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Although technological advances improved the identification of structural variants (SVs) in the human genome, their in-

terpretation remains challenging. Several methods utilize individual mechanistic principles like the deletion of coding se-

quence or 3D genome architecture disruptions. However, a comprehensive tool using the broad spectrum of available

annotations is missing. Here, we describe CADD-SV, a method to retrieve and integrate a wide set of annotations to predict

the effects of SVs. Previously, supervised learning approaches were limited due to a small number and biased set of anno-

tated pathogenic or benign SVs. We overcome this problem by using a surrogate training objective, the Combined

Annotation Dependent Depletion (CADD) of functional variants. We use human- and chimpanzee-derived SVs as proxy-

neutral and contrast them with matched simulated variants as proxy-deleterious, an approach that has proven powerful

for short sequence variants. Our tool computes summary statistics over diverse variant annotations and uses random forest

models to prioritize deleterious structural variants. The resulting CADD-SV scores correlate with known pathogenic and

rare population variants.We further show that we can prioritize somatic cancer variants as well as noncoding variants known

to affect gene expression. We provide a website and offline-scoring tool for easy application of CADD-SV.

[Supplemental material is available for this article.]

In the light of recent advances in the field of structural variant (SV)
detection and the study of regulatory domain architectures, phe-
notypic effects of SVs in humans moved into the focus of research
(Lupiáñez et al. 2015; Sudmant et al. 2015; Chiang et al. 2017; Col-
lins et al. 2020; Ebert et al. 2021). SVs can be deletions, duplica-
tions, insertions, translocations, or inversions and often span
multiple kilobases of sequence in the genome. Due to their size,
they have the potential to cause significant phenotypical effects
and are therefore relevant for clinical genetics (Rodriguez-Revenga
et al. 2007; Lupiáñez et al. 2015; Chiang et al. 2017; Spielmann
et al. 2018). Although SVs affecting the expression of whole genes
or exons are still the research focus, effects of noncoding DNA se-
quence alterations are of high interest. These variants are especial-
ly hard to predict, as our understanding of such regions lags
behind coding annotations (Gloss and Dinger 2018). In compari-
son to pathogenic variants (e.g., frameshift mutations or disrup-
tion of transcription factor binding) caused by single nucleotide
variants (SNVs), structural variants have a higher potential to af-
fect the regulatory architecture of the genome. Thus, the function-
al characterization of SVs may help us to understand unexplained
disease phenotypes and contribute to our understanding of regula-
tory mechanisms.

Recent advances in the study of regulatory genome architec-
tures provided evidence along these lines and shed light on previ-
ously unexplained human disease conditions (Lupiáñez et al.
2015, 2016). Themost relevant examples are improvedHi-C proto-
cols to study genome architecture (Lieberman-Aiden et al. 2009),
the experimental annotation of enhancers and enhancer-promot-
er links (Gasperini et al. 2020),mapping ofmultiple epigenetic fea-
tures across many cell types (The ENCODE Project Consortium

2012) but alsomethods to test the regulatory potential of sequenc-
es in high-throughput (Inoue and Ahituv 2015; Nguyen et al.
2016; Santiago-Algarra et al. 2017; Kircher et al. 2019). All these ad-
vances provide a basic understanding of topological domain struc-
tures, regulatory elements, and other fundamental mechanistic
insights like enhancer hijacking (Haller et al. 2019; Helmsauer
et al. 2020). However, wider understanding of howSVs link to phe-
notypic alterations and therefore human diseases remains poor.

SV identification and annotation lags behind SNV and small
insertion/deletion (indel) annotation, as SVs often exceed the size
of common read-lengths, are difficult to align, fall within repeti-
tive regions, or can be of complex structure (Cameron et al.
2019). In addition, various factors may contribute to pathogenici-
ty or molecular effect in these regions as structural rearrangements
can affect primary gene structure, chromatin architecture, DNA ac-
cessibility, and tissue-specificity of regulatory elements and genes.
Further, the putatively differentmechanisms of phenotypic effects
of deletions compared to insertions or duplications complicates a
generalized approach for variant effect prediction, as the effect can
be mediated by copy number alterations of redundant or unique
genomic sequence, positional effects, or rendering functional
DNA dysfunctional. Capturing all possible disease-relevant mech-
anisms mediated by structural variants remains challenging.

Although various tools are available for ranking SNVs and
indels, very few tools can score structural variants. Therefore, it re-
mains very difficult to assess SV effects on phenotype and disease,
with many different ad hoc approaches being applied. Existing
tools like SVScore (Ganel et al. 2017) or TAD-fusion (Huynh and
Hormozdiari 2019) focus on individual features such as the pres-
ence of deleterious SNVs (mostly in coding regions) that are over-
lapping the SV, or focus specifically on boundary element
reshuffling by a novel SV, respectively. AnnotSV (Geoffroy et al.
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2018) annotates the structural variant and categorizes pathogenic-
ity depending on overlap with known pathogenic SVs. SVFX
(Kumar et al. 2020) provides a framework for training specificmod-
els but does not allow the direct application to novel variants. At
this stage, no tool combines ease of use with a comprehensive
set of annotations, including the prioritization of disease effects
from genome architecture alterations.

Further, SV data sets of sufficient size and curation that can be
used to apply machine learning approaches for the identification
of relevant annotations or for their integration are not easy to ob-
tain. Clinically relevant SV sets (Landrumet al. 2018), that is, path-
ogenic and benign variants, are small in number, biased toward
very large SVs, and tend to overlap well-studied disease genes. In
this study, we aim to add a novel machine learning approach
(CADD-SV) to score the effects of SVs by choosing an unbiased
and sufficiently large training data set derived from species differ-
ences that is capable of differentiating between functional and
nonfunctional SVs in the human genome. To validate this new ap-
proach, we apply CADD-SV to distinguish common SVs from an-
notated disease-causing variants and to identify functional
variants on independent data sets of germline and somatic SVs.
Our tool can be used to highlight disease-causing SVs in suppos-
edly healthy individuals—for instance, recessive pathogenic vari-
ants in the gnomAD-SV cohort (Collins et al. 2020)—and allows
prioritization of regulatory, noncoding variants like expression
Quantitative Trait Loci (eQTLs) or variants under natural selection.
We design CADD-SV as a web service as well as a standalone tool
for easy application and interpretation of novel SVs.

Results

A large and unbiased training data set

Machine learning methods strongly rely on the quality of training
data sets to yield meaningful predictions. Using clinical databases
such as ClinVar or the Human Gene Mutation Database (HGMD)
to curate an annotated training data set is challenging for SNVs or
small indels, where a careful matching of pathogenic and benign
variants in genomic regions and effect classes is required (Huang
et al. 2017; Rentzsch et al. 2019). This seems currently impossible
for SVs. The ClinVar data set (Landrum et al. 2018) is very sparse
for SVs; that is, only a few (3262 deletions, 82 duplications, and
78 insertions) and mostly very large SVs (mean size of 106 kb for
deletions) are being annotated. This is insufficient for an insightful
training data set, especially as population-derived SVs are much
smaller in genomic size (mean of 7.4 kb). Further, when compared
to large population SV sets (Collins et al. 2020), strong biases to-
ward high effect variants and clustering around well-studied genes
are apparent (Supplemental Fig. 1). Therefore, we opt for an unbi-
ased evolutionary set of SVs obtained from comparisons in the
great ape lineage (Kronenberg et al. 2018). A key strength of this
approach is that the model is trained on a larger training set of
19,113 deletions and 26,823 insertions and duplications that
does not suffer from the ascertainment bias inherent in curated
sets (Supplemental Fig. 1).

This is motivated by the Combined Annotation Dependent
Depletion (CADD) framework, an approach that has proven pow-
erful in the interpretation of SNVs and short indels (Kircher et al.
2014). In CADD-SV, we assume that millions of years of purifying
selection removed SVs that are deleterious, that is, have a negative
impact onhumanor chimpanzee reproductive success. Thus, fixed
SVs in humans or chimpanzees can be classified as proxy-neutral.

In contrast, variants of the same size randomly drawn from the hu-
man genome are likely to contain a significant number of deleteri-
ous variants by chance. Although many of the random variants
will be neutral, an unknown but considerable fractionwould likely
be deleterious. For simplicity, we refer to these variants as proxy-
deleterious. The contrast between the proxy-neutral and proxy-
deleterious variant sets, that is, the relative paucity of deleterious,
phenotypically influential genome alterations in the proxy-neu-
tral set and the resulting differences in their annotation features,
is the core characteristic of what we then model as SV deleterious-
ness (Fig. 1A).

Annotating structural variants

We wanted to integrate diverse annotations into predictive, ge-
nome-widemodels for identifying structural variants of phenotyp-
ic effect.Althoughmanyannotations are readilyavailable for SNVs,
informative and computationally efficient statistics need to be cre-
ated to summarize annotations over the span of SVs. Further, dis-
tance measures can retain information about the vicinity of the
impacted DNA sequence. For this purpose, we developed an auto-
mated SV annotation pipeline (Fig. 1B) using the workflow man-
agement system Snakemake (Köster and Rahmann 2012) that
combines BEDTools (Quinlan and Hall 2010) and tabix (Li 2011)
with customized bash and R scripts.We integrated not only coding
information such as gene models but also a wide variety of regula-
tory annotation retrieved from ENCODE (The ENCODE Project
Consortium 2012), such as histone modifications or DNA accessi-
bility. In addition, we made use of functional and evolutionary
scores (Siepel et al. 2005; Davydov et al. 2010; Huang et al. 2017;
Rentzsch et al. 2019) as well as information about the 3D architec-
tureof thegenomic regionderived fromHi-Cexperiments (Schmitt
et al. 2016; Calandrelli et al. 2018; Schwessinger et al. 2020).

All SVs are annotated over the full span of the event as well as
100 bp up- and downstream (Fig. 1C). For insertions, the span of
novel SVs only contains the site of integration, and CADD-SV
does not derive features from the inserted sequence.Whereas dele-
tions directly remove putatively functional sequence, insertions
and duplications interfere with molecular function by integration
of additional sequence, for example, disrupting regulatory interac-
tions by increasing distance or introducing frameshifts into coding
sequence.We incorporate this in the CADD-SVmodeling by deriv-
ing features from the deleted sequence (span), annotating the con-
text of the SV (flank), and including distance features in themodel
(Fig. 1B,C). Across SV ranges, we mostly annotate max values,
mean values, and the amount of high-impact values above the
top 90th percentile of an annotation. Additionally, span and flank
models use genomic distances to certain feature coordinates (e.g.,
genes, exons, and enhancers). All features and their transforma-
tion are described in Supplemental Table 1. To ease later interpre-
tation of feature impact, all features areZ-score-transformed (mean
0, standard deviation of 1) using the annotation value distribu-
tions of the same type of SV from healthy individuals reported
in gnomAD (Collins et al. 2020). This transformation serves pri-
marily the interpretability of themodel and does not negatively af-
fect model training, as the same transformation is applied for both
training class labels.

Modeling and holdout set performance

SV-mediated pathogenicity depends on the type of SV. We imple-
ment separatemodels for deleted (DEL), inserted (INS), or duplicat-
ed (DUP) sequence. Currently, due to the lack of training data for
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inversions and translocations, we cannot trainmodels for these var-
iant types. Using the described training data sets, we train four types
of models (Fig. 1A,B). We train models of human-derived deletion
(human DEL) and insertion events (human INS) against respective
sets of equally sized events drawn across the genome. Further, mod-
els based on chimp insertion (chimp INS) and deletions events
(chimp DEL) are trained. Here, we project the events onto the hu-
man reference sequence and use the human annotations.
Whereas the human events are alsomanifested in the human refer-
ence, the chimp events allow us to use human annotation unim-
paired by an actual SV event. Hence, chimp DEL models are
similar to how we would score new events observed in an individu-
al’s genome aligned to the human reference sequence. In contrast,
no annotation for human-derived deletions can be obtained over
the span of the deletion, as experimental readouts and conservation
score are not available for the missing sequence. Similarly, chimp
INSprovides an insertionmodel based on events that did not impair
human annotations or biochemical readouts.

To score novel SVs in the human genome, we exploit this re-
lationship by training the span of novel deletions with the chimp
DEL set and train the sequence 100 bp up- and downstream of the
breakpoints using the humanDEL set. As the inverse applies for in-
sertions and duplications, that is, chimpanzee insertions do not
span sequence in the human genome build whereas human-de-
rived insertions do, we use the chimp INS set for the insertion
site and the human INS set for the up- and downstream sequence.
Duplications are scored using the full sequence span of the dupli-
cated locus, hence using the chimp DEL model for the span and
human INSmodel for the up- and downstream sequence. The final
score is calculated from the maximum (more deleterious) value of
both models.

We trained both logistic regression models as well as random
forest models. We note that the latter show increased holdout per-
formance as well as validation set performance (Supplemental Fig.
2), and we only describe the random forest models here. We opted

for measuring validation performance on a holdout rather than
cross validation, as the choice of training data allows for a suffi-
ciently large training set. The holdout shows that all four model
types differentiate between the proxy-benign and proxy-deleteri-
ous sets (Fig. 2A). Considering the anticipated mislabeling in our
training data, specifically in the randomly drawn SVs as described
above, the holdout performance will, however, not be representa-
tive for our models’ performance in scoring actual pathogenic ver-
sus benign variants. Here, we only look for a nonrandom model
performance and the relative ranking of the INS, DEL, and DUP
models. The model score distribution for the holdout data is avail-
able in Figure 2B for the proxy-deleterious and proxy-benign SV
sets. We see a significant shift with a bimodal distribution in the
proxy-deleterious variants, with the smaller mode corresponding
to the potentially pathogenic variants in the randomly drawn set.

For better interpretation,we also provide a Phred-scaled trans-
formation of the model score relative to a healthy population co-
hort, that is, a log10 score derived from the proportion of
variants with a greater or equal score in the genomAD-SV set.
The CADD-SV scores on the Phred scale range from 0 (potentially
benign) to 48 (potentially pathogenic), indicating the position of
the novel variant within the gnomAD-SV score distribution. For
example, a score above three corresponds to the top 50%, 10 cor-
responds to the top 10%, 20 to the top 1%, and 30 to the top
0.1% of scores observed from gnomAD-SV.

Feature contributions

Weanalyzed feature contributions in our random forestmodels us-
ing the R package randomForest (Liaw and Wiener 2002). To ease
interpretation, we categorized model features into six groups
(“Integrated scores”, “Species conservation and constraint”,
“Population and disease constraint”, “Epigenetic and regulatory
activity”, “3D genome organization”, “Gene and element enrich-
ment”) (Supplemental Table 1). Models benefit highly from

A C

B

Figure 1. Workflow and training data sets of the CADD-SV framework. (A) Proxy-neutral training data set of CADD-SV. Human- and chimpanzee-derived
structural variants (SVs) are considered to be neutral or beneficial if they reached fixation. Therefore, previously identified human- and chimpanzee-derived
SVs (Kronenberg et al. 2018) are used as a proxy-neutral training data set. (B) CADD-SVworkflow. Size- and length-matched simulated variants are used as a
proxy-deleterious training data set. Next, various informative features are annotated and transformed (see Methods; Supplemental Table 1) across span or
flank of the variants to train multiple random forest classifiers. Models are used to score user-provided (novel) SVs. For this purpose, variants are annotated,
features transformed, and models applied. The maximum value of the flank and span model scores is used as the raw model score. Further, a Phred trans-
formation of the relative rank of the score among gnomAD-SVs provides an easy interpretation of the CADD-SV score. (C ) Depiction of implementation of
the fourmodels generated from the proxy-neutral and proxy-deleterious variant sets. Whereas deletion of a novel sequence provides information about the
deleted sequence in the human genome build, the insertion model relies on the site of integration. Therefore, flanking regions to the SVs are taken into
account.
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features in the groups of “Species conservation and constraint” (in-
cluding GERP, phastCons, phyloP scores) and “Integrated scores”
(i.e., summaries of CADD SNV and LINSIGHT scores) in differenti-
ating between the contrasted SV sets. Regulatory annotations as
well as 3D genome architecture features contribute to a smaller ex-
tent but are present within the top 20 most important features of
all models (e.g., ReMap transcription factor occupancy, TAD an-

notations, enhancer-promotor links, and ChromHMM states).
Distance features (such as distance to coding sequence) are partic-
ularly prevalent in the human DEL flank model where, for a refer-
ence altered by the deletion event, these features become
informative. Major feature contributions of the chimp DELmodel
are presented in Figure 2C; for all models, feature importance is
available in Supplemental Figures 3–6.

A C

B

Figure 2. Performance of random forestmodels trained on proxy-deleterious and proxy-benign SVs. (A) All models show a nonrandom separation of the
two classes in a random 10% holdout. Performance is measured as sensitivity over false positive rate (FPR). Note that all training data sets contain a high
amount of mislabeled SVs, as a majority of proxy-deleterious SVs is likely to be neutral. (B) Model predictions of the chimpanzee deletion model are shifted
toward high-impact SVs in the simulated set of chimpanzee deletions. (C ) Representation of feature importance in the chimpanzee deletion random forest
model. Note that proxy-pathogenic and proxy-benign sets are length-matched and that length is not used as an explicit feature. Most important contri-
butions come from species conservation (e.g., GERP, phastCons) but also from integrated scores (i.e., CADDor LINSIGHT). Epigenetic features as well as 3D
genome architecture features, such as the Directionality Index derived from Hi-C data, also contribute to the most informative features of the models. For a
full list of features and explanation of their naming, see Supplemental Table 1.
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Independent validation data sets

To validate the general applicability of the framework, we usemul-
tiple lines of evidence (Fig. 3A) to substantiate the results of the
holdout performance. We look at known pathogenic variants
from ClinVar (Fig. 3B,D–F); we show that SVs occurring in healthy
populations are under negative selection and therefore have high
CADD-SV scores enriched for singleton events (Fig. 3C); and we
analyze variants from the International Cancer Genome
Consortium (Fig. 3D–F) and SVs affecting gene expression (Fig.
3D–F). Thereby, we show that CADD-SV can be used to prioritize
both pathogenic germline and somatic structural variants.

Pathogenic germline variants

We collected pathogenic SVs from ClinVar (n=3262 deletions, 82
duplications, and 78 insertions). To look at how CADD-SV priori-
tizes pathogenic variants among all SVs identified in single indi-
viduals (including rare and singleton events), we added each
clinically characterized SV from ClinVar into sets of structural var-
iants found in presumed healthy individuals from the 1000

Genomes Project (The 1000 Genomes Project Consortium 2015).
We assessed the performance of CADD-SV by looking at the path-
ogenic variants’ rank among all observed SVs. We found that, in
65%of cases, the ClinVar deletion is within the top fifth percentile
of all ranks (Fig. 3B). Clinically labeled insertions and duplications
were also enriched among the top candidates. In 100% of individ-
uals for insertions and 75% of individuals for duplications, these
events fall within the top fifth percentiles.

Further, we contrasted the complete sets of pathogenic SVs
from ClinVar with a matched number of common SVs from
gnomAD (AF≥0.05) (Fig. 3D–F). CADD-SV correctly identifies a
vast majority of the known pathogenic SVs with an Area Under
the ROC Curve (AUROC) of 0.944 for deletions (Fig. 3D). CADD-
SV performs comparably to the existing tools SVScore (Ganel
et al. 2017) with an AUROC of 0.915 and AnnotSV (Geoffroy
et al. 2018) with an AUROC of 0.949. It outperforms TAD-fusion
score (Huynh and Hormozdiari 2019), which has an AUROC of
0.692, but was primarily designed to detect 3D architecture alter-
ations. Finally, we compared to StrVCTVRE (Sharo et al. 2020),
which was designed to score exonic variants specifically and

A CB

D FE

Figure 3. Validation set performance of the random forestmodels. (A) Summary of the performance of CADD-SV scores compared to SVScore, AnnotSV,
and TAD-fusion scores across three validation sets (pathogenic variants, cancer variants, and putative eQTL SVs) for deletions, duplications, and insertions.
(B) Rank of ClinVar pathogenic SVs added to SVs of healthy individuals from the 1000 Genomes Project. CADD-SV prioritizes the pathogenic SVs over the
other SVs in a single simulated patient, scoring pathogenic variants in the top fifth percentile of deletions, duplications, and insertions for 65.9%, 74.7%,
and 100% of simulated variant sets, respectively. (C) CADD-SV score distribution as a function of gnomAD allele frequency. Higher CADD-SV values rep-
resent an increased likelihood to be deleterious. In the deleterious tail of the score distribution, there is an excess of singletons (shown in red; bin size 0.025),
which hints at negative selection against deleterious deletions. (D–F) CADD-SV performance of various validation sets compared to common gnomAD SVs
(AF≥0.05). Performance is measured as sensitivity over false positive rate. CADD-SV is able to identify ClinVar pathogenic SVs (n = 3262 deletions, 82 du-
plications, and 78 insertions, pale red) as well as SVs reported in the ICGC cancer cohort (n = 52,677 deletions, 42,972 duplications, and 18 insertions, dark
red) from common SVs in gnomAD. Further, CADD-SV can identify noncoding SVs that are associated with differences in gene expression (turquoise).
CADD-SV scores (solid lines) are compared to SVScore (dashed lines), AnnotSV (dotted lines), and TAD-fusion (dashed and dotted lines) for deletions
(D), duplications (E), and insertions (F).
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cannot score all of these variants. However, CADD-SVoutperforms
StrVCTVRE on prioritizing exonic ClinVar deletions from a back-
ground of exonic gnomAD-SV deletions (Supplemental Fig. 7).

Depletion of deleterious SVs in healthy populations

We assessed the distribution of CADD-SV scores in SVs from the
gnomAD SV call-set. Allele frequency (AF) values are significantly
decreased in the pathogenic tail of the CADD-SV score distribution
compared to the benign tail (top/bottom fifth percentile CADD-SV
scores, two-sided Wilcoxon rank-sum test, P-value <10−16). We
reason that CADD-SV is able to prioritize deleterious variants in
healthy individuals, as these variants would be under negative se-
lection and removed from the gene pool. Accordingly, the propor-
tion of singleton deletions among the top fifth percentile CADD-
SV scores (pathogenic tail) is 1.3 times higher than the average
of the full SV set (Fig. 3C). This observation is striking for deletions
but less pronounced in the insertion and duplication SV sets
(Supplemental Fig. 8). We note that, in the top fifth percentile,
35% of deletions are coding variants classified as “Loss of
Function” by gnomAD compared to 0.3% of variants scored in
the remainder of the CADD-SV score distribution.

Further, the average deletion length is six times longer for the
top fifth percentile compared to the rest of the distribution, sug-
gesting that longer deletions are more likely to be functional, as
they affect more sequence. However, short (<100 bp) and high
scoring (top fifth percentile) deletions are 1.1 times more likely
to be singletons compared to short deletions, suggesting that
CADD-SV prioritizes SVs beyond length. In addition, we detect
high-frequency deleterious variants in the pathogenic tail, specu-
lating that these variants could be phenotypically functional var-
iants and potentially beneficial for carriers.

Identifying somatic cancer variants

Weassessed the performance of CADD-SVon somatic variants and
the power to identify deleterious cancerogenous variants (n=
52,677 deletions, 42,972 duplications, and 18 insertions) using
SV variants from cancer patients in the International Cancer
Genome Consortium (Campbell et al. 2020) as well as insertions
reported in Qian et al. (2017). We find an enrichment of SVs de-
tected in cancer patients in the pathogenic tail of the distribution
compared to SVs from a healthy cohort (two-sidedWilcoxon rank-
sum test, P-value <10−16). CADD-SV enriches the cancer-derived
SVs from common gnomAD-SVs in an ROC curve analysis
(AUROC values of 0.848, 0.933, and 0.975 for deletions, duplica-
tions, and insertions, respectively) (Fig. 3D–F), outperforming
available tools on this task and supporting the claim that CADD-
SV prioritizes functional somatic SVs.

Identifying expression-altering noncoding variants

To test the ability to prioritize functional variants beyond coding
regions, we use a set of noncoding SVs known to alter the expres-
sion of genes. Here, we look at 387 deletions and 300 duplications
that were shown to affect expression levels of nearby genes and are
therefore considered eQTLs by the GTEx Consortium (Chiang
et al. 2017). We compare them against common variants (AF≥
0.05) from gnomAD in an ROC curve analysis (Fig. 3D–F). Even
though less pronounced compared to ClinVar or the cancer-de-
rived SVs, CADD-SV is able to differentiate the two classes of SVs
(AUROC0.598 for deletions and 0.635 for duplications, respective-
ly), outperforming existing methods SVScore (AUROC 0.467 for

deletions and 0.534 for duplications), AnnotSV (AUROC 0.459
for deletions and 0.402 for duplications), and TAD-fusion score
(AUROC 0.425 for deletions).

Functional SVs in a healthy population cohort

Variants reported in the gnomAD-SV database are considered
largely benign, as this cohort consists of only healthy individuals,
not excluding potential complex or late-onset diseases (Collins
et al. 2020). Although being devoid of embryonal lethal variants,
healthy data sets can contain pathogenic or haploinsufficiency
variants that are expected to be under purifying selection and
therefore rare in allele frequency. We showed that rare variants
are strongly enriched in the most pathogenic tail of the CADD-
SV distribution (Fig. 3C). We investigated the shortest (mean
length of 225,336 bp) five top scoring variants (CADD-SV Phred
score≥35) and found all of them to be ultrarare (AF≤0.0009),
with three out of five being singletons (Supplemental Table 2).
Further, three out of five variants overlapmultiple ClinVar curated
pathogenic variants, belonging to two autosomal recessive disease
genes and one autosomal dominant disease gene. The two reces-
sive diseases are Batten disease mediated by mutations in CLN3
(see Supplemental Fig. 9;Munroe et al. 1997), and hearing lossme-
diated by mutations in OTOA (see Supplemental Fig. 10; Kim et al.
2019). The one autosomal dominant neurodevelopmental disor-
der is Chopra-Amiel-Gordon syndrome, mediated by mutations
in ANKRD17 (see Fig. 4A and Supplemental Fig. 11; Chopra et al.
2021).

Further, the tail of the CADD-SV pathogenic score distribu-
tion is strongly enriched in SVs containing genome-wide associa-
tion study (GWAS)-identified SNVs, suggesting the presence of
functional genomic regions (Fig. 4B). Containing a GWAS hit is
not equal to being a potentially pathogenic SV, as many recorded
associations are toward nondisease traits such as body height or
longevity. However, it provides evidence that CADD-SV is able
to prioritize functional stretches of sequence in the genome with-
out using the GWAS catalog as an input itself. The top 10
gnomAD-SV variants contain an average of 265 GWAS-associated
SNVs (Supplemental Table 3). Further, CADD-SV is able to priori-
tize an additional set of SVs (Ebert et al. 2021) under natural selec-
tion (Fig. 4C; Supplemental Fig. 12A,C), as well as SVs associated
with expression changes (Supplemental Fig. 12B,D), with most
Phred scores exceeding a value of 10 (top 10%) and many above
20 (top 1%) or even 30 (top 0.1%). This supports that CADD-SV
is able to prioritize functional stretches of DNA genome-wide
and beyond exonic regions.

Interpreting structural variants

Tomake scores easier to interpret and as outlined above, we Phred-
scaled CADD-SV raw scores among all SVs reported in gnomAD-
SV. For example, a value of 30 represents that 99.9% of variants re-
ported from healthy individuals score lower than the variant un-
der consideration. In addition, all feature annotations are used
and reported after Z-score transformation according to the fea-
tures’ value distribution observed for gnomAD-SV variants. This al-
lows users to inspect the individual features for extreme values
easily. For instance, a conservation feature value of four represents
an outlier value of four standard deviations away from the
gnomADmean of that specific annotation. Such noticeable values
are highlighted by color-coding on the CADD-SV website (Fig. 5)
for the prescored variant sets. Generally, CADD-SV scores with or
without annotation information are available from our command
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line tool as well as on the web server for direct variant interpreta-
tion. Our online services include region lookups of existing SV
data sets, coordinate transfers between human genome builds,
the download of prescored data sets and annotations, a simple
API for the retrieval of prescored variants, as well as the online scor-
ing of novel SV data sets. Coordinate ranges and variants of other
genome builds (i.e., GRCh37/hg19 andNCBI36/hg18) can be used
on the web server and are automatically lifted to GRCh38 coordi-
nates (providing the original coordinates in the variant’s name
field).

Discussion

We present CADD-SV as an unbiased and powerful tool for the an-
notation and prioritization of deleterious structural variants.
Structural variant calling is prone to biases toward certain types
of SVs, as, for example, the signal to detect deletions is vastly dif-
ferent compared to signals of duplication or even inversions

(Cameron et al. 2019). Further, the exact annotation of SV break-
points is often limited, for example, due to their frequent position-
ing in repetitive sequence (Kosugi et al. 2019). Apart from these
universal limitations, changes in the application of arrays and
sequencing technologies over the last decades have affected avail-
able SV sets. However, in previous work, it seems underappreciated
howmuch of the historic and functional ascertainment is imprint-
ed on potential training and validation sets for machine learning.
Specifically, the ClinVar-annotated SVs are comparably large and
clustered around well-studied genes. Using an alternative source
for the training data, the CADD-SV approach is not confounded
and performance can be evaluated broadly, as no allele frequency
features nor any ClinVar annotations are included in the features
or otherwise consideredwhen building the training sets. The num-
ber of labeled SVs to validate the performance of CADD-SV is still
limited, however, and assessing the performance on duplications
and insertions is limited, as the number of known pathogenic
events is small and strongly biased toward coding sequence. We

A

B C

Figure 4. Prioritizing functional variants with CADD-SV. (A) Screenshot of UCSC Genome Browser tracks of a region (Chr 4: 73,004,055–73,231,324)
deleted in one individual present in the gnomAD-SV cohort. Two genes are affected, with ANKRD17 variants being reported as causal for the autosomal
dominant Chopra-Amiel-Gordon syndrome (CAGS). Various pathogenic SNVs were identified within the gene body of ANKRD17 and are marked in red in
the UCSC ClinVar track. CAGS patients are characterized by developmental delay andmoderate to severe intellectual disability. Further, various positions of
this SV are highly conserved among 100 vertebrate genomes, contributing to CADD-SV’s power of ranking it as a putatively deleterious variant. (B) Phred-
scaled CADD-SV score distribution as a function of number of genome-wide association study-identified SNVs per deletion from gnomAD-SV. Especially
among high scoring SVs, the average number of GWAS-associated SNVs increases drastically, suggesting functional variants in the pathogenic tail of
the CADD-SV score distribution. (C) Scoring deletions under natural selection from Ebert et al. (2021). Shown are score distributions for the functional
set (blue) against the same number of randomly drawn SVs from the 1000 Genomes Project. Note that we report Phred-scaled CADD-SV scores (log10
scale) with high values corresponding to high deleteriousness.
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anticipate that future data sets will provide a better opportunity to
test and interpret models for duplications and insertions.

Estimating functional effects of SVs is highly complex due to
their size (involving differentmolecular targets) but also due to dif-
ferent mechanistic types of SVs (e.g., deletion, insertion, duplica-
tion, or inversion of sequence). Thus, deleteriousness effects
cannot just result from the sequence alteration but also from inter-

actions with the sequence context. For
example, sequences shielding gene regu-
lation (e.g., TAD boundaries) can be de-
leted between coding sequences or
nonfunctional sequence can be inserted,
interfering with an existing regulatory
unit. Therefore, we model each SV type
(deletions, insertions, and duplications)
separately, and we use the sequence
span as well as the flanking sequence
regions to capture putativepathogenic ef-
fects comprehensively. Further, we inte-
grate distance features and a large set of
annotations covering both coding and
noncoding effects. This allows CADD-
SV high predictive performance on
known disease variants from ClinVar,
which often cover coding sequence and
stand out by their gene model annota-
tions and genes scores such as pLI (Lek
et al. 2016) or Deciphering Developmen-
tal Disorders’ Haploinsufficiency (Firth
and Wright 2011). Extending this to
other previously described disease mech-
anisms for pathogenic noncoding vari-
ants (Spielmann et al. 2018), CADD-SV
makes use of sequence conservation
(Siepel et al. 2005), enhancer element an-
notations (Abugessaisa et al. 2017; Chè-
neby et al. 2018), and enhancer links
(Hait et al. 2018), assay readouts such as
RNase-seq or ChIP-seq, as well as infor-
mation about 3D interactions from the
Hi-C directionality index (Schmitt et al.
2016;Calandrelli et al. 2018) or computa-
tionalpredictions suchasdeepC(Schwes-
singer et al. 2020).

Inversions and translocations are
particularly hard to assess as they are
copy number-neutral and their impact
is oftenmediated by proximity of certain
functional elements to one another or
functional entities such as TADs
being broken or reshuffled rather than
deleting or inserting functional sequence
directly. To our knowledge, there is no
training data set sufficient in size and
curation to capture the complexity of
these events. As no single model could
capture the mechanistic diversity of the
three currently considered SV types (in-
sertions, deletions, and duplications),
CADD-SV reports normalized model
scores and features through relative ranks
as well as Z-scores (i.e., values reported as

standard deviations away from the mean) based on SVs from a
large cohort of healthy individuals. Phred-scaledmodel scores pro-
vide an intuitive interpretation, and feature normalization enables
users to inspect extreme values for the different annotations
directly, visually highlighting certain annotations and hinting at
potential pathogenic mechanisms beyond the final CADD-SV
score. Although designed for genome build GRCh38, CADD-SV

Figure 5. The CADD-SVweb server can score customSV sets, but it can also be used for direct lookup of
prescored deletions, duplications, and insertions from gnomAD and ClinVar, as well as call-sets from Abel
et al. (2020) and Beyter et al. (2021). For a given SV, the website provides the combined model scores as
well as annotation values normalized to the range in the healthy gnomAD cohort (Z-score). This enables
users to identify interesting variants from color-highlighted extreme feature values and not just by the
combined CADD-SV score. Further, the website provides direct links for each SV to external resources
like gnomAD, Ensembl, or the UCSC Genome Browser.
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canbe applied to other genomebuilds due to an integrated liftOver
step of the web server.

In contrast to other tools, length is not a feature of CADD-SV.
However, we assume that SV length would be a good indicator of
SV impact, as long SVs are more likely to affect coding regions or
generally functional annotations. SV length itself might be a con-
founder too, as long benign SVsmight bemisinterpreted solely for
their length and not for their actual genomic signatures. As the
contrasting data sets in the CADD-SV framework are matched in
SV length, length as a feature does not contribute to the model.
However, some genomic feature transformations, such as the
sum of all intersected annotation values or the number of bases
above a certain threshold, correlate inevitably with length but
are bound to functional annotations being present across the
span. AnnotSV (Geoffroy et al. 2018) is powerful and efficient in
annotating novel SVswith awide set of annotations. However, val-
idation of AnnotSV on ClinVar is biased as AnnotSV uses overlap
of novel SVs with labeled SVs from ClinVar as a feature. Further,
it categorizes SVs in five bins from benign to pathogenic instead
of a continuous score. Across multiple data sets, we highlight the
increased predictive power of CADD-SV compared to AnnotSV,
SVscore (Ganel et al. 2017), and TAD-fusion (Huynh and
Hormozdiari 2019). We could only provide a limited comparison
to StrVCTVRE (Sharo et al. 2020), which is designed to score
only exonic variants. A comparison of SVFX (Kumar et al. 2020)
was not possible, as the package is not easily deployed and explic-
itly normalizes features on a specific training data set. Its released
ClinVar variant models are trained on a variant set overlapping
with our validation set.

The feature integration implemented by CADD-SV can easily
be extended using additional annotations. Currently, we use fea-
tures derived from experiments conducted in specific cell types
(e.g., GM12878, H1, A549, CAKI2). More comprehensive or addi-
tional cell types can be included in updated versions. Further,
CADD-SV does not make use of the inserted sequence itself.
Therefore, future versions of CADD-SV could make use of se-
quence-based prediction models in addition to reference annota-
tions, for example, to predict open reading frames, repeat
content, presence of transcription factor binding sites, or the like-
lihood of the novel inserted sequence being of open or closed chro-
matin. This might be powerful in assessing inserted sequence
function beyond the surrounding genomic context of the inser-
tion event. In addition, specific mechanistic events such as gene-
fusion predictions are not part of our features. CADD-SV can
only estimate the effect of such events based on already considered
feature values like the distance to genes.

Especially for rare variants, clinical databases like ClinVar or
OMIMhave incomplete coverage. CADD-SV does not use these da-
tabases to derive features as we do not want it to be intrinsically
limited to previously known disease genes or to reflect the historic
ascertainment that imprints on these databases (Hartley et al.
2018; Haynes et al. 2018). We recognize that computationally dis-
tinguishing functional variants from pathogenic variants is diffi-
cult and that available curated data sources like ClinVar and
OMIM can still be used in downstream interpretation of the re-
sults. Evaluating SVs experimentally will provide insights into dis-
ease mechanisms that are currently not represented.

In summary, CADD-SV integrates rich sets of annotations in
predictive models of SV effects. CADD-SV is built from machine
learning models with an unbiased training using evolutionarily
derived and putative benign variants that underwent millions of
years of purifying selection. These variants are contrasted with a

background set of the same size and length, encountering delete-
rious events by chance.We show that our approach is able tomod-
el and score deletions, insertions, as well as duplications, and we
validate the CADD-SVmodels using clinically annotated, noncod-
ing, or population germline SVs as well as somatic SVs reported in
cancer patients. To highlight the potential of CADD-SV, we ap-
plied our tool to functional SVs identified from selection screens,
QTL studies, or variants identified across many, supposedly
healthy individuals. Most of the top-scored variants in the healthy
population data set are singletons, suggesting purifying selection
on these SVs, and we were able to pinpoint pathogenic variants
in multiple cases.

Methods

Training data set

Weuse a set of previously identified evolutionarily fixed chimpan-
zee and human-derived SVs (Kronenberg et al. 2018) and refer to
the autosomal human and chimpanzee deletions and insertions
from this set as proxy-neutral or proxy-benign. A set of randomly
distributed SVs over the human autosomes was obtained by shuf-
fling the ape SVs matched in length and number (within coordi-
nates considered alignable by Kronenberg et al. 2018). We refer
to this set as proxy-deleterious. To compare these SVs with those
in ClinVar (Landrum et al. 2018), we annotated themwith the dis-
tance to the next start codon, and pLI and haploinsufficiency
scores (Supplemental Fig. 1). We use sets of variants derived from
human and chimpanzee to score different SV types. For novel hu-
man deletions, we chose the chimp deletions to model the span
and human deletions to model the SV flank. Respective annota-
tions are present along the range of chimpanzee deletions in the
humangenomebuild, although they are absent for derived human
deletions. Similarly to score insertions, we use the derived human
insertions to model the flank and the chimpanzee insertions to
model the site of an insertion (see Fig. 1A). Duplication sites are
modeled by the chimpanzee deletion model for the span and hu-
man insertionmodel for the flank, as the span of duplications con-
tains known sequence most similar to the one found in annotated
deletion sequences. Sex chromosomes were not used in the train-
ing data set as the quality of X andYChromosomes, especially on a
comparative level, is still poor. CADD-SV scores variants on X and
Y by applying the autosomally derived model, but we recommend
to be cautious in the absolute comparison of scores.

Feature annotation and transformation

We obtained a set of 127 continuous human-derived features (see
Supplemental Table 1) ranging from species conservation, distance
to gene model hallmarks, over to genome architecture features
such as the directionality index derived from Hi-C data sets. We
use customized bash and R scripts to annotate the contrasting SV
sets using BEDTools (Quinlan and Hall 2010) and tabix (Li
2011). All features are Z-score (mean 0, variance 1) transformed us-
ing 20,000 randomly selected SVs of the same-type from the
gnomAD-SV release v2.0 (Collins et al. 2020). By doing so, we al-
low the user to immediately see feature values from the annotated
SVs that correspond to extremes in the gnomAD-SV set, although
this SV set itself is not impacting our models, as the same transfor-
mation is applied for both training class labels. Further, a feature
value being extreme in the gnomAD-SV set is also unrelated to
how this feature is used in the model (i.e., feature importance for
RFs or coefficients in the case of linear models). All SVs are anno-
tated over the span of the primarily affected sequence (span) as
well as 100 bp up- and downstream of the site of the structural
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rearrangement (flank) (see Fig. 1C). Predictions based on the flank-
ing sequences are generally dependent on the exact identification
of breakpoints. However, experimentally validated breakpoints for
our training data set do not exist, and even with the most ad-
vanced SV typing approaches, blurry breakpoint annotations will
still exist for repetitive sequence contexts. Therefore, includingdis-
tance information for functional annotation in the model pro-
vides a more flexible approach. From the different annotations,
we create summary statistics and transformations as model fea-
tures. These are summarized in Supplemental Table 1. The annota-
tion framework automatically retrieves the features from primary
annotation sets using the workflow management system
Snakemake (Köster and Rahmann 2012). It tabulates results in a
BED-like format that is used in the CADD-SV model. Missing val-
ues are imputed with zeros.

Models

We trained logistic regression and random forest classification
models contrasting proxy-benign and proxy-deleterious training
data sets. Models are trained in R (v3.5.1) (R Core Team 2021) for
the SV spanning regions for deletions and duplications and the
site of integration for insertions (span), as well as 100 bp up- and
downstreamof the reported breakpoints (flank) (Fig. 1C). For logis-
tic regression, we use the R generalized linear model implementa-
tion, and for random forests, the package “randomForest” (Liaw
and Wiener 2002). For random forests, we limit the number and
depth of the decision trees based on a hyperparameter search (ex-
plored ranges for ntree = {25, 50, 75, 100, 200, 500, 1000}, node-
size = {10, 50, 100, 250, 500, 1000}, maxnodes = {10, 50, 100, 250,
500, 1000}, whereas one parameter was optimized, the other pa-
rameters were set to 100) (Supplemental Fig. 13). We randomly
withheld 10%of the annotated SVs as holdout and assessedmodel
performancemetrics using theRPackage PRROC (Grau et al. 2015).

CADD-SV scoring

Each novel SV is annotated along the span and 100-bp flank region
and scored using the span and flank models of the respective SV
type. The max (more pathogenic) output score of each model is
used as the CADD-SV raw score and included in the output.
Additionally, a Phred-scaled (−10 log10) CADD-SV score is reported
for each raw score from the relative rank of the variant’s score in
the gnomAD-SV score distribution of the same type of SV.We opt-
ed against relative ranking of SVs according to gene density, allele
frequency, or SV size (see Supplemental Material; Supplemental
Fig. 14) and only separate them by SV type. Instead, we provide
an additional relative ranking according to a putative healthy pop-
ulation cohort, represented by a Phred score. These Phred scores
range from 0 to 48, with a value of 20 corresponding to the top
1% and a value of 30 corresponding to top 0.1% of the scores ob-
served for gnomAD-SV. Higher CADD-SV scores therefore indicate
a larger proportion of potentially pathogenic variants.

Model validation

CADD-SVwas designed to be unaffected by known biases found in
clinically curated data sets such as ascertainment biases in the
choice of genes to be studied. It does not use curated SV sets in
training, it does not derive features from clinical data sets such as
ClinVar or OMIM, and it does not use gnomAD-SV allele frequen-
cies as features either. Therefore, CADD-SV can be validated using
those data sets. Between sets, SVs were not matched by size, fre-
quency, or gene density. As outlined above, CADD-SV makes use
of all features independent of the specific SV size or gene density.
SV allele frequency is explicitly not part of the model. We are con-

fident that this enables us to score short, gene-poor, pathogenic
SVs as well as long nonfunctional SVs appropriately.

Pathogenic and benign annotations for clinical SVs
(Landrum et al. 2018) were downloaded from ClinVar (https://
www.ncbi.nlm.nih.gov/clinvar) on June 24, 2021. Only variants
with pathogenic or benign labels of at least 50-bp-length and an-
notated as deletion (pathogenic n=3262, benign=33), duplica-
tion (pathogenic n= 82, benign n=4), or insertion (pathogenic n
=78, benign n=18) are considered. Further, to increase the
number of pathogenic insertions, unique pathogenic insertions
(n=39) reported by Hancks and Kazazian (2012) and Gardner
et al. (2019) were added. Area Under the Receiver Operating
Characteristic metrics are calculated using the PRROC R-package
(Grau et al. 2015).

Germline SVs identified from healthy individuals over vari-
ous populations (Collins et al. 2020) were downloaded from
gnomAD-SV release v2.0 (https://gnomad.broadinstitute.org/
downloads). Allele frequency values of common and ultrarare
SVs are determined across all available populations. Common var-
iants are defined asminor allele frequency >0.05, and ultrarare var-
iants are defined as singletons. To show the clinical benefit of
prioritization of SVs using CADD-SV, we use 1000 Genome geno-
typed SVs (The 1000 Genomes Project Consortium 2015) and add
one (randomly selected) labeled pathogenic SV found in ClinVar
into the reported set of individual specific SVs. From the 1000
Genome SV events, we consider Alu and LINE-1 SVs to be inser-
tions. We report the rank of the pathogenic SVs within the com-
plete SV sets.

Somatic SVs (n=95,749) from cancer patients were obtain-
ed from the International Cancer Genome Consortium
(Campbell et al. 2020) at https://dcc.icgc.org/api/v1/download?
fn=/PCAWG/consensus_sv/final_consensus_sv_bedpe_passonly
.icgc.public.tgz. In addition, insertions reported in cancer ge-
nomes were taken from Qian et al. (2017) (n=18). To assess the
performance of CADD-SV beyond coding regions, we use noncod-
ing SVs (n=687) that are known to impact human gene expression
in data from the GTEx Consortium (Chiang et al. 2017).

To assess CADD-SV’s ability to prioritize functional stretches
of DNA, we used healthy population SVs from gnomAD-SV con-
taining a genome-wide association study-linked SNV. We assume
that presence of an association with a functional trait can be
seen as a proxy for functional SVs. The GWAS catalog was down-
loaded from https://hgdownload.soe.ucsc.edu/goldenPath/hg38/
database/gwasCatalog.txt.gz. Further, we use deletions and inser-
tions reported to be associated with changes in gene expression
patterns as well as SVs under natural selection (Ebert et al. 2021),
both hinting toward functional stretches of DNA that are beyond
coding effects.

SV scoring tools

CADD-SVperformance on various validation sets was compared to
existing tools SVScore (Ganel et al. 2017), AnnotSV (Geoffroy et al.
2018), StrVCTVRE (Sharo et al. 2020), and the TAD-fusion
score (Huynh and Hormozdiari 2019) using standard parameters.
TAD-fusion only scores deletions and was primarily developed to
identify 3D genome alteration. As SVScore and TAD-fusion scores
were not available for the current genome build GRCh38, UCSC
liftOver (Kuhn et al. 2013) was used to transfer SV coordinates
and respective scores.

Implementation

Novel SVs can be scored with a pipeline implemented in
Snakemake (Köster and Rahmann 2012), using conda (Grüning
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et al. 2018) for dependency management. CADD-SV was designed
to be applicable for bioinformaticians and clinicians alike. The
source code for the framework is available for download on
GitHub (https://github.com/kircherlab/CADD-SV/). Conda and
Snakemake guarantee easy installation procedures as well as stabil-
ity through dependency management. Further, we implemented
CADD-SV to be time- and memory-efficient, while being highly
parallelizable for application on a cluster-network. A set of 1000
short SVs can be scored on a regular laptop in 13 min using 600
MB of memory (Supplemental Fig. 15). However, in contrast to
all competing tools, CADD-SV jobs are highly parallelizable,
strongly improving time-performance. In addition to the source
code, a web service (https://cadd-sv.bihealth.org/) allows for on-
line scoring of SVs in a BED-like format as well as for obtaining re-
sults for different human genome builds (GRCh38; NCB16 and
GRCh37 through automated coordinate liftOver). In addition, pre-
scored variants from cohorts such as gnomAD or ClinVar can be
queried online including all feature annotations. For better inter-
pretability, feature outlier values are color-coded based on their
Z-scores.

Software availability

CADD-SV prescored variant sets as well as a website for the inter-
pretation of novel deletions, insertions, and duplications are avail-
able at the CADD-SV web server (https://cadd-sv.bihealth.org/) as
well as Zenodo (https://doi.org/10.5281/zenodo.5963396). The
CADD-SV framework can be cloned and used from GitHub
(https://github.com/kircherlab/CADD-SV/) and is available as
Supplemental Code. All external data sets used are publicly avail-
able under the locations specified in the Methods.
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