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ABSTRACT Transposon insertion sequencing (TIS) is a widely used technique for
conducting genome-scale forward genetic screens in bacteria. However, few meth-
ods enable comparison of TIS data across multiple replicates of a screen or across
independent screens, including screens performed in different organisms. Here, we
introduce a post hoc analytic framework, comparative TIS (CompTIS), which utilizes
unsupervised learning to enable meta-analysis of multiple TIS data sets. CompTIS
first implements screen-level principal-component analysis (PCA) and clustering to
identify variation between the TIS screens. This initial screen-level analysis facilitates
the selection of related screens for additional analyses, reveals the relatedness of
complex environments based on growth phenotypes measured by TIS, and provides
a useful quality control step. Subsequently, PCA is performed on genes to identify
loci whose corresponding mutants lead to concordant/discordant phenotypes across
all or in a subset of screens. We used CompTIS to analyze published intestinal colo-
nization TIS data sets from two vibrio species. Gene-level analyses identified both
pan-vibrio genes required for intestinal colonization and conserved genes that dis-
played species-specific requirements. CompTIS is applicable to virtually any combina-
tion of TIS screens and can be implemented without regard to either the number of
screens or the methods used for upstream data analysis.

IMPORTANCE Forward genetic screens are powerful tools for functional genomics.
The comparison of similar forward genetic screens performed in different organisms
enables the identification of genes with similar or different phenotypes across or-
ganisms. Transposon insertion sequencing is a widely used method for conducting
genome-scale forward genetic screens in bacteria, yet few bioinformatic approaches
have been developed to compare the results of screen replicates and different
screens conducted across species or strains. Here, we used principal-component
analysis (PCA) and hierarchical clustering, two unsupervised learning approaches, to
analyze the relatedness of multiple in vivo screens of pathogenic vibrios. This ana-
lytic framework reveals both shared pan-vibrio requirements for intestinal coloniza-
tion and strain-specific dependencies. Our findings suggest that PCA-based analytics
will be a straightforward widely applicable approach for comparing diverse trans-
poson insertion sequencing screens.

KEYWORDS PCA, host-pathogen interactions, in vivo screen, principal-component
analysis, Tn-seq, Vibrio cholerae, vibrio pathogenesis

Transposon insertion sequencing (TIS) (variously referred to as IN-Seq, Tn-Seq, HITS,
and TraDIS) (reviewed in references 1 and 2) is a powerful forward genetics tool for

the identification of genetic loci contributing to bacterial growth in diverse environ-
ments (3–6). Since its introduction in 2009, the method has been applied to a wide
variety of bacterial species which have been exposed to an even broader array of
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growth conditions, ranging from chemically defined media to the complex and poorly
characterized milieu of host tissues during bacterial infection (7, 8).

TIS methodologies rely on generating “libraries” that contain large numbers of
transposon (Tn) insertion mutants, followed by high-throughput sequencing to identify
insertion sites, which enumerates the relative abundance of individual Tn mutants
within the library. Three common applications of TIS are (i) essential locus analysis, in
which genes with disproportionately low frequencies of Tn insertion are identified to
make inferences of genetic essentiality (9, 10); (ii) genetic interaction studies, in which
differential frequencies of Tn insertion libraries generated in different genetic back-
grounds are used to infer suppressor and synthetic lethal relationships (2, 11, 12); and
(iii) sequential selection studies (the primary focus of this work), in which changes in the
relative abundances of mutants within a library before and after imposition of a
selective pressure are used to infer the importance of each locus for growth under the
selective condition (1, 2, 4, 8). Typically, the Tn libraries include multiple unique mutants
for each locus. Although each mutant can be analyzed independently, often, data for
all insertion sites within a locus are combined to mitigate site-specific effects.

To quantify a genetic locus’ contribution to growth in a sequential selection
experiment, TIS studies usually calculate the fold change (between input and output
libraries) in the relative abundances of insertion mutants mapping to that locus. Fold
change between input and output libraries is calculated as (reads per gene in output
library)/(reads per gene in input library). Loci with a log2(fold change) of �0 are
considered depleted, and those with log2(fold change) of �0 are considered enriched.
Several statistical approaches for analyses of TIS data have been proposed (2, 5, 13, 14),
with different methods for normalization, modeling read count data, and combining
data from multiple insertion sites within a gene.

In contrast to the variety of approaches for quantifying a locus’ contribution to
growth in a single sequential selection experiment, there are few methodologies for
comparing multiple TIS data sets. Jensen et al. (15) described a technique to compare
various TIS data sets by first normalizing the fold change values against an experimen-
tally derived population expansion factor prior to performing comparisons across
screens. This approach allows a comparison of TIS data sets that can be adequately
normalized; however, measurement of the population expansion factor can be chal-
lenging, particularly in in vivo experiments. DeJesus et al. (16) used a hierarchical
Bayesian approach to incorporate the variation of the fold change value of each gene
to identify genes displaying statistically significant differences between two TIS screens.
They showed that such an approach permits the study of genetic interactions by
comparing the results of screens conducted in parallel in two genetically different
strains constructed from a single parental strain. While these two approaches provide
valuable new tools, they have limited ability to compare the results of multiple TIS data
sets, as both methods are restricted to pairwise comparisons.

Here, we present comparative TIS (CompTIS), a novel framework for conducting
comparisons of multiple TIS data sets that relies on the dimensional reduction ap-
proach of principal-component analysis (PCA). As an unsupervised technique, PCA
makes no prior assumptions about the structure of the data sets, providing an unbiased
and broadly applicable approach to discovery. Dimensional reduction approaches such
as PCA transform multivariate data sets into smaller sets of summary parameters while
maintaining the underlying structure of the data sets, facilitating a direct interpretation
of the relationships between data sets. Although extensively used in transcriptome
sequencing (RNA-seq) and microbiome (i.e., 16S) analyses, PCA and other dimensional
reduction approaches that extract the sources of variation between various multivariate
data sets have not been thoroughly explored for comparisons of multiple TIS data sets.
Given that the structure of TIS and RNA-seq data sets, which are comprised of matrices
of genes and associated fold changes, are highly similar, we developed a PCA-based
dimensional reduction approach for the comparison of TIS data sets.

CompTIS begins by implementing “screen-level” PCA and clustering to depict the
variation between different screens and the relatedness of TIS data sets. This first step
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enables the grouping of screens with similar results without prior knowledge of
experimental conditions, allows the identification of outlier screens, and facilitates the
selection of comparable data sets for a subsequent “gene-level” implementation of
PCA. Gene-level PCA examines variance across genes indicative of mutant growth
phenotypes that are either consistent or divergent across TIS studies in order to identify
genes that are important for growth under specific conditions or combinations of
conditions. Here, we applied CompTIS to in vitro and several in vivo TIS data sets derived
from studies of different pathogenic vibrio species and strains. This approach is not
restricted to pairwise comparisons of TIS data sets and is not dependent on a specific
upstream analysis method. CompTIS provides a general framework for unsupervised
data discovery and meta-analyses of TIS studies.

RESULTS AND DISCUSSION
Background considerations. Deriving biological insight from TIS data sets is com-

plicated by their high dimensionality. Suppose we have k screens (in this work, our
data sets contain up to almost a dozen screens, although larger ones are available
[8]), each of which measures the fold change of N genes (typically in the thousands).
For visualization purposes, we can represent each screen as one of k points in
N-dimensional space, where the position along the nth axis is the log2(fold change)
(L2FC) value of the nth gene. PCA identifies the line in the N-dimensional space along
which there is the greatest variance among the k screens. Each screen is assigned a first
principal component score (PC1), which is the position along this axis of greatest
variance, and represents a weighted sum of the L2FC values for each gene. To compute
the second principal component score, lines perpendicular to the line of greatest
variance are identified (perpendicular so that variation in one principal component is
independent from the others), and again, the line along which there is the greatest
variance among the k screens is selected; the second principal component score for
each screen is its position along this axis. The process is repeated, each time selecting
the axis of maximum variance, subject to the constraint that it be perpendicular to all
previous axes of maximum variance. Ideally, the variation in each screen can be
accurately reconstructed by the first several principal components since they exhibit
the greatest variance, and higher principal components can be dropped with little loss
of accuracy.

We term the approach described above, assigning each of k screens as a point in
N-dimensional gene space, a screen-level approach. Alternatively, we could assign each
of N genes a point in k-dimensional screen space, which we term a gene-level
approach. For the gene-level approach, we can also apply PCA, identifying the direction
(in k-dimensional screen space) along which there is the greatest variation across genes
and proceeding analogously. Whereas the screen-level approach facilitates the identi-
fication of patterns among screens or identification of screens of interest (outliers, for
instance), the gene-level approach highlights patterns among genes and enables the
selection of genes of interest.

Screen-level PCA and clustering of TIS screens identify variation among replica
screens and distinguish screens performed under different conditions. We exam-
ined whether TIS data were amenable to PCA-based dimensional reduction and hier-
archical agglomerative clustering by analyzing published data sets from sequential
selection experiments. The data were derived from five screens performed with a high
complexity Vibrio parahaemolyticus transposon insertion library (17). Of the five screens,
four were biological replicates of screens carried out in infant rabbits, an animal model
of intestinal colonization and diarrheal disease (18); the fifth screen was carried out in
vitro in lysogeny broth (LB). These data sets were selected to test whether biological
replicates of an in vivo screen have L2FC values for each gene more closely related to
one another than to the values observed in an independent in vitro screen. The L2FC
in the abundance of mutants corresponding to each locus was derived from output of
the Con-ARTIST pipeline (13).
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We performed screen-level PCA to analyze the L2FC data for each variable (i.e., all
of V. parahaemolyticus’ 4,830 nonoverlapping open reading frames) across all observa-
tions (i.e., 5 screens). For PCA, we employed a weighting scheme in order to minimize
the impact of genes that, due to their relative lack of possible insertion sites, were
intrinsically noisy (see Materials and Methods and Fig. S1 in the supplemental material).
The first and second principal components accounted for 71% and 10%, respectively,
of the overall variance across the 5 data sets. Thus, PC1 accounts for the majority of the
variance in the data and clearly reveals the difference between the 4 in vivo experi-
ments, which have similar PC1 values, and the in vitro experiment (Fig. 1A). PC2, while
also separating screens by environment, also identifies variation among the in vivo
screens.

The relatedness of the screens was also assessed via hierarchical agglomerative
clustering of L2FC values, which provided additional support for the PCA-based group-
ings. We used a bootstrapping approach to determine the statistical support for the
separation of the in vivo and in vitro data sets (Fig. 1B and C). Both approaches
demonstrate that the variance between the in vitro observation and the four in vivo
observations exceeds the variance between each of the 4 in vivo observations. Thus,
PCA and clustering analyses of gene fold change values from multiple TIS data sets can
reveal the relatedness of multiple sequential selection screens. These analyses could
also potentially identify batch artifacts in the replicates, such as technical variation
introduced during library preparation or sequencing, as they would appear as outliers.
Both PCA- and clustering-based analyses of screens have merit. Clustering provides a
bootstrap value to evaluate the robustness of each cluster, while PCA provides a more
intuitive visualization of the relatedness of screens and/or replicates, particularly when
analyzing a large number of screens.

FIG 1 Screen-level comparative TIS analysis of V. parahaemolyticus screens. (A) Screen-level PCA of 5 V. parahae-
molyticus TIS screens (1 in vitro, 4 in vivo biological replicates); units shown on axes are arbitrary values in principal
component space. (B) Hierarchical agglomerative clustering with bootstrapping; values at each node represent
approximately unbiased values calculated via pvclust; distal small intestine (dSI) 1 to 4 represent the 4 in vivo
replicates. (C) Distance matrix of clustering.
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Gene-level PCA allows for integration of data across biological replicates of a
screen. Screen-level PCA enabled the visualization of the relatedness of TIS data sets
and screens; however, it does not provide information about relationships among
genes. To identify sets of genes whose mutants exhibit similar patterns across different
screens, we implemented gene-level PCA of L2FC values from the V. parahaemolyticus
data sets described above. The screen-level PCA (Fig. 1A) indicated strong divergence
between in vivo and in vitro data sets, which we expected to dominate any comparison
of these data, as conventional PCA is not robust for outliers. For this reason, and to
provide a simple starting example, we restricted our analysis to the 4 in vivo screens.
Since the screens are biological replicates, we did not expect to find complex patterns
in the data but used them to illustrate the approach.

Gene-level PCA provides principal-component scores for each gene, which are
weighted sums of the L2FC measurements across the biological replicates analyzed.
Each principal component has an associated set of weighting coefficients, which
determine the contribution of each sample to the overall score per gene. The first
principal component identified by gene-level PCA (PC1) accounted for 78% of the
overall variance, while principal components 2 to 4 appeared to each account for a
similar small amount of the remaining variance (Fig. 2A). Thus, our data were approx-
imately one dimensional and hence well captured by a single quantity, PC1, for each
gene. For PC1, the coefficients for each replicate had the same sign and were of similar
magnitudes (Fig. 2B), so that the L2FC measurements from each sample contributed
similarly to each gene’s PC1 score; that is, PC1 is a weighted average. The roughly equal
weights of each screen are consistent with our expectation that gene-level L2FC
measurements will be relatively consistent across biological replicates. Thus, PCA
facilitates the comparison of replicates of screens by using weights informed by the
data.

Most of V. parahaemolyticus’ 4,830 genes have PC1 scores close to zero, i.e., their
corresponding transposon mutants did not exhibit a fitness defect in vivo, while a
subset have very low scores (Fig. 2C). We generated a heatmap of L2FC measurements
for genes comprising the lowest 0.5% of PC1 scores to further analyze the significance

FIG 2 Gene-level comparative TIS analysis of V. parahaemolyticus screens. (A) Variance explained by each principal
component in gene-level PCA of V. parahaemolyticus genes across 4 in vivo screens (distal small intestine [dSI]). (B)
Principal component 1 coefficients. (C) PC1 score distribution across all genes. (D) Heatmap of log2(fold change)
values for each in vivo replicate for the genes with the lowest 0.5% of gene-level PC1 scores. Genes in the T3SS2
gene cluster, a critical colonization factor, are highlighted.
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of these extreme values (Fig. 2D). These genes exhibited negative L2FC measurements
across all 4 data sets and included several of the genes within the type III secretion
system 2 (T3SS2) gene cluster, V. parahaemolyticus’ critical colonization/virulence factor
(17, 18). Their low PC1 scores reflect the consistency and/or severity of mutant growth
defects across biologic replicates of the in vivo screen. Collectively, these data indicate
that PC1, which integrates biological replicates of an in vivo transposon screen, can
provide a useful metric for the identification of genes required for intestinal coloniza-
tion.

Screen-level PCA reveals the relatedness of in vivo screens from different
vibrio strains. To determine whether CompTIS could be applied to more distantly
related data sets, we repeated the screen-level and gene-level analyses described
above after incorporating data from 7 additional in vivo screens (13, 19). Three of these
screens utilized a transposon library constructed in Vibrio cholerae strain C6706 (a 1991
Peruvian isolate) (20), while the other four employed a transposon library constructed
in V. cholerae strain H1 (a 2010 Haitian outbreak isolate) (21). The in vivo V. cholerae
screens were carried out in an infant rabbit model (22), and the procedures used for
infection and Con-ARTIST analysis were similar to those used in the V. parahaemolyticus
in vivo screen. Importantly, our comparative TIS analysis was limited to the 2,356
protein-coding genes conserved across all three vibrio isolates (see Fig. S2A and B,
Table S1). As expected, cluster of orthologous group (COG) analysis of this core gene
set revealed that genes involved in translation/ribosome function and various meta-
bolic and nutrient acquisition systems, such as transport of coenzymes, carbohydrates,
nucleotides, and amino acids, were highly represented (Fig. S2C, Table S2). Thus, across
these species and strains, genes involved in many metabolic functions have remained
largely conserved.

We wondered whether the screen-level PCA would be able to discern two antici-
pated results. First, that biological replicates of the same library exhibit more similarity
in mutant growth phenotypes than those of distinct bacterial strains; and second, that
the two V. cholerae data sets would more closely resemble one another than the V.
parahaemolyticus data set, since C6706 and H1, related strains of the same species, are
only distantly related to V. parahaemolyticus.

To assess the relatedness of these 11 data sets, we performed screen-level PCA to
analyze the L2FC measurements for each variable (that is, conserved gene) across all
observations (11 screens). In screen-level PCA, the first and second principal compo-
nents accounted for 72% and 11%, respectively, of the overall variance. PC1 and PC2
values separated the data into 3 groups based on both species (V. parahaemolyticus
versus V. cholerae) and strain variation (Peruvian versus Haitian V. cholerae) (Fig. 3A).
Thus, in an unsupervised fashion, screen-level PCA grouped the data sets by strain,
highlighting the power of this approach to detect patterns in large data sets.
The normalization and weighting incorporated into the screen-level PCA reduces the
variability between data sets and enhances the tightness of clusters (see Fig. S3). The
inclusion of these two parameters enables PCA to separate the screens by organism in
both PC1 and PC2 (Fig. S3). We note that each data set from a given species/strain
represents a replicate selection of the same library; hence, library generation and the
associated stochasticity of transposon insertions could explain some of the groupings
we observe via PCA. Hierarchical agglomerative clustering confirmed the groupings
found by PCA (i.e., there were species- and strain-specific clusters) (Fig. 3B and C).
Notably, the two V. cholerae strains clustered into separate groups, suggesting that
there are differences in the requirements for colonization in the core vibrio genes
between these Peruvian and Haitian V. cholerae isolates. These two strains are both El
Tor O1 V. cholerae, isolated only 19 years apart from each other, a short time relative to
the length of time that V. cholerae has been evolving with humans. Thus, the screen
level PCA revealed unexpected differences in the genetic requirements for colonization
of two closely related V. cholerae strains, even when restricted to core genes that are
largely conserved. The effect of minor genetic variation between closely related strains
can manifest in various ways, including differences in gene expression levels. Recently,
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Zhao et al. (23) reported that there are differences in the expression levels of several loci
linked to intestinal colonization between these two strains, raising the possibility that
their distinct requirements for colonization are explained by gene expression differ-
ences.

Gene-level PCA identifies both strain-independent and strain-dependent mu-
tant growth phenotypes. Although V. parahaemolyticus and V. cholerae rely on
independent virulence factors to access and proliferate within their respective niches
within the small intestine, we sought to identify common in vivo genetic requirements
for colonization across pathogenic vibrios by carrying out gene-level PCA on all 11 in
vivo vibrio screens (see Table S3). The first and second gene-level principal components
accounted for 72% and 11% of the overall variance, respectively (Fig. 3D). The PC1
coefficients for each data set were of similar signs and magnitudes (Fig. 3E), indicating
that all strains contribute similarly to PC1 scores. That is, PC1 constituted a roughly
equally weighted average of L2FC measurements across the 11 data sets, approximat-
ing the average L2FC value of a gene across the screens analyzed (see Fig. S4). Notably,
the weighting, rather than being assumed to be equal or provided by an independently
determined population expansion factor, is determined by the data itself. Thus, a
majority of the overall variance across these screens is strain independent, suggesting
that the core vibrio genes required for survival/growth in the small intestine are

FIG 3 PCA-based analyses of in vivo TIS data from 3 pathogenic vibrio strains. (A) Screen-level PCA of V. cholerae C6706 (Vc Peru), V. cholerae H1 (Vc Haiti),
and V. parahaemolyticus (Vp) in vivo screens; units shown on axes are arbitrary values in principal component space. (B) Hierarchical agglomerative clustering
with bootstrapping; values at each node represent approximately unbiased values calculated via pvclust. (C) Distance matrix of clustering. (D) Variance
explained by each principal component of gene-level PCA of all conserved vibrio genes across 11 in vivo screens. (E) Principal component 1 and 2 coefficients.
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conserved across the two major pathogenic vibrios, V. parahaemolyticus and V. chol-
erae. Therefore, even though these pathogens depend on species-specific virulence
factors for colonization, T3SS2 for V. parahaemolyticus and toxin-coregulated pilus (TCP)
for V. cholerae (18, 22), they also share many genetic requirements for in vivo growth.
In contrast, the PC2 coefficients were consistent across biological replicates but differed
between screens by both signs and magnitudes, thereby reflecting strain-dependent
phenotypes (Fig. 3E). Interestingly, PC2 reflected discordance between the Peruvian
and Haitian V. cholerae strains, evident in the differences in signs of the coefficients.
Further validation/dissection of the genes that account for these differences is war-
ranted. In addition, these observations suggest that studies comparing the genetic
requirements for host colonization among closely related strains can highlight unex-
pected strain-specific dependencies.

Heatmaps were generated to visualize the lowest 1% of PC1 scores (Fig. 4A). These
genes generally exhibited negative L2FC measurements across all 11 data sets and thus
display strain-independent attenuation in vivo. Functional analyses revealed that the
majority of these genes are involved in de novo purine and pyrimidine nucleotide
synthesis as well as complex 1 of the electron transport chain (Fig. 4B). These obser-
vations suggest that access to nucleotides in the small intestine is limited for both
pathogens, even though they modify the host environment in distinct ways; e.g., V.
parahaemolyticus, in contrast to V. cholerae, causes marked disruption of the intestinal

FIG 4 Gene-level PC1 and PC2 identify genes required for colonization by all strains and by specific strains,
respectively. (A) Heatmap of log2(fold change) values of genes with the 1% lowest of gene-level PC1 scores across
11 in vivo vibrio screens. (B) Categories highly represented among the genes with the lowest 1% of PC1 scores (25
genes total). (C) Heatmap of a subset of genes with discordant L2FC values across strains, selected from genes with
the lowest 1% or highest 1% of gene-level PC2 scores.
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epithelium (18). Thus, even though the niches that V. parahaemolyticus and V. cholerae
occupy in the small intestine likely differ, both pathogens rely at least in part on shared
genes to proliferate in the host environment. Collectively, these findings demonstrate
that gene-level PCA can facilitate the identification of genes required for growth in vivo
(or in other environments) by multiple bacterial strains. Furthermore, analyses of PC2
and potentially other principal components can yield information regarding species- or
strain-specific growth requirements as well, such as the differential reliance between
the Peruvian and Haitian V. cholerae strains on the cAMP receptor protein (Crp), the
ArcAB two-component system, and an uncharacterized phosphate ABC transporter
permease for growth in vivo (Fig. 4C). The mechanisms that underlie these unexpected
strain-specific in vivo growth requirements warrant further investigation.

Summary and conclusions. We developed CompTIS, which utilizes screen-level
and gene-level PCA and clustering, to accomplish meta-analysis of TIS data. Screen-
level PCA distilled genome-wide mutant growth phenotypes to facilitate comparisons
across screens. This unsupervised learning method was capable of establishing the
relatedness of screens, distinguishing replicate screens from those conducted in dif-
ferent experimental contexts, and identifying outlier screens. Furthermore, clustering
analysis with bootstrapping corroborated the PCA analysis and enabled the identifica-
tion of statistically significant clusters. Using such an approach, we detected differences
in the genetic requirements for intestinal colonization in two closely related strains of
V. cholerae.

The second part of our approach relied on using gene-level PCA to identify variance
across genes indicative of mutant growth phenotypes that are either consistent or
divergent across multiple screens. Importantly, gene-level PCA does not depend on a
priori hypotheses regarding consistency or divergence of mutant growth phenotypes
across screens for the identification of significant gene sets. Instead, the utility of
gene-level PCA lies in its capacity to guide the formation of hypotheses regarding the
genes that modulate growth, both in biological replicates and in separate strains and
environments.

In summary, our findings suggest that a PCA- and clustering-based analytic ap-
proach provides a straightforward method for comparing the results of different TIS
screens, thereby facilitating the discovery of novel associations between screens and
guiding hypothesis development for additional experimentation.

MATERIALS AND METHODS
Weighting of Con-ARTIST log2(fold change) measurements. We used previously published TIS

screens for our analyses (13, 17, 19). To minimize the influence of noise due to variability in log2(fold
change) (L2FC) measurements observed across genes with few unique insertion mutants, the L2FC
measurement for each gene was weighted based on the variability observed in genes with similar
numbers of unique insertion mutants. This procedure ensured that low-variability (i.e., high-confidence)
observations were given proportionally higher weights than those with higher variability (see Fig. S1 in
the supplemental material).

For each screen, we calculated the standard deviation of each gene’s L2FC value by comparing the
L2FC values calculated for each gene across the 100 independently simulated input libraries that are
generated during the Con-ARTIST analysis (13). Note that for our data sets, for each gene, the average
fold change is calculated by averaging the ratio, (reads per gene in output library)/(reads per gene in
simulated input library), across all simulated input libraries. The input libraries are generated via
multinomial-based resampling in order to model stochastic drift, i.e., a bottleneck, in the input library,
hence limiting the effect of genetic drift on downstream analysis and reducing the number of false-
positive findings (13). We fit a power law function (y � axb) to the standard deviation of each gene’s L2FC
value and the number of unique insertion mutants represented in each gene. Fitting was performed
using the Fit function in Matlab (Curve Fitting Toolbox) with the following parameters: power1 and
name-value pair Robust and Bisquare. We found that a function with b of ��2 fit the data well. For each
screen, each gene’s weight was calculated by first using the generated coefficients to determine the
estimated standard deviation in L2FC values based on the number of unique insertion mutants present
for the gene and then taking the inverse of the estimated standard deviation (i.e., for gene q, its weight,
wq � 1/(axb); where x is the number of unique insertion mutants present for the gene).

Principal-component analysis. Prior to performing PCA, we removed genes from the analysis that
contained one or more uncalculated L2FC values (e.g., arising when there were no reads mapping to the
gene in a particular screen). Next, the L2FC values in each screen were standardized (i.e., z-score
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normalized) using the zscore function in Matlab. In this final normalized L2FC matrix, which was used for
PCA analyses, rows corresponded to genes and columns corresponded to screens.

(i) Screen-level PCA. Weighted PCA was performed in Matlab using the PCA function with the
default algorithm (single value decomposition [svd]), “centered” set to off, “VariableWeights” correspond-
ing to a column vector of the sum of the calculated weights of each gene across the screens being
analyzed, and “Weights” corresponding to a row vector of the sum of the calculated weights of all the
genes in each screen. Screen-level PCA was performed on the transpose of the normalized L2FC matrix.

(ii) Gene-level PCA. Weighted PCA was performed in Matlab using the PCA function with the default
algorithm (single value decomposition [svd]), “centered” set to off, “VariableWeights” corresponding to
a row vector of the sum of the calculated weights of all the genes in each screen, and “Weights”
corresponding to a column vector of the sum of the calculated weights of each gene across the screens
being analyzed. Gene-level PCA was performed directly on the normalized L2FC matrix.

Clustering and bootstrapping analysis. We used the normalized L2FC matrix to perform hierar-
chical agglomerative clustering with bootstrapping using the pvclust package (version 2.0-0) (24, 25) in
R (version 3.3.2) (26) and the following parameters: distance function, Euclidean; clustering method,
Ward’s (ward.D2); and n � 1,000 bootstrap replications. pvclust provides two P values, the standard
bootstrap probability and the adjusted unbiased (AU) value, which is calculated using multiscale
bootstrap resampling and represents a more unbiased P value than the bootstrap probability.

Identification of conserved vibrio genes. The V. cholerae N16961 genome (which differs from the
C6706 Peru strain by only several single nucleotide polymorphisms [SNPs]) was used to identify unique
V. cholerae H1 homologs (using the V. cholerae KW3 genome) of N16961 genes that exhibited �90%
nucleotide identify across �90% of gene length. A subsequent protein blast of these conserved V.
cholerae genes against the V. parahaemolyticus RIMD 2210633 genome identified unique V. parahaemo-
lyticus homologs that exhibited �50% amino acid identity across �80% of gene length. Ultimately, 2,356
genes met these standards of conservation across the three vibrio strains.

Cluster of orthologous groups analysis. COG analysis of the V. parahaemolyticus RIMD 2210633
genome was performed using the functional annotation (COG) function of WebMGA (27). To facilitate
comparison, percentages of genes in each COG category were calculated for the whole genome (4,830),
and for the subset of V. parahaemolyticus genes that consisted of the core vibrio gene set (2,356). Figures
and heatmaps were made using Matlab and GraphPad Prism 8.

Data availability. Matlab scripts for running the screen-level and gene-level PCA analyses can be
accessed at https://bitbucket.org/gabriel_billings/comptis.
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