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A unified survival‑analysis 
approach to insect population 
development and survival times
Zhanshan (Sam) Ma

There are two major categories of observation data in studying time‑dependent processes: one is the 
time‑series data, and the other is the perhaps lesser‑recognized but similarly prevalent time-to-event 
data (also known as survival or failure time). Examples in entomology include molting times and death 
times of insects, waiting times of predators before the next attack or the hiding times of preys. A 
particular challenge in analyzing time‑to‑event data is the observation censoring, or the incomplete 
observation of survival times, dealing which is a unique advantage of survival analysis statistics. Even 
with a perfectly designed experiment being conducted perfectly, such ‘naturally’ censoring may still be 
unavoidable due to the natural processes, including the premature death in the observation of insect 
development, the variability in instarship, or simply the continuous nature of time process and the 
discrete nature of sampling intervals. Here we propose to apply the classic Cox proportional hazards 
model for modeling both insect development and survival rates (probabilities) with a unified survival 
analysis approach. We demonstrated the advantages of the proposed approach with the development 
and survival datasets of 1800 Russian wheat aphids from their births to deaths, observed under 25 
laboratory treatments of temperatures and plant growth stages.

Compared with its de facto standard position in biomedicine, the applications of survival analysis in entomology 
and ecology are relatively limited. In recent years, some important applications have been conducted, e.g., Drake 
2006; Fox and Kendall 2006; Gienapp 2005; He and Alfaro 2000; Ma 1997; Ma and Bechinski 2008b; McLoughlin 
et al. 2005; Moya-Laran and Wise 2000; Tanhuanpa et al. 2001; Velema et al. 2005; Zens and Peart  20031–11. Still, 
it seems that survival analysis can play an even broader role in entomology and ecology. This should become 
obvious if we simply examine the variables that survival analysis is devised to study. As a rapidly expanding 
subject of mathematical statistics, survival analysis studies positive random variables for describing times to 
events of concern, also known as survival time, failure time, or simply time-to-event. Survival analysis is therefore 
also known as failure time analysis or time-to-event analysis. Examples of survival time include failure times of 
vehicles, survival times of cancer patients, molting times of insect larvae, and certainly, the lifetimes of organisms 
and humans. In general, there are two major types of data from observing a time-dependent process: one type is 
the time-series data and the other is the time-to-event data. In entomological research, the field observations of 
population dynamics often collect time-series data, but in laboratory demography, life tables, bioassay, behavior 
biology, and some other studies, time-to-event observations such as molting, emergence, longevity, death time 
after chemical treatment, as well as the occurrence times of behavior or physiological events are frequently the 
predominant variables to observe.

Although the applications of survival analysis in entomology are expanding in recent years, it appears that 
the majority of these studies are ad hoc applications. We think that this state-of-the-art of survival analysis in the 
entomological literature is due to two factors: (i) Survival analysis is much more complex than many commonly 
used statistical approaches. This opinion was echoed by Murtaugh (2007)12, who criticized the often unneces-
sarily complex statistical analysis. However, Murtaugh (2007) also commented: "Some statistical methods are 
unavoidably complex, e.g., survival analysis and spatial  statistics12. Presentations of such analyses will necessarily 
be quite technical and involved." O’Quigley (2008) commented “The subject [survival analysis] is very difficult 
and while outstanding efforts have been made across the globe in leading statistics and biostatistics departments 
to explain the essential ideas behind the  material13, few would claim that students, other than the small minor-
ity already well steeled in mathematical analysis, ever really fully grasp just what is going on. This is a situation 
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that we need be concerned about”. Although O’Quigley’s (2008) concern was focused on the measure-theoretic 
treatment of survival analysis and directed to mathematicians, his point should also make sense to biologists who 
are interested in the application of survival  analysis13. (ii) It appears that few of the existing studies in literature 
have argued why survival analysis is particularly advantageous for entomological research based on the unique 
nature of insects (populations). We believe that proper addressing of the above two aspects should lead to even 
broader adoption of survival analysis in entomological research. For the first factor, it is suggested that a qualified 
statistician who is well-versed in survival analysis should be invited to assist in the design and data analysis of 
entomological experiments. For the second factor, the author first identified and elaborated in his dissertation 
(Ma 1997) more than two decades  ago1. In consequent journal publications, Ma & Bechinski (2008b, 2009b, Ma 
2010) reported some of the results from that dissertation (Ma 1997), including summarizing the issues related to 
the second  factor1,2,14,15. Considering the necessity for understanding why survival analysis is advantageous for 
studying insect development and survival because of the inherent properties of insect populations, in the remain-
der of this introduction section, we further elaborate the key arguments reported previously (Ma & Bechinski 
2008b, 2009b, Ma 1997, 2010)1,2,14,15. In the material and methods section, we present a more comprehensive 
picture of the relevant issues somewhat unique in entomology to put this study in proper context. However, due 
to the enormous breadth of both survival analysis (as an important branch of modern statistics) and entomol-
ogy, the objective of this paper is much more focused. Specifically, we apply Cox’s proportional hazards model 
(PHM), to study the development and survival of Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) 
under changing temperatures and plant growth stages, for both life processes, with a unified modeling approach. 
The Cox’s (1972) PHM is well recognized as a fundamental model of survival analysis, which has been extended 
numerously and essentially forms a fundamental approach for survival  analysis16. Whole monographs (e.g., 
Therneau and Grambsch 2000, Martinussen and Scheike 2006, O’Quigley 2008) have been written to discuss this 
set of models and associated  approaches13,17,18; therefore we expect that PHM and its extensions should become 
a major approach for modeling insect development and survival. For the general theory and statistics of survival 
analysis, more than a dozen monographs and textbooks, as well as numerous reviews of survival analysis have 
been published since the 1980s (e.g., Kalbfleisch and Prentice 1980, 2002; Cox and Oakes 1984; Fisher and Lin 
1999; Therneau & Grambsch. 2000; Hougaard 2001; Lawless 2003; Ibrahim et al. 2005; Martinussen and Scheike 
2006; Aalen 2008; O’Quigley 2008; Ma & Krings 2008a, 2008b; Ma et al. 2008; Kleinbaum 2012; Keiding 2014; 
Amico & Keilegom 2018; Grigorios et al. 2019; Shrestha et al. 2019)13,17–34.

Although we recognize that, in recent years, there are alternative probabilistic (statistical) approaches to deal-
ing with the censoring in insect development and survival times (most notably by Régnière et al. 2012; Rukke 
et al. 2018; Grant et al. 2020)35–37, we believe that survival analysis approaches are more straightforward and 
relatively easy to apply, in particularly with extensive supports from open source R software (https:// cran.r- proje 
ct. org/ web/ views/ Survi val. html; https:// rviews. rstud io. com/ 2017/ 09/ 25/ survi val- analy sis- with-r/).

Material and methods
Experimental data of Russian wheat aphid (RWA) development and survival. The RWA devel-
opment and survival data are from our laboratory experiments which involve the observations of 1800 RWA 
individuals in a factorial arrangement of five temperature and five barley plant-growth stage regimes with a total 
of 25 treatments. Each treatment has 72 RWA individuals as replicates. The experiment was designed to inves-
tigate the influence of temperature and barley plant-growth stage treatments on RWA development, survival 
and reproduction in controlled environment growth chambers. Temperature treatments were 8–1 °C, 17–10 °C, 
23–16 °C, 28–21 °C, and 33–26 °C, fluctuating on a 14:10-h rectangular-wave cycle. The photoperiod was 14 vs. 
10 (light vs. dark) for all treatments, with the higher constant temperature during the light phase and the lower 
temperature during the dark phase. Mean temperatures weighted by photoperiod were 5.1 °C, 14.1 °C, 20.1 °C, 
25.1 °C and 30.1 °C, respectively. Barley plant-growth stages were two-leaf, tillering, flag leaf, inflorescence and 
soft dough, respectively corresponding to 12, 23, 39, 59, and 85 on the Zadoks (1974)  scale38. More detailed 
information on the experiment design can also be found in Ma (1997) and Ma & Bechinski (2008a, 2008b)1,2,39.

For analysis, we divided the life cycle of the RWA into 9 stages: first to fifth instar (abbreviated as 1st-5th), pre-
reproductive period (from the time of last molting until the first nymphal production, designated Pre_R), imma-
ture period (1st + 2nd + 3rd + 4th + 5th, designated immature), mature (immature + R_age, designated mature), 
adult (from the time of last molting until death, designated adult). We also treat lifespan as a special variable, i.e., 
time from birth to death, designated lifespan. There is a response time T associated with each RWA stage and the 
lifespan; T is either development time (for individuals that successfully developed from one stage to the next), 
or death time (for individuals that died within the stage), depending on the state indication variable (short as 
’state variable’ or ’state’). The unit for time (T) is calendar day (24 h). For stages other than adult and lifespan, if 
the state indication variable takes a value 1, then T is developmental time; if state is 0, then T is the death time or 
other censored time (e.g. lost accidentally in observation). In contrast, for the adult and lifespan stages, if state 
is 1, then T is death time of an individual; if state is 0, then T records the time when observation stopped due to 
some laboratory handling accident before the individual naturally died. Further information on the laboratory 
experiments is also described in Ma (1997), and Ma & Bechinski (2008a, 2008b)1,2,39.

Unified survival analysis approach to insect development and survival. Issues of censoring in 
entomological research. Censoring occurs when the failure times of some individuals within the observation 
sample cannot be observed. Censoring is often unavoidable in time-to-event studies. A patient in a clinical trial 
may be withdrawn from the study after a period of participation; similarly, insects under observation may be 
lost tracks due to accidental events such as operational faults. Such kind of censoring belongs to the so-termed 
random censoring. In other cases, observing all individuals for the full time course to failure (such as the oc-

https://cran.r-project.org/web/views/Survival.html
https://cran.r-project.org/web/views/Survival.html
https://rviews.rstudio.com/2017/09/25/survival-analysis-with-r/
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currence of death) is too costly or unacceptable, leading to the so-terms right censoring. In other situations, the 
process may have been going on but unnoticed prior to formal study, and consequently a starting point has to 
be selected, such as the exposure to some newly discovered risks, or the occurrence of a new infectious disease. 
This last category of censoring is known as left censoring.

All three censorings exemplified above may occur in entomological experiments. Whereas the censorings 
discussed so far might be avoided or minimized, we realize that, in the study of insect populations, even with a 
perfect experiment design being perfectly executed, at least two types of natural censoring mechanisms seem 
uncontrollable thanks to the very nature of insect development and instarship. Two examples are presented here: 
(i) In a life table study, when a cohort of insects is observed, the insect development (molting, emergence, etc.) or 
survival (death) are typical examples of time-to-event or failure time random variable. This is not the focal point 
of our arguments. The point is that some insect individuals may die and never emerge from the observed instar 
or stage. From the perspective of observing insect development, the data may be censored due to the “premature” 
death events. How long it would have taken for those prematurely dead individuals to complete their develop-
ments is hardly knowable. (ii) It is well known that the number of instars in an insect species may be different 
among individuals of the same population; one may never know the exact number of instars an individual can 
potentially experience if it dies prior to reaching adult stage. For example, in the case of RWA, the majority of 
individuals has 4 instars, but 2, 3, 5 are also possible. If a RWA nymph died before reaching the adult stage, we 
may never know how many instars this prematurely dead individual would pass through. Hence, unless zero 
mortality in immature stages is possible, censoring in studies of insect developments occurs naturally and is 
incontrollable. Therefore, insect development and survival are dependent in the sense that in order to develop 
to the next stage, an insect individual must survive through the current stage. Such kind of dependence can be 
addressed ideally with conditional probability models in survival analysis including Cox proportional hazards 
models, which is applied to modeling the development and survival of RWA in this paper.

With most statistical methods other than survival analysis, censoring presents a dilemma. If a researcher 
chooses to exclude the censored observations, the resulting sample may be too small to conduct proper statisti-
cal analysis. Even if the resulting sample is large enough, the parameters estimated are biased, and there is no 
well-established statistical procedure to quantify the bias, because there is no guarantee that the censored indi-
viduals can be represented by the remaining sample. On the other hand, if the censored individuals are included, 
although compartmental modeling (using a probabilistic approach, or invoking differential equations) might 
be useful so that the numbers of individuals in the different instars (compartments) are modeled over time with 
estimation of the rates of transition, there are no objective procedures to process their "partial" lifetime informa-
tion, which again may introduce bias without even knowing the degree of bias introduced.

How significant can the difference be between the two schemes—one with censored individuals excluded 
before applying survival analysis, and the other processed with survival analysis directly (i.e., the partial infor-
mation of the censored individual is preserved)? Ma (1997, 2010)1,15 and Ma & Bechinski (2008b, 2009b)2,14 
treated the prematurely dead RWA individuals as censored with survival analysis approach, and found that the 
difference between two treatments: survival analysis vs. excluding the premature dead individuals range from 
4%–25% in the estimate of median development, depending on the severity of censoring (death rates)15. The treat-
ment resolves the previously identified dilemma because survival analysis has developed effective procedures 
and methods (based on the asymptotical theory or more recently on the counting stochastic process) that can 
properly extract the partial information in those censored data.

While the previous type of censoring due to premature death or variable instarships seems more likely to 
occur in insect demography and phenology studies under laboratory conditions, there is another subtle but hardly 
avoidable censoring mechanism, which is termed as interval censoring in survival analysis and it may be more 
likely to be encountered in field insect research such as life table study by sampling insect population periodically. 
This type of censoring is required because sampling is discrete and linear, whereas the process under investigation 
is continuous and possibly nonlinear with respect to time, which makes the precise recording of the survival times 
for all individuals in an experiment impossible. With interval censored data, each event time is then only known 
to lie in some interval, and the precise time to an event is often not known due to the limited sampling points.

Ma & Bechinski (2008b, 2009b, Ma 1997, 2010) argued  that1,2,14,15, whenever time-to-event data is in concern, 
survival analysis can be harnessed to perform the two fundamental statistical analyses in lieu of traditional statis-
tical methods, that is: (i) hypothesis testing—replacing procedures such as significance testing, ANOVA, life tables 
analysis etc.; (2) model-parameter estimation—replacing conventional regression modeling. The prevalence of 
time-to-event data as one of the two major categories of time-dependent process data (the other is time-series 
data as noted previously), as well as the fact that survival analysis is developed to study time-to-event variables 
with observation censoring, make a very strong case for entomologists to adopt survival analysis as an appropri-
ate statistical tool. In a previous study, we demonstrated the use of survival analysis for hypothesis testing and life 
table analysis (Ma 2010)15. In the present paper, we demonstrate the second area—model-parameter estimation. 
Specifically, we try to show that survival analysis offers a unified approach to model both insect development 
and survival.

Survival Analysis and Proportional Hazards Model (PHM). Survivor, hazards and probability density func-
tions. Given response time (survival or failure time) T of a subject, three functions are usually used to describe 
the random variable (T): the survivor function, the probability density function, and the hazard function.

The survivor function S(t) is defined as the probability that T is at least as great as a value t; that is,

(1)S(t) = P(T ≥ t) t > 0.
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The survivor function is actually 1′s complement of the distribution function of random variable (T), that is, 
S(t) = 1–F(t), where F(t) is the distribution function of T.

The probability density function (p.d.f) of T is

Conversely,S(t) =
∫∞

t f (u)du and f(t) ≥ 0 with 
∫∞

0 f (t)dt = 1.
The hazard function specifies the instantaneous rate of failure at T = t, conditional upon survival to time t. It 

is defined as

The relationships among S(t), f(t), and λ(t) are expressed as follows:

Proportional hazards model (PHM). Cox (1972, 1975) proposed the proportional hazards model (PHM)16,40

where λ(t, z) denotes the hazard function at time t for an individual with the characteristic represented by the 
covariate vector z of n elements. In entomological research, examples of z may include environmental factors 
(temperature and plant growth stage in this paper) that influence the development and survival of insects. Here 
λ0(t) is an arbitrary unspecified baseline hazard function for continuous time t. The hazards function λ(t, z) is a 
product of an underlying age-dependent risk, λ0(t) (baseline hazard function) and another factor, exp(zβ), which 
depends on covariates z and the vector β of parameters. Baseline hazard function λ0(t) is the hazard function 
for individuals on which covariates have “neutral effect”—the values of covariates are equal to either zero or to 
their averages (an example is shown later) depending on the model form adopted. The PHM estimates the risks 
of other groups in relation to this baseline. Other specifications of the hazard relationship are possible (e.g., λ(t, 
z) = λ0(t) + zβ), but the problem with these alternatives is the mathematical possibility of predicting negative 
hazard rates, which then requires extra constraints on estimation procedures to ensure positive values.

The PHM invokes two assumptions. The first is the proportionality assumption, that there is a multiplicative 
relationship between the underlying hazard function and the log-linear function of the covariates such that the 
ratio of hazard functions for two individuals with different sets of covariates is constant in time (from which the 
PHM derived its name). The second assumption is that effects of covariates on the hazard function are log-linear.

The conditional (with respect to the covariate vector z) probability density function of T given z for the PHM 
is

where λ0(t) is the baseline hazard function as explained previously, z is the vector of covariates (e.g.. air tempera-
ture and crop growth state in this study), and β is the vector of Cox’s PHM regression coefficients (parameters).

The conditional survivor function (or simply called the survivor function) of T given z for the PHM is

where

S0(t) is called the baseline survivor function; it is computed for the default categories of the covariates (e.g., 
average temperature and plant growth stage in the case of this study). Therefore, the survivor function of t for a 
covariate vector z is obtained by raising the baseline survivor function S0(t) to a power. The usefulness of Eq. (9) 
is that one can predict survivor probabilities under different covariate values.

If λ0(t) is arbitrary, this model is sufficiently flexible for many applications. There are two important gen-
eralizations that do not substantially complicate the estimation of β, but broadly expanding their applications: 
the stratified proportional hazards model and the proportional hazards model with time-dependent covariates.

(2)f (t) = lim
�t→0+

P(t ≤ T ≤ t +�t)

�t
= −

dS(t)

dt
.

(3)�(t) = lim
�t→0+

P(t ≤ T < t +�t|T ≥ t)

�t
=

f (t)

S(t)
.

(4)�(t) =
−d log S(t)

dt

(5)S(t) = exp

(

−

∫ t

0
�(u)du

)

(6)f (t) = �(t) exp

(

−

∫ t

0
�(u)du

)

.

(7)�(t, z) = �0(t) exp(zβ) = �0(t) exp(β1z1 + β2z2 + ...βnzn),

(8)f (t; z) = �0(t) exp(zβ) exp

[

− exp(zβ)

∫ t

0
�0(u)du

]

.

(9)S(t; z) = [S0(t)]
exp(zβ),

(10)S0(t) = exp

[

−

∫ t

0
�0(u)du

]

.
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In the stratified version, the function λ0(t) is allowed to vary in specific subsets of the data. In particular, the 
population is divided into r strata wherein the hazard λj(t; z) in the j-th stratum depends on an arbitrary shape 
function λ0j(t). The model can be written as

This generalization is useful when the covariates do not seem to have a multiplicative effect on the hazard 
function. Here the range of those variables can be divided into strata where only the remaining regression vari-
ables contribute to the exponential factor in Eq. (11).

The second generalization to the PHM is to allow the variable z to depend on time itself, without (Eq. 12) or 
with (Eq. 13) stratification:

The estimation of β depends only on the rank ordering of the variable vector z and is invariant with respect 
to the monotonic transformation on the dependent variable, i.e., survival time. The procedure used to estimate 
β is to maximize the so-called partial likelihood functions as described by Cox (1975), Kalbfleisch & Prentice 
(1980, 2002) and Kleinbaum and Klein (2012)19,20,30,40. BMDP™ 2L program, Survival Analysis with Covariates 
(BMDP 1993)41, was used to construct the proportional hazards models. The input data set was as described in 
Ma (1997)1. Finally, as an example, we use 1989 air temperature and barley plant-growth stage data from Moscow, 
ID., reported by Elberson (1992)42, as inputs to run the proportional hazards model for survival of RWA during 
the entire life cycle (i.e., model for LifeSpan stage). We further used coxphf function in the Survival package of 
open source R-Project to cross-verify the results from BMDP software. The information of Survival package, 
which is the cornerstone of R implementation of survival analysis, can be accessed at: (https:// cran.r- proje ct. 
org/ web/ views/ Survi val. html).

Results and discussion
Cox PHM with temperature and barley plant‑growth stage as covariates. Table 1 shows results 
of fitting Cox PHM (proportional hazard model) for  1st instar RWA (Russian wheat aphid) nymph using tem-
perature and plant growth stage as covariates.

In Table 1, the “NUMBER OF CASES READ = 1800” is the number of RWA individuals observed in the 
experiment. The header “RISK TYPE IS LOGLIN” indicates that the risk function is log-linear which is the 
default for Cox PHM as described by Eq. (7), other available risk types include LINEAR, COMBINATION and 
USER defined. When the log-linear risk type is chosen, the covariate means are subtracted from observation 
values. Therefore, the values of the baseline survivor function are the survivor function when the covariates 
values take their means. In our study, the means of covariates temperature and plant growth stage are 18.88 °C 
and 43.6 (Zadoks scale) respectively.

The logarithm of the maximized partial likelihood function and the global chi-square statistic (and its degree 
of freedom and p-value also) are listed. The global chi-square statistic tests the null hypothesis that all regression 
coefficients equal zero. Listed next for each covariate is the computed parameter estimates (COEFFICIENT), and 
their asymptotic standard errors. The regression coefficients indicate the relative effect of the covariate on the 
hazard function. A positive coefficient increases the value of the hazard function and therefore, indicates nega-
tive effect on response time. A negative one should be interpreted conversely. For the development of 1st instar 
RWA, the positive coefficient corresponding to temperature indicates that the increasing temperature will reduce 
the response times—the development times. In other words, temperature tends to accelerate the development 
of the1st instar RWA. Conversely, the plant-growth stage decelerates the development of the 1st instar RWA, 
because coefficient corresponding to plant stage is negative.

The middle section of Table 1 lists the values of the baseline survivor and cumulative hazard functions. The 
conversion factor is in the expression exp(β′z), which is the exponent used to convert the estimated baseline 
survivor function S0(t) into the survivor function described by (9), given a covariate vector z. For example, 
given covariate values 20.1 °C and 12 for temperature and crop stage, respectively, then the conversion factor is 
calculated as exp{[0.0815*(20.1–18.88)–0.0029*(12–43.6)]} = 1.207, where 18.88 and 43.6 respectively are mean 
temperatures and crop stages from our lab experiment. With the conversion factor for the particular covariates 
values and the baseline survivor function values, one can predict the survivor function value of RWA at any time. 
For example, under 20.1 °C and at Zadoks plant-growth stage12, the survivor function value on day 10 is S[10, 
(20.1, 12)] = S0(10)1.207 = 0.13471.207 = 0.09 = 9%. That value means that after 10 days, there is a 91% (100–9%) prob-
ability that a newly born RWA nymph will have molted (responded) and developed to the next instar at 20.1 °C 
and on a Zadoks’ scale 12 (two-leaf) barley plant.

To further illustrate the overall picture of the modeling RWA development with PHM, Fig. 1 is drawn from 
the fitted PHM model for the development of 1st-instar RWA. Let us first represent the Table 1 as a mathematical 
model, which contains all the information necessary for representing the PHM model for the development of 
the 1st-instar RWA. The baseline survivor function values are from Table 1 (column 3) and the two parameters 
of PHM are [β1, β2] = [0.0815, − 0.0029], corresponding to temperature and plant stage, respectively, which are 
also taken from Table 1 and also listed in Table 2. By substituting for parameters [β1, β2] with [0.0815, − 0.0029] 
in Eq. (9), we obtain the following model for the development of the 1st-instar RWA:

(11)�j(t, z) = �0j(t) exp(zβ) j = 1, 2, . . . , r.

(12)�[t, z(t)] = �0(t) exp[z(t)β],

(13)�j[t, z(t)] = �0j(t) exp[z(t)β] j = 1, 2, . . . , r.

https://cran.r-project.org/web/views/Survival.html
https://cran.r-project.org/web/views/Survival.html
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Table 1.  Results of fitting Cox’s proportional hazards model (PHM) for the development of the first instar 
RWA nymph with temperature and plant-growth stage as covariates. Number of data cases = 1800. Log 
likelihood = – 6939.7053. Global Chi-square = 364.73. Degree of freedom = 2. P-value < 0.00001. *Risk type is 
Log-linear.

Variable (covariate) Coefficient (β) Standard error

Parameter (β) of Cox’s proportional hazards model*

Temperature 0.0815 0.0045

Stage − 0.0029 0.0012

Development (molting) time (days) Baseline survival Baseline cumulative hazard

Time Variable is the 1st-Instar RWA nymph

1 0.9982 0.0018

2 0.9622 0.0385

3 0.7497 0.2880

4 0.5524 0.5936

5 0.4292 0.8457

6 0.3540 1.0385

7 0.3065 1.1824

8 0.2616 1.3408

9 0.2132 1.5454

10 0.1347 2.0047

11 0.0735 2.6106

12 0.0518 2.9612

13 0.0295 3.5248

14 0.0181 4.0113

15 0.0107 4.5413

16 0.0077 4.8688

17 0.0065 5.0315

18 0.0048 5.3378

19 0.0024 6.0522

20 0.0015 6.4954

21 0.0012 6.7522

22 0.0006 7.3403

23 0.0004 7.7417

24 0.0002 8.5588

28 0.0001 9.0428

30 0.0001 9.6274

31 0.0000 10.1221

Figure 1.  Survivor function [S(t)] and cumulative development probability [1 − S(t)] modeled with Cox PHM 
for the development of the first-instar RWA nymph.
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where S0(t) is the baseline survivor function (column 3 in Table 1).
The reason for subtracting the 18.88 and 43.6, which are the mean temperature and plant growth stage used in 

modeling, respectively, in Eq. (14) has to do with the standardization of the covariates such that when covariates 
take their means (18.88 and 43.6 in this case) , the survivor function equals its baseline value S0(t). This also is 
related to the choice of risk type (Log-linear here) as explained previously in the context of Table 1.

Figure 1 is then drawn with Eq. (14); it contains two graphs, one is drawn from the above model for S(t), and 
the other is simply the [1 − S(t)]. The temperature and plant growth stage used to draw the graph are 20.1 °C and 
at Zadoks-Scale of 12 (two-leaf stage), respectively. As explained previously, survivor function S(t), when built 
for RWA development, it implies the probability that a RWA individual has not yet finished the development at 
time t ("still surviving the development event"), conditional on the covariates Z = [Temperature, PlantStage]. For 
a RWA population, this probability implies that there are S(t) percentage of RWA that have not yet finished the 
development of the 1st-instar at time t. Therefore, [1 − S(t)], which might be more intuitive for measuring insect 
development, is the (cumulative) probability that an individual has finished development of the stage at time (t), 
or the cumulative percentage of individuals in a population that have finished the development.

Table 2 lists the parameters of proportional hazards models for both development and survival of all ten RWA 
stages. The baseline survivor and hazard functions are not listed to save space. Note that both the development 
time and survival time of a stage were measured from the beginning of that stage. The β1 & β2 are the regression 
coefficients for temperature and crop stage respectively. The values within parentheses are the standard errors 
of the coefficients. The extremely high global Chi-square and low associated p-value in Table 2 demonstrate that 
the models fit to the data of all stages exceptionally well, except for the survival of 5-th instar nymphs. Only the 
PHM for survival of 5-th instar has a higher p value of 0.18. Because few RWA individuals developed through a 
5th nymphal instar (most instead developed through four nymphal instars before reproducing), the sample size is 
very small and the resulting p-value is not reliable. We believe it unlikely that the survival pattern of 5-th instars 
would differ from those other RWA nymphal instars. Therefore, we conclude that all estimated parameters (or 
regression coefficients) of the proportional hazards models for RWA are significantly differ from zero, and that the 
corresponding PHMs are reliable except for survival of the 5-th instar. The positive values of β1 for development 
indicate that increasing temperature increases the ‘hazard’ of the development event and so reduces development 
time. Conversely, the negative values of β2 for development imply that increasingly older plant growth stages delay 
the development event. Similarly, because both β1 and β2 parameters from the proportional hazards models for 
RWA stage survival are positive, this means that increasing either temperature or plant-growth stage increases 
the “hazards” of survival, and so are unfavorable to RWA survival.

Stratified PHM (proportional hazards models). The results in previous section indicate that the basic 
PHM is sufficient to model RWA development and survival. In this section, to demonstrate the extended PHMs, 

(14)S(t|Temperature, PlantStage) = S0(t)
exp[0.0815∗(Temperature−18.88)−0.0029∗(PlantStage−43.6)]],

Table 2.  Proportional hazards models (PHM) for RWA development and survival. N/A refers to stages where 
there is only one event (development or survival) that makes sense biologically, or both development and 
survival refer to the same event. For example, the completion of development of the adult stage is equivalent to 
the death of the adult. β1 = (β1, β2) are the regression coefficients of Cox’s PHM, as defined in Eqs. (8–11).

RWA stage PHM for β1 (Temperature) Coeff. (Std. Err.) β2 (Crop Stage) Coeff. (Std. Err.) Chi-Square P value

1st
Development 0.0815 (0.0045) − 0.0029 (0.0012) 364.70 0.0000

Survival 0.1510 (0.0066) 0.0105 (0.0014) 657.53 0.0000

2nd
Development 0.0990 (0.0052) − 0.0031 (0.0014) 417.25 0.0000

Survival 0.1440 (0.0118) 0.0082 (0.0029) 158.71 0.0000

3rd
Development 0.0914 (0.0055) − 0.0014 (0.0014) 309.03 0.0000

Survival 0.1735 (0.0176) 0.0089 (0.0042) 120.71 0.0000

4th
Development 0.1336 (0.0079) − 0.0032 (0.0019) 312.06 0.0000

Survival 0.1932 (0.0246) 0.0143 (0.0050) 68.52 0.0000

5th
Development 0.0693 (0.0215) − 0.0039 (0.0062) 13.30 0.0013

Survival 0.0542 (0.0295) 0.0024 (0.0082) 3.45 0.1783

Pre_R
Development 0.0255 (0.0050) − 0.0030 (0.0015) 36.12 0.0000

Survival 0.6283 (0.0724) 0.0040 (0.0021) 543.27 0.0000

Immature
Development 0.1551 (0.0044) 0.0055 (0.0009) 1372.84 0.0000

Survival N/A* N/A N/A N/A

Mature
Development 0.2321 (0.0080) − 0.0023 (0.0015) 1001.85 0.0000

Survival 0.1216 (0.0051) 0.0099 (0.0012) 645.37 0.0000

Adult
Development N/A N/A N/A N/A

Survival 0.1285 (0.0067) 0.0038 (0.0014) 396.08 0.0000

LifeSpan
Development N/A N/A N/A N/A

Survival 0.1358 (0.0044) 0.0087 (0.0009) 1063.88 0.0000
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we also build stratified PHMs [Eq. (11)]. Table 3 lists the results of fitting proportional hazards models stratified 
by either temperature or plant-growth stage as a covariate. The advantage of these stratified models is that the 
covariates used for data stratification need not affect hazards multiplicatively. However, there is a disadvantage 
too: for each stratum, there is a set of baseline hazard and survivor functions, and these make computation of 
survivor function values more tedious. Note that the model parameters indicate the same trends in covariate 
effects on development and survival as those results from non-stratified proportional hazards models. This sug-
gests that for the two-covariate factors (temperature and plant growth stage) we studied in this paper, stratifica-
tion is optional. Nevertheless, for general study of insect population dynamics, when more covariate factors are 
considered and some of them may not act multiplicatively, then stratified PHMs should be adopted.

An illustrative example of proportional hazards model. The proportional hazards models quantita-
tively describe relationships between survivor functions (hazards functions) with RWA age and environmental 
factors, with respect to the development and survival of RWA. In practice, these models can be used to predict 
RWA age-specific survival and development rates under variable environment conditions. Here, we illustrate how 
the proportional hazards model can be applied to estimate RWA survivorship during the life cycle (last column, 
LifeSpan, in Table 2).

The proportional hazards model for RWA lifetime survival is then obtained from Eq. (9) with the correspond-
ing parameters for LifeSpan stage in Table 2 as following:

where t, temp and stage are RWA age in days, temperature and barley plant-growth stage, respectively. S0(t) is 
the baseline survival function. S(.) is the age-specific, temperature and plant-stage dependent survivor function 
for RWA lifetime survival.

In practice, we are more interested in the real-time or calendar time prediction of insect development and 
survival rates (probabilities with survival analysis). The average air temperature and plant growth stage for each 
calendar date can be obtained from meteorological and phenological observations. If forecasting data for air 
temperature and plant growth stage are available, then survival analysis models such as PHM models built in this 
paper can be used to predict daily Cox conditional development and survival probabilities of insects. Figure 2 is 
such a forecasting curve drawn for the lifetime survival of RWA (Eq. 15). The x-axis is the Julian date from 160 
to 210, and y-axis show both the baseline survival function (smooth one) and the real survival; the latter fluctu-
ates due to the effects of variable temperature and plant growth stage. The air temperature data is from Elberson 
(1992)42, which documented the air temperature in Moscow, ID, USA in 1989 from Julian date 160 to 210. The 
raw plant growth stage data in the same Julian dates are also from Elberson (1992)42, from which Ma (1997) built 
the following logistic equation: ZGS = 92.73/[1 + exp(16.24–0.09*Julian-Day)], where ZGS is the Zadoks et al.

(15)S
(

t, temp, stage
)

= S0(t)
exp[0.1358∗(temp−18.88)+0.0087∗(stage−43.6)]

Table 3.  Results of fitting stratified proportional hazards models for RWA development and survival. N/A 
refers to stages where there is only one event (development or survival) that makes sense biologically, or both 
development and survival refer to the same event. For example, the completion of development of the adult 
stage is equivalent to the death of the adult.

Models Stratified by temperature Stratified by crop stage

RWA stage Models for β (stage) Chi-Square p value β (temperature) Chi-Square p value

1st
Development − 0.0042 12.34 0.0004 0.0815 351.61 0.0000

Survival 0.0104 54.37 0.0000 0.1510 611.77 0.0000

2nd
Development − 0.0061 19.17 0.0000 0.0968 353.39 0.0000

Survival 0.0089 8.63 0.0033 0.1468 161.00 0.0000

3rd
Development − 0.0055 13.91 0.0002 0.0909 264.12 0.0000

Survival 0.0073 2.77 0.0960 0.1851 125.33 0.0000

4th
Development − 0.0055 8.39 0.0038 0.1300 270.07 0.0000

Survival 0.0156 8.68 0.0032 0.2020 71.13 0.0000

5th
Development − 0.0151 5.17 0.0230 0.0618 6.40 0.0114

Survival 0.0066 0.41 0.5209 0.0719 4.96 0.0260

Pre_R
Development − 0.0029 3.84 0.0500 0.0282 28.71 0.0000

Survival 0.0035 2.84 0.0920 0.6257 502.07 0.0000

Immature
Development 0.0037 16.05 0.0001 0.1522 1327.10 0.0000

Survival N/A* N/A

Mature
Development − 0.0080 27.39 0.0000 0.2337 858.09 0.0000

Survival 0.0107 83.91 0.0000 0.1212 622.41 0.0000

Adult
Development N/A N/A N/A N/A N/A N/A

Survival 0.0074 26.10 0.0000 0.1329 390.33 0.0000

LifeSpan
Development N/A N/A N/A N/A N/A N/A

Survival 0.0098 108.47 0.0000 0.1973 921.29 0.0000
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(1974) growth stage  scale1,38. With these temperature and barley plant-growth stage data inputs, the calculated 
survivor function values from Eq. (15) are plotted against Julian dates in Fig. 2.

Figure 2 shows both baseline and actual survivor functions. The effects of time-varying temperature and plant 
growth stage associated with each Julian date accounts for the fluctuation of actual survivor function values. 
The practical usefulness of the age-specific and environment-dependent survivor function models such as this 
one adopted here is clear in the context of a simulation model for RWA population dynamics as constructed in 
(Ma & Bechinski 2008b)2.

Discussion
In previous sections, we try to demonstrate, with one of the most important models in survival analysis—Cox’s 
proportional hazards model (PHM), that survival analysis can be a very effective modeling tool for describing 
insect development and survival with the same method. A fair question is, given there is already a large set of 
models for insect development and mortality modeling, why does one bother to adopt the PHM or what are the 
potential benefits for this new approach? We expect there are, at least, following four potential advantages from 
using survival analysis:

First, censoring poses a dilemma to traditional statistical methods. Particularly, in modeling insect develop-
ment, traditional modeling approaches do not have a well-justified approach to deal with those individuals who 
died before completing the development (of an instar or stage). Survival analysis such as the PHM has built-in 
parameter estimation procedures (e.g., partial likelihood estimation) to “extract” the partial information carried 
by those individuals who prematurely died. In other words, when modeling insect development, the premature 
death events, are treated as censoring. In our opinion, this is the most natural mathematical treatment we are 
aware of for dealing with this kind of "natural censoring" due to unavoidable premature-death events.

Second, survival analysis such as the PHM presents probability (for development or survival), rather than the 
simple rate of survival or development. This has two very important ramifications: (i) the probability expressed 
in survivor function (sensu statistics), which is different from the term "survivor" (sensu biology) associated with 
mortality or death events, is mathematically much more rigorous and conducive for modeling and analysis than 
the simple development/mortality rate. (ii), survivor function can be explained at both individual and popula-
tion levels. At individual level, it is the probability of an insect to emerge from an instar or stage (complete 
development). With the PHM, what we obtain is actually conditional probability that depends on environmental 
covariates (such as temperature, plant growth stages). At population level, survivor function can be explained 
as the proportion of a population that can finish the development. It is clear that with this approach, individual 
variability, a fundamental property of insect development, and the collective (or emergent) property at the popu-
lation level are unified. Apparently, advantages for modeling insect survival (mortality) with survival analysis 
can be argued similarly as we just did for modeling development.

Third, unlike traditional insect phenology models, which usually only considers temperature, it is extremely 
convenient to incorporate other environmental factors such as plant stage, humidity in the modeling of insect 
phenology and survival.

Fourth, survival analysis such as the PHM for insect development and survival (mortality) can be conveni-
ently used to build a simulation model for population dynamics. This is because survivor functions for insect 
development and survival offer flexible and powerful conditional probability models contingent upon environ-
ment covariates. The only missing component from survival analysis is the reproduction model, which can be 
built with approaches such as the same-shape distribution modeling (Ma and Bechinski 2009a, 2009b)14,43. A 
simulation model based on Cox PHM modeling has been reported by Ma and Bechinski (2008b)2.

The flexibility and power of Cox PHM have naturally led to extensive studies on the residual diagnostics of the 
model. In this study, we adopted three metrics: p value, Chi-square test, and standard error of parameters to determine 
the goodness of the modeling fit. These metrics show that the fitted models explain the RWA datasets well. However, it 

Figure 2.  Predicted Cox conditional survivor function values for the RWA lifetime (survival time).
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should be noted that there are more powerful and special residual diagnostic techniques available to test the suitability 
of Cox PHM to data. These residual diagnostic techniques (metrics) include Cox-Snell residuals, Deviance residuals, 
Martingale residuals, and Schoenfeld residuals. Although they are termed residual diagnostics, their computations are 
much more complex and different from what traditional residual analysis does because in Cox PHM models there is 
no obvious counterpart of the difference between actual and predicted values of the dependent variables, which is the 
foundation of traditional residual analysis. Accordingly, their utilizations may also be different. For example, Martin-
gale residual analysis cannot be utilized to determine the goodness of model fit; instead, it can be a very useful tool for 
detecting outliers in data or for determining the function form of covariates. Therefore, residual analysis for Cox PHM 
implicates more advanced survival analysis topics. Fortunately, more recent statistical software packages have imple-
mented these residual diagnostic tools, but users still must understand their statistical meanings first.

In perspective, the latest advances of survival analysis are focused on multivariate survival analysis and Bayesian 
survival analysis (e.g., Hougaard, 2001; Ibrahim et al. 2005; Aalen 2008; Duchateau & Janssen 2008; Ma & Krings 2008a, 
2008b; Ma et al. 2008; O’Quigley 2008)13,23,25–29,44. They should have even greater potential in entomology. For example, 
it is well established that the insect oviposition period, which is the effective reproduction lifetime, is more important 
to achieve the potential maximum reproduction capacity than the adult lifespan itself, and the two random variables 
(oviposition period and adult lifespan) may be causally linked. Therefore, multivariate survival analysis, which has 
advanced to study multiple lifetime variables as well as their dependence, can be applied to study the reproduction 
period and adult lifespan as well as the influences of the environmental factors on both of them. With the inclusion 
of reproduction, we obtain an integrated multivariate survival analysis modeling framework that considers survival, 
development and reproduction simultaneously, which would be an extension to the methodology used in the current 
paper, where we can only integrate survival and development. Besides dependence modeling, multivariate survival 
analysis has developed another powerful modeling methodology—frailty modeling—that may possess the potential to 
revolutionize the data analysis and modeling in insect population ecology. Actually, the mathematical study of frailty 
originated in the study of aging and demography of humans, and its initial objective was to demonstrate that the popula-
tion hazard rate (measurement of mortality risk) can be significantly different from the hazard rates of the individuals 
from the population due to the effects of the frailty, which is the individual heterogeneity that are not observed or not 
observable in the study (Duchateau & Janssen 2008, Ma & Krings 2008a, 2008b, Ma et al. 2008)27–29,44. Obviously, frailty 
(individual heterogeneity) abounds in insect populations because the individual variation in development, survival and 
reproduction, as well as their response or tolerance to environment is a fundamental biological reality. For instance, 
one major objective of the same-shape distribution modeling for insect reproduction is to account for the individual 
variation in reproduction capacity (Ma and Bechinski 2009a)43, and frailty modeling may offer an alternative approach 
to the same-shape distribution methodology. One benefit from frailty modeling is that, as mentioned previously, we 
can model the three major modules of population dynamics: development, survival and reproduction, under a unified 
modeling methodology by taking advantages of the dependence and frailty modeling in multivariate survival analysis.
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