherapeutics such as doxoru-
bicin [28]. The doxorubicin analogon DA-125 could
reduce proliferation in HT1080 fibrosarcoma cells
through a NFKB dependent pathway [29] and recent stud-
ies showed that tumor invasiveness could be significantly
reduced by inhibiting NFKB activity [30], pointing to this
transcription factor as a key element in HT1080 prolifera-
tion-pathways. In our study, NFKBIA was found to be
over-expressed on gene and on protein level after TRAIL,
TRD and the combination therapy.

As previously reported, TRD lacks toxic short or long term
effects but has the ability to induce apoptotic cell death in
a variety of malignant cells. In several osteosarcoma cell
lines, TRD has already been shown to induce apoptosis
and decrease cell adhesion [31], but to the authors'
knowledge TRD or the combination of TRAIL and TRD
has not yet been investigated on soft tissue sarcoma. Inter-
estingly, Taurolidine was shown to reduce toxicity of TNF
in vivo without reducing its antitumoral activity; probably
by interfering not with TNF directly but with its down-
stream pathway, which is largely the same for TRAIL
[16,32], qualifying this substance for co-treatment with
TRAIL.

The changes in cell morphology and detachment of the
cells from the ground that were observed after incubation
with TRD may be explained by the finding of other stud-
ies; TRD reduced the expression of integrins and cadherins
in colon cancer cells and reduced intraperitoneal metas-
tases and tumor growth accordingly [33].

Gene expression profiling revealed a small number of
genes whose expression was changed more than two-fold.

Among them, the heat shock protein HSPA1A/B.
Increased expression of this protein was associated with
increased chemosensitivity of HT1080 to mitomycin C
[34]. Furthermore, the apoptogenic effects of taxanes on
sarcoma could be increased by co-therapy with STA-4783,
a stimulator of HSPA1A expression [35]. NFKBIA, that
was also up-regulated by TRD, has already been men-
tioned. Notably, there are reports that TRD inhibits the
activation of NFKB not only indirectly through NFKBIA
but, also by direct interference, by oxidation of NFKB at
Met45 [36].

Upregulation of GADD45A was shown to be associated
with increased apoptosis and p53 independent cell cycle
arrest in a variety of soft tissue sarcomas [37].

It inhibits transcription factors associated with tumor
growth such as JNK (c-Jun N-terminal kinase) and NFKB
[38,39]. For rhabdomyosarcoma, increased GADD45A
was associated with less aggressive tumor behaviour [40].
Additionally GADD45A may antagonize TNF-receptor
mediated cytotoxicity [41]. SGK, that was also found to be
up-regulated in contrast to most of the other differentially
expressed genes can activate the NFKB pathway and
thereby prevent cells from undergoing apoptosis [42]. In
this context, this effect seems to be outweighed by other
proapoptotic ones. JUN is activated JNK dependently and
promotes apoptotic cell death in malignant cells includ-
ing osteosarcoma [43]. Downregulation of JUN was
shown to decrease the expression of matrix metalloprotei-
nases and thereby cellular invasiveness in HT1080 cells
[44]. This downregulation may be mediated through sup-
pression of NFKB activation [45]. MAP3K14, the only
gene that was down-regulated more than two-fold by
TRD, is a member of the TNF-pathway and activates NFKB
(IKKalpha) [46].

The significant increase in apoptosis and necrosis using
the combination of the two substances was accompanied
by a large number of expression changes. Therefore, we
will not further discuss the ones that were already
described in the TRAIL and TRD section of the discussion;
we summarized the remaining genes and their functions
in table 3. Interestingly, there was only one gene with two-
fold expression changes when the TRD/TRAIL cells were
compared to those that were incubated with TRD alone:

CALR -0,65 ARHGDIA -0,74 MCL1 -1,5
WEE1 -0,66 CROP -0,78
ERBB2 -0,8 CLK1 -0,88
CLK4 -0,81 MET -0,91
BCL2L1 -0,82 CASP8 -0,97
BAG5 -0,9 CLK4 -0,99
CLK1 -0,92 BAG5 -1,08
MAP3K14 -1,35 BIRC3 -1,45

Table 1: Additional information about the genes whose expression was changed more than two-fold in the experiments. (Continued)
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MCL1, that is expressed in a variety of soft tissue sarcomas
and acts anti-apoptotic, was down-regulated [47].

Careful interpretation of the data revealed that many of
the genes involved point to the NFKB pathway. In physi-
ological conditions, NFKB is sequestered in inactive form
by inhibitory proteins like NFKBIA [48], that was found to
be up-regulated by the tested substances in the microar-
ray, the PCR and the Western Blot analysis. Activation of
the TNF-alpha pathway was shown to be more efficient
inducing apoptosis when the NFKB pathway was blocked

simultaneously [49] and could be a reason for enhanced
apoptosis in the co-treatment with TRAIL and TRD.

In recent studies, tumor invasiveness could be signifi-
cantly reduced in HT1080 cells by reducing NFKB activity
[30] and NFKB inhibition could sensitise cells to TNF
mediated cell death, probably by inhibiting the inactivat-
ing effect on JNK [50].

NFKB is activated TRADD-, TRAF3- and FADD-depend-
ently [38] and also plays a key role in the survival of tumor
cells by inducing expression of anti-apoptotic genes such

Table 2: 

a: Summary of the selected candidate genes' microarray data (/stands for no value).

Microarray 
Probeset

201167_x
_at

201168_x
_at

210538_s_
at

202014_at 203725_at 200799_at 200800_s_
at

202581_at 214786_at 205192_at 201502_s_
at

Gene 
Symbol
SLR = 
log2(RQ)

ARHGDIA ARHGDIA
///

LOC7289
08

BIRC3 PPP1R15A
/Gadd34

GADD45A HSPA1A HSPA1A///
HSPA1B

HSPA1B MAP3K1 MAP3K14 NFKBIA

Ta+TR vs 
Ko_SLR

-0,74 / -1,45 1,55 1,46 2,54 3,28 2,45 -0,04 / 2,47

TR50 vs 
Ko_SLR

1,19 0,43 / / / / / / / / 1,17

Ta250 vs 
Ko_SLR

-0,55 -0,28 / 0,95 1,33 2,49 2,99 2,06 / -1,35 2,03

Ta+TR vs 
TR50_SLR

-1,95 -2,32 1,22 1,55 2,61 2,96 2,44 -1,32 -1,34 1,3

Ta+TR vs 
Ta250_SL
R

/ 0,49 / 0,61 / / 0,25 0,43 / / 0,45

b: Summary of the selected candidate genes' rtPCR data. The correlation with the findings of the microarray is high except for ARGHGDIA.

Taqman 
assay

Hs009769
24_g1

Hs001541
09_m1

Hs001695
85_m1

Hs001692
55_m1

Hs0035916
3_s1

Hs010405
01_+sH

Hs010897
53

Hs003948
90_m1

Hs001532
83_m1

Gene 
Symbol
SLR = 
log2(RQ)

ARGHGDI
A

BIRC3 GADD34 GADD45
A

HSPA1A HSPA1B MAP3K14 MAP3K1 NFKBIA

TA+Tr vs 
Control

-0,4205 -1,1638 1,2819 2,4504 3,8893 3,1561 -0,8706 -0,5410 2,3151

TR50 vs 
Control

-0,1207 1,1527 0,2107 0,7523 0,4395 0,4545 0,1833 0,0203 1,5287

TA25 vs 
Control

0,0120 -0,3926 1,4327 2,8888 3,6653 3,5939 -0,7547 -0,1194 2,5517

TA+Tr vs 
TR50

-0,2998 -2,3165 1,0712 1,6981 3,4498 2,7016 -1,0539 -0,5613 0,7864

TA+Tr vs 
TA25

-0,4325 -0,7712 -0,1508 -0,4385 0,2240 -0,4378 -0,1159 -0,4217 -0,2366
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Overall expression patterns of 25 reliably measured probe sets associated with apoptosis out 621 apoptosis associated probe sets of the HG-U133A_2.0 chipFigure 7
Overall expression patterns of 25 reliably measured probe 
sets associated with apoptosis out 621 apoptosis associated 
probe sets of the HG-U133A_2.0 chip. Horizontal rows rep-
resent individual probe sets/genes; vertical columns repre-
sent individual samples (from left to right: Colour range: 
Brightest red: Signal Log Ratio (SLR) >= 2 (indicates expres-
sion level above compared sample); brightest green: SLR <= 
2 (indicates expression level below compared sample); black: 
SLR = 0 (indicates unchanged expression); grey: no reliable 
filter target.

Overall expression patterns of 174 reliably measured probe sets associated with apoptosis out 621 apoptosis associated probe sets of the HG-U133A_2.0 chipFigure 6
Overall expression patterns of 174 reliably measured probe 
sets associated with apoptosis out 621 apoptosis associated 
probe sets of the HG-U133A_2.0 chip. Horizontal rows rep-
resent individual probe sets/genes; vertical columns repre-
sent individual samples (from left to right: Colour range: 
Brightest red: Signal Log Ratio (SLR) >= 2 (indicates expres-
sion level above compared sample); brightest green: SLR <= 
2 (indicates expression level below compared sample); black: 
SLR = 0 (indicates unchanged expression); grey: no reliable 
filter target.
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Representative Western Blot results for selected cytosolic proteins (M = marker, indicated by lines) after 2 and 4 hFigure 8
Representative Western Blot results for selected cytosolic proteins (M = marker, indicated by lines) after 2 and 4 h.
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as Bcl2, Bcl2l1, vascular endothelial growth factor (VEGF),
and X-linked inhibitor of apoptosis (XIAP). Out of
TRADD, TRAF3, FADD, Bcl2, and Bcl2l1, microarray anal-
ysis in this study could only detect changed expression for
FADD and Bcl2l1. FADD was down-regulated by the TRAIL
and TRD combination and Bcl2l1 was up-regulated by
TRAIL but down-regulated by TRD and the combination
(tab. 1). The effect on Bcl2l1 may partly explain the syner-
gistic effects of the substances' combination. The fact that
NFKB induces the expression of cell adhesion molecules
[51] could be a reason for disruption of cell adherence in
our experiments.

In summary, taking the changes in gene expression, pro-
tein concentration and the results of the NFKB activity
assay into account, the effects of TRD, TRAIL and the com-
bination of the two substances seem to be closely related
to NFKB and its associated pathways [8]. The changes in
DNA binding activity of RelA (p65) and RelB, that was
detected by the ELISA, may further support this assump-
tion. RelA, c-Rel and RelB are known to contain C-terminal
transcriptional activation domains (TADs), which enable
them to activate target gene expression. In contrast, p50
that was increased and p52 that was found to be
decreased, do not contain C-terminal TADs; therefore, p50
and p52 homodimers probably repress transcription
unless they are bound to a protein containing a TAD, such
as RelA, c-Rel or RelB [52,53]. Detailed knowledge about
the function of these factors is scant though, especially
concerning soft tissue sarcomas, so that we abstain from
further interpretation.

Conclusion
TRD and TRAIL are effective to induce apoptosis and
decrease proliferation in human fibrosarcoma. A variety
of genes seems to be involved, pointing to the NFKB path-
way as key regulator in TRD/TRAIL-mediated apoptosis.
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Diagram showing the results of the NFKB-ELISA including the standard deviation of three separate measurementsFigure 9
Diagram showing the results of the NFKB-ELISA including the 
standard deviation of three separate measurements.
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Table 3: Summary of the expression changes of apoptosis related genes for the single substances (TRD 250 μmol/l, TRAIL 50 ng/ml) 
compared to untreated cells and the combination therapy compared to Control, TRD and TRAIL treated cells.

Gene Symbol Gene Title Synonyms Gene function

NFKBIA nuclear factor of kappa light 
polypeptide gene enhancer in B-
cells inhibitor, alpha

IkappaB-alpha, IkB-a, IkBa, Inhibitor of 
kappa B-alpha, MAD3, P40

Proliferation in HT1080 cells is mediated 
through a NFKB dependent pathways [29,54].
Tumor invasiveness could be significantly 
reduced in HT1080 cells by reducing NFKB 
activity [30].
Increased NFKB activity leads to doxorubicin 
resistance in a p53 dependent manner [28].

HSPA1A/B heat shock 70 kDa protein 1A/B HSP70, HSP72, HSPA1 Upregulation of HSPA1A significantly increased 
chemosensitivity of HT1080 to mitomycin C 
[34].
The apoptogenic effects of taxanes on sarcoma 
could be increased by co-therapy with 
stimulators of HSPA1A expression [35].

SGK serum/glucocorticoid regulated 
kinase

serine/threonine-protein kinase Sgk1, 
serum/glucocorticoid-regulated kinase 1, 
SGK1

SGK activates the NFKB pathway and thereby 
can prevent cells from undergoing apoptosis 
[42].

GADD45A growth arrest and DNA-damage-
inducible, alpha

DDIT1, DNA-damage-inducible transcript 
1, GADD45, Growth arrest and DNA-
damage-inducible protein, GADD45 alpha

Upregulation of GADD45A is associated with 
increased apoptosis and cell cycle arrest p53 
independently in a variety of soft tissue 
sarcomas [37].
It inhibits transcription factors associated with 
tumor growth including the c-Jun N-terminal 
kinase (JNK) cascade and NFKB [38,39,41,55].
For rhabdomyosarcoma, increased GADD45A 
expression was associated with less aggressive 
tumor behaviour [40].
GADD45 may antagonize TNF-receptor 
mediated cytotoxicity [41].

ARHGDIA Rho GDP dissociation inhibitor 
(GDI) alpha

GDIA1, MGC117248, RHOGDI, Rho GDI 
1, Rho-GDI alpha, Rho GDP-dissociation 
inhibitor 1

High levels of Rho-GTP are detected in HT1080 
cells. The inhibition of Rho by fasudil, a Rho 
kinase inhibitor lead to decreased tumor cell 
motility and growth in HT1080 cells [25] and 
associated to the development of metastases in 
several other malignant tumors [23,24].
ARHGDIA is downregulated by doxorubicin in 
HT1080 cells [56].

PPP1R15A protein phosphatase 1, regulatory 
(inhibitor) subunit 15A

GADD34, MyD116 Increased expression of PPP1R15A by 
chemosensitizers can potentiate the effects of 
cytostatics such as platinum agents [57] and 
probably acts p53 independently [58].

MYC v-myc myelocytomatosis viral 
oncogene homolog (avian)

c-Myc, Myc proto-oncogene protein, 
transcription factor p64

Myc induces apoptosis by increasing the p53 
levels JNK-dependently [59].

AXL AXL receptor tyrosine kinase oncogene tyrosine-protein kinase 
receptor UFO precursor, UFO

AXL is associated with metastatic potential of 
malignant cells by regulating adherence, motility, 
and invasiveness [60].
It can prevent cells from TNFalpha mediated 
cell death via the phosphatidylinositol 3-kinase 
[61] and the NFKB pathway [62].

MAP3K14 mitogen-activated protein kinase 
kinase kinase 14

FTDCR1B, HS, HsNIK, HSNIK, mitogen-
activated protein kinase kinase kinase 14, 
NF-kappa beta-inducing kinase, NIK, 
serine/threonine-protein kinase NIK

MAP3K14 is a member of the TNF-Pathway and 
activates NFKB (IKKalpha) [46]. The MAPkinase 
pathway can induce apoptosis by induction of 
the GADD family of genes (GADD 34, GADD 
45) [63].

BIRC3 baculoviral IAP repeat-containing 3 AIP1, API2, apoptosis inhibitor 2, 
Baculoviral IAP repeat-containing protein 
3, cIAP2, CIAP2, C-IAP2, HAIP1, HIAP1, 
hiap-1, HIAP-1, IAP1, IAP homolog C, 
inhibitor of apoptosis protein 1, MALT2, 
MIHC, RNF49, TNFR2-TRAF signalling 
complex protein 1

BIRC3 is associated with chemotherapy 
resistance in Ewing sarcoma, 
rhabdomyosarcoma [64] and prostatic cancer 
[65] and suppresses TNFalpha mediated cell 
death by preventing formation of TNF Receptor 
1. It regulates pro-survival NFKB-signalling by 
promoting degradation of MAP3K14 [66].
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CALR calreticulin calregulin, calreticulin precursor, cC1qR, 
CRP55, CRTC, ERp60, FLJ26680, grp60, 
HACBP, RO, SSA

Calreticulin belongs to the family of heat shock 
proteins and strongly binds to TRAIL [67]. 
Calreticulin is translocated to tumor cells' 
membranes after anthracyline therapy and 
stimulates the anti-tumor immune response 
[68].

DUSP1 dual specificity phosphatase 1 CL100, dual specificity protein 
phosphatase 1, dual specificity protein 
phosphatase hVH1, HVH1, MAP kinase 
phosphatase 1, MKP1, MKP-1, protein-
tyrosine phosphatase CL100, PTPN10, 
VH1

DUSP inactivates MAP kinases [69] and can 
protect cells from apoptotic stimuli by 
chemotherapeutics [70].

JUN v-jun sarcoma virus 17 oncogene 
homolog

activator protein 1, AP1, p39, proto-
oncogene c-jun, transcription factor AP-1, 
V-jun avian sarcoma virus 17 oncogene 
homolog

Jun is activated by TRAIL JNK dependently and 
promotes apoptotic cell death in malignant cells 
including osteosarcoma [43].
Downregulation of JUN decreases the 
expression of matrix metalloproteinases and 
thereby cellular invasiveness in HT1080 cells 
[44]. This down-regulation may be mediated 
through suppression off NFKB activation [45].
JUN is known to be a product of MAP2K4-
activation and to mediate apoptosis by several 
chemotherapeutics [55].
upregulation of HSPA1A and JUN expression 
Chemosensitivity of HT1080 to mitomycin C 
could significantly be increased by [34].

IRF1 interferon regulatory factor 1 MAR IRF1 inhibits cell growth and induces apoptosis 
via activation of caspases 1 and 7 [71]. It inhibits 
NFKB-dependent activation of matrix 
metalloproteinase-9 (MMP9) [72].

TNFAIP3 tumor necrosis factor, alpha-
induced protein 3

A20, MGC104522, MGC138687, 
MGC138688, Putative DNA-binding 
protein A20, TNFA1P2, Zinc finger 
protein A20

TNFAIP3 down-regulates the TNF-α-induced 
NFKB signalling pathway [26] and reduces TNF 
mediated apoptosis and necrosis [27].

BAG5 BCL2-associated athanogene 5 BAG-5, BAG family molecular chaperone 
regulator 5, KIAA0873

BAG family members inhibit Hsp70 and 
promote cell growth and survival [73].

CLK4 CDC-like kinase 4 Dual specificity protein kinase CLK4 CLK family members prevent cells from 
undergoing intrinsic apoptosis [74].

MET met proto-oncogene 
(hepatocyte growth factor 
receptor)

c-Met, Hepatocyte growth factor 
receptor precursor, HGF/SF receptor, 
HGFR, HGF receptor, Met proto-
oncogene tyrosine kinase, RCCP2, Scatter 
factor receptor, SF receptor

Over-expression of MET was associated with 
enhanced proliferation and aggressive tumor 
biology in sarcomas[75]. Survival, anchorage 
dependent growth and invasiveness of sarcoma 
cells are dependent on MET [76].

MCL1 Myeloid cell leukemia sequence 1 
(BCL2-related)

Bcl-2-related protein EAT/mcl1, EAT, 
Induced myeloid leukemia cell 
differentiation protein Mcl-1, mcl1/EAT, 
MCL1L, MCL1S, MGC104264, MGC1839, 
TM

MCL1 is expressed in a variety of soft tissue 
sarcomas and acts anti-apoptotic. Inhibition of 
MCL1 in combination with low dose 
cyclophosphamide significantly increases 
apoptosis in HT1080 cells [47].

MAP3K1 mitogen-activated protein kinase 
kinase kinase 1

MAPK/ERK kinase kinase 1, MAPKKK1, 
MEKK, MEKK1, MEKK 1, MEK kinase 1

MEKK is activating MAPK and JNK. Reduction 
of MEKK activity amplifies the apoptotic effect 
of TNFalpha on fibrosarcoma cells [77].

CASP2 caspase 2, apoptosis-related 
cysteine peptidase (neural 
precursor cell expressed, 
developmentally down-regulated 2)

apoptosis-related cysteine peptidase 
(neural precursor cell expressed, 
developmentally down-regulated 2), 
CASP-2, Caspase-2 precursor, ICH1, 
ICH-1L, ICH-1L/1S, ICH-1 protease, 
NEDD2

Casp2 is a member of the caspases family and 
mediates apoptotic cell death NFKB and Jun 
dependently but independent from Fas [78].

Signal log ratios of the changes are given for the several samples (TRD vs control, TRAIL vs control, TRD/TRAIL vs control, TRD/TRAIL vs TRD), 
signal log ratio of 1 representing a twofold increase, one of -1, that the expression is half of the expression of the control group and so forth.

Table 3: Summary of the expression changes of apoptosis related genes for the single substances (TRD 250 μmol/l, TRAIL 50 ng/ml) 
compared to untreated cells and the combination therapy compared to Control, TRD and TRAIL treated cells. (Continued)
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