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Abstract

The risk ratio (RR) is the ratio of the outcome among the exposed to risk of the outcome

among the unexposed. This is a simple concept, which makes one wonder why it has not

gained the same popularity as the odds ratio. Using logistic regression to estimate the

odds ratio is quite common in epidemiology and interpreting the odds ratio as a risk ra-

tio, under the assumption that the outcome is rare, is also common. On one hand, esti-

mating the odds ratio is simple but interpreting it is hard. On the other, estimating the

risk ratio is challenging but its interpretation is straightforward. Issues with estimating

risk ratio still remain after four decades. These issues include convergence of the algo-

rithm, the choice of regression specification (e.g. log-binomial, Poisson) and many more.

Various new computational methods are available which help overcome the issue of

convergence and provide doubly robust estimates of RR.
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Key Messages

• Estimating risk ratio (RR) using a simple cross-tabulation is easy. However, when it comes to estimating RR using

regression, there is no one particular model.

• Use of log-binomial models with continuous covariates may lead to convergence issues.

• Computational methods such as combinatorial expectation maximiation allow convergence of generalized linear

models using the binomial family and log link function. However, specification of starting values can be difficult.

• The binary regression method which allows direct modelling of risk ratios may be a better choice.
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Introduction

Relative risk is a common term used in epidemiology to re-

fer to risk and rate ratios.1 The concept of risk ratio (RR),

when introduced first to students, is taught using a simple

2� 2 table and a hand calculator. The 2� 2 table is cre-

ated using a simple cross-tabulation of a binary exposure

and a binary outcome. Using the information from this

cross-tabulation, RR is estimated as the ratio of risk of the

outcome among the exposed versus risk of the outcome

among the unexposed. For example, let’s say the outcome

is low birthweight (Yes¼ 1 or No¼ 0) and the exposure is

maternal smoking during pregnancy (Yes¼ 1 and No¼ 0).

Risk ratio, in this example, is the ratio of the proportion of

low-birthweight children among smokers to the proportion

of low-birthweight children among non-smokers. In this

form it is simple and easy to calculate.

Let’s consider adjusting for one confounder, like gender

which is binary; in this case, RR can be estimated within

the stratum of gender. Now suppose there is a long list of

confounders which includes age, education, income,

pregnancy-related factors and others. To estimate RR in

this case, one may need to use regression. Use of regression

methods for estimating RR gained popularity when they

became available in regular commercial and non-

commercial statistical software. Even with this availability,

it is still not free from problems, which has concerned

researchers since the 1980s.2 Other methods, such as logis-

tic regression, gained immense popularity and have be-

come essential tools in epidemiology due to the

computational ease, and as the odds ratio (OR) can ap-

proximate the RR in the case of rare events. Evidence sug-

gests that logistic regression is used to estimate the OR but

is commonly interpreted as RR.3 However, OR overesti-

mates RR, whenever RR is greater than 1, and hence

should not be interpreted as RR.4–6

If logistic regression is used to estimate RR under the

rare disease assumption, then one must note that this

assumes that the conditional probability of having an out-

come, given the unexposed state (baseline prevalence,

p Y ¼ 1jX ¼ 0ð Þ ¼ p0) approaches zero (as shown in

Supplementary Material, Section S1, available as

Supplementary data at IJE online). Moreover, as suggested

by the reviewer, relation between OR and RR can be de-

rived as shown in Supplementary Section 1 using this deri-

vation: if we assume RRmax ¼ 10 ðupper boundÞ and

p0 ¼ 0:001; we have OR
RR � 1:01. Thus, if the RRmax is less

than or equal to 10 and the baseline prevalence is 1 in 100-

then the relative error OR/RR is 1%. With a prevalence of

1 in 10000 it is 0.1%; when the prevalence is very small

but not zero, the approximation errors are small enough to

be practically negligible. We assume the RR >1 but less

than some maximum plausible value RRmax > 1.

Alternatively, let’s examine this using a simple 2� 2 ta-

ble with four cells. Let these cells be labelled as a, b, c and

d, where ‘a’ is the count when the outcome is 1 and the ex-

posure is 1, ‘b’ is the count when the exposure is 1 and out-

come is 0, ‘c’ is the count when the outcome is 1 and

the exposure is 0 and ‘d’ is when both outcome and expo-

sure are 0. Now to estimate RR, we use the formula
a

aþb
c

cþd
.

If we rearrange the terms, we estimate the RR as
a� cþdð Þ
c� aþbð Þ ¼ acþad

caþbc, whereas the OR is estimated as ad
bc. Again,

from these formulae, one may note that RR does not equal

(or even approximate) OR without some assumptions.

One common assumption can be that the outcome is rare

in both the groups of the exposure (if exposure is the only

variable; else, the outcome of interest must be rare for all

the levels of the covariates). Furthermore, let’s put some

numbers instead of a, b, c, d, say a¼ 1, b¼ 5, c¼1 and

d¼ 11. In this case, the estimate of RR using the above for-

mula equates to 12/6¼ 2 which is the ratio of the marginal

totals of the exposure when X ¼ 1ðaþ bÞ and

X ¼ 0 ðcþ dÞ. Now, if we estimate the OR (¼ 2.2), as

shown in Supplementary Material, Section S2, (available

as Supplementary data at IJE online) the OR equates to the

ratio of not having the outcome when the exposure is ab-

sent versus not having the outcome when exposure is pre-

sent. In this example, equating OR and RR may not be

appropriate as they are estimating two different things.

Moreover, both OR and RR are not estimating the risk of

disease whenever the counts a and c are equal in a 2� 2 ta-

ble or a stratified 2� 2 table. In summary, if the study out-

come is common, interpretation of OR as an

approximation to RR becomes unreliable.

Odds ratios may still be of interest because they are

symmetrical, in the sense that the odds of having an out-

come is the inverse of odds of not having the outcome

(mathematically this might be interesting but practically,

when the outcome is defined as death or survival, this

property might not seem desirable), and when the covari-

ate set is large it may be a preferred choice.7 Moreover, in

some case-control studies when studies use cumulative in-

cidence sampling, OR maybe valuable.8 On the other

hand, RR is not symmetrical (with respect to relabelling of

the outcome Y) but the size of the RR will not change if ad-

justment is made for a variable that is not a confounder.

This is referred to as collapsibility. The collapsibility prop-

erty implies that the risk ratio can be expressed as the ratio

change in average risk due to exposure among the ex-

posed.7,9–12 It is for this reason RR, and for its ease of in-

terpretation, maybe a preferred parameter of interest

over OR.

Several methods have been proposed to estimate the

RR. These include the Stratified Mantel–Haenszel

method,4 Cox regression,3,13 adjustment to OR14 (even
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though this method was later noted to be biased15) and

generalized linear models (GLM) with family binomial and

link log, referred to as log-binomial.16,17 However, the log-

binomial method has the issue of convergence2,3,16 in

STATA, R, SAS, Splus or any other software. To overcome

this issue, methods such as the COPY method,2,13,16 modi-

fied Poisson,18 marginal standardization,16,17,19 binary re-

gression models,9 quasi-likelihood Poisson method20

constrained optimization21 and non-linear least squares3

have been proposed. Some of the software available in-

clude libraries such as logbin (log binomial models)21–23

and brm (binary regression model) in R.9

This raises the question: if RR is a simple concept,

why don’t regression methods, using maximum likelihood

estimation (MLE) with standard Fisher scoring matrix,

converge when estimating RR? Are there different compu-

tational methods? How should the results be presented?

We provide some answers to these questions.

Why are there different methods?

Let Y be the binary outcome of interest, X the binary expo-

sure and C be the vector of confounders. Y is 1, representing

the occurrence of an event, and 0 represents the non-

occurrence. Similarly, when the exposure equals 1, we say

the individual is exposed/treated and 0 indicates those non-

exposed/untreated. Confounders can be continuous, categor-

ical or binary variables (examples include age, levels of gen-

der). The success probability in RR regression is modelled as:

log P Yi¼1jDi¼ Xi;Cið Þ½ �ð Þ¼b0þb1Xiþb2C1iþ���þbpCpi

¼ bDið Þ

Denote P Yi ¼ 1jDi½ � ¼ pi;8 i ¼ 1;2; :; n, as the probability

of having an outcome for n individuals in the data (D).

The above equation can be rearranged in a matrix form

and written as:

log pið Þ ¼ bDi

Using the relation between natural logarithms and expo-

nentials, the above equation can be expressed as, pi ¼ ebDi .

Here, the parameter b is unknown and this vector needs to

be estimated. To estimate the unknown parameter, we will

use the Bernoulli likelihood function which is given by:

L bð Þ ¼ P
n

i¼1
pYi

i 1� pið Þð1�YiÞ

Various methods to estimate/fit the model include the max-

imum likelihood estimating equation for b; obtained by

taking the derivative of the logarithm of the above likeli-

hood function (L bð ÞÞ and equating it to zero.

Mathematically this is simplified as (for complete deriva-

tion, see Supplementary Section S3):

S bð Þ ¼ @log LðbÞ
@bj

¼
Xn

i¼1

Yi � pið Þ
pi 1� pið Þdipi ¼

Xn

i¼1

di Yi � pið Þ
1� pið Þ

(1)

where di is a realization of vector Di: This is an asymptoti-

cally efficient estimate: when the probability of success (pi)

is less than 1 then the MLE exists, and it is unique.

However, when pi � 1 then the estimating function will be

dominated by observation i, and convergence issues persist.

When the MLE does not converge, some software uses

constrained optimization techniques as a default solution

and thus attains convergence.3

In standard software, MLE is computed using methods

like the Newton–Raphson method, iteratively reweighted

least squares (IRWLS) and Fisher scoring.21–23 However,

these computational methods have issues when the probabil-

ity approaches 1 in log-binomial models.2,3,23 Alternatively,

the modified Poisson regression method15 has been pro-

posed for estimating b and has gained attention. The MLE

for the Poisson regression is given by:

SPoisson bð Þ ¼
Xn

i¼1

diðYi � piÞ

As seen from above notation, the Poisson regression does

not suffer from the issue of convergence as there is no de-

nominator which may approach zero. Now the question is:

how does one get rid of the denominator in Equation 1?

To understand this, it is important to take a step back and

revisit the concept of Maclaurin series. Using the

Maclaurin series, 1
1�pi

, in Equation 1 can be expressed as:

1

1� pi
¼ 1þ pi þ p2

i þ p3
i þ � � � ¼

XM

m¼0

pm
i : (2)

Replace 1
1�pi

in Equation 1 as the weight, w pi;Mð Þ; then

this can be re-expressed as:

S bð Þ ¼
Xn

i¼1

di Yi � pið Þwðpi;MÞ

When M ¼ 0 in Equation 2, then the weight

wðpi MÞ ¼ 1. Hence, the RR estimated using a Poisson re-

gression can be viewed as Maclaurin series truncated at

M ¼ 0. However, with binary outcomes not all combina-

tions of parameters lead to fitted means that are between
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zero and one. It allows for higher values of M to be used.

In 2014, Fitzmaurice et al.24 proposed a method that uses

M ¼ 20; 30; 40 and 60, also known as the ‘almost effi-

cient estimation of RR’. Thus, all variants of the weighted

regression, including when M equals 0, will only estimate

RR almost efficiently, but not completely efficiently.

If using Poisson and interpreting results from this regres-

sion, then one must specify it as a truncated (M ¼ 0)

Maclaurin series. If using higher terms, as done by

Fitzmaurice et al.,24 then we must say that exactly (M ¼ 60).

When Poisson regression is applied to binomial data, the stan-

dard error for the estimated RR will be overestimated.15 To

overcome this issue one can use the sandwich estimation pro-

cedure to compute the robust error variance.19,25,26 However,

when the sample sizes are small, Poisson models do not work

well because the sandwich estimators tend to underestimate

the true standard errors (Department of Statistics, Rupert

Carroll, unpublished observations).27 Furthermore, one of the

weakness of sandwich estimators is that their variance can be

less efficient than the variance estimated from a parametric

model (Department of Statistics, Rupert Carroll, unpublished

observations). This weakness then impacts on the coverage

probability, the probability that a confidence interval covers

the true RR.28 Moreover, the predicted probabilities using

Poisson regression can lie outside of the range [0,1].6,27 This

happens because RR is variation dependent on the baseline

probability (pðY ¼ 1jX ¼ 0Þ). For example, if RR ¼ 2, then

pðY ¼ 1jX ¼ 1Þ ¼ 2 � pðY ¼ 1jX ¼ 0Þ and this indicates

that p Y ¼ 1jX ¼ 0ð Þ � 0:5. This is a restricted domain over

which the quantities ðRR; p Y ¼ 1jX ¼ 0ð ÞÞ need to be com-

patible with a valid probability distribution. As can be ob-

served from this example, it is not only for the Poisson

regression; even in log-binomial models, with considerable

numbersof covariates, finding MLE can be a problem as the

parameter space is constrained and the log likelihood

(Equation 1) needs to be maximized using constrained

optimization.3

The next questions that naturally arise are: (i) how to

achieve convergence in log-binomial models; and (ii) pre-

senting results from multiple methods.

How to achieve convergence in log-binomial
models?

With the log-binomial fitting procedure one can start by in-

creasing the maximum number of iterations along with

specification of starting values. The starting values can be

set to the mean observed proportion for the intercept and

all the rest of the parameters can be set to zero. However,

if the standard default procedures (IRWLS algorithm,

Newton–Raphson or Fisher scoring computational meth-

ods) are used in estimating the MLE of the log-binomial,

then they may not converge. In such situations, computa-

tional methods like combinatorial expectation maximiza-

tion (CEM), adaptive barrier method, parabolic

expectation maximization (PEM)/quasi Newton methods

may be used through packages such as logbin in R.21–23

Use of these latter computational methods may allow con-

vergence if the starting values are specified. 17 Coming up

with a proper set of starting values can be tricky. If the

starting values are appropriate, then there is a chance of

attaining convergence, else not. For CEM, if the covariate

set is large, then again there will be no convergence. With

alternative methods, convergence still persists because of

the constrained optimization.9

Alternatively, one can use the binary regression model

(BRM) approach that overcomes the variance dependence

and constrained optimization.9 The BRM allows direct

modelling of RR.9 BRM uses two different regressions:

(i) an outcome regression; and (ii) a propensity score

regression of the exposure on the baseline covariates.

Furthermore, the outcome regression uses two different

models: (a) a target model for estimating RR directly; and

(b) a nuisance model for the log odds product. Use of the

log odds product allows estimation of RR either using an

unconstrained MLE or semiparametric g-estimation meth-

ods. If the target model is correctly specified and either the

log odds product model or the propensity score model is

correctly specified, BRM yields a robust estimate.9 Similar

to glm methods, BRM also requires specification of start-

ing values and may converge to local maxima.

Presenting results

For this demonstration, we use data from the National

Health and Nutrition Examination Survey Follow-up Study

to estimate the RR in the covariate-adjusted associational

sense. These data are available as accompanying data to the

book by Hernan and Robin.29 We are primarily interested

in the association between quitting smoking (Yes/No) and a

dichotomized weight change (above and below median

weight) between 1971 and 1982. Code that is required to

run all analysis and reproduce the results presented here is

available in the Supplementary Material, Section S4 (avail-

able as Supplementary data at IJE online). In our analysis

we adjusted for sex, age, race, income, marital status, educa-

tion, asthma and bronchitis. All analysis was conducted in

R version 3.6.3 and Stata 15.1. Results from these methods

are presented in Table 1.

Conclusion

In general, RR can be estimated using a hand calculator if

presented as a simple 2 � 2 table. A common problem
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when using regression to estimate RR is lack of convergence

of r, orthe MLE. With the provision of additional computa-

tional methods such as CEM, adaptive barrier or other meth-

ods as alternatives to standard methods such as IRWLS, we

may overcome the issues of convergence in the log-binomial

model if proper starting values are specified and the covariate

set is small. When the covariate set is large, then one can use

the BRM method which allows direct modelling of RR. Use

of BRM for estimating RR may produce wider (conservative)

confidence intervals for the RR. However, further research

directly comparing the RR estimates between BRM and glm

methods need to be conducted.
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