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ABSTRACT

G2D (genes to diseases) is a web resource for
prioritizing genes as candidates for inherited
diseases. It uses three algorithms based on differ-
ent prioritization strategies. The input to the server
is the genomic region where the user is looking for
the disease-causing mutation, plus an additional
piece of information depending on the algorithm
used. This information can either be the disease
phenotype (described as an online Mendelian
inheritance in man (OMIM) identifier), one or several
genes known or suspected to be associated with
the disease (defined by their Entrez Gene identi-
fiers), or a second genomic region that has been
linked as well to the disease. In the latter case,
the tool uses known or predicted interactions
between genes in the two regions extracted from
the STRING database. The output in every case is
an ordered list of candidate genes in the region
of interest. For the first two of the three methods,
the candidate genes are first retrieved through
sequence homology search, then scored accord-
ingly to the corresponding method. This means that
some of them will correspond to well-known
characterized genes, and others will overlap with
predicted genes, thus providing a wider analysis.
G2D is publicly available at http://www.ogic.ca/
projects/g2d_2/

BACKGROUND

In the effort to identify which gene or genes produce
what disease phenotype, geneticists are producing an
increasing number of genome-wide linkage analyses and
gene association studies that are generating too many
to test candidate genes. For this reason, during the past
five years, the problem of automating the prioritization

of candidate genes to inherited diseases has received
increasing attention from the bioinformatics community.
Computational approaches were made possible due to the
availability of the complete human genome sequence and
to considerable developments on database annotation
and data integration for molecular biology databases.
As a result, a number of methods that address this
problem have been published (1–12). These methods
apply a variety of approaches exploiting known or
deduced pieces of information that range from using
only the genomic sequence of the target region to data
mining analyses that include literature and different
annotation systems. For details about these methods see
the Introduction sections of (13) and (9). A recent work
where many of these methods were applied to the
prioritization of gene candidates for obesity and type 2
diabetes, shows that there are many discrepancies between
the produced candidate gene lists (13). This study suggests
the concurrent use of as many approaches as possible
when working with particular diseases, especially as there
are large differences in the kind and amount of useful
information that it is available for each disease. Following
this idea, we are developing and maintaining G2D
(genes to diseases), a resource that seeks to encompass
an increasing number of methodologies to obtain disease-
related genes.

G2D is a web resource for prioritizing genes as
candidates to inherited diseases, which started as a
public server in 2002. At the time, we provided the users
with pre-analyses of hundreds of inherited diseases by
applying a literature and data mining algorithm based on
fuzzy binary relations (2) using the disease’s phenotype
as input. In 2005, we made the algorithm available as
a web tool (14). Now, we have included two more ways
of prioritization that apply other principles. One is the
use of genes in a different genomic location already known
or suspected to produce a similar variant of the disease
of interest. The expectation is that the disease-responsible
gene will have a similar function to those. This is a more
stringent approximation and requires more information
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about the disease, but it is obviously correct in some cases.
The SUSPECTS method (7) has already exploited the idea
of gene similarity. The second approach added to G2D,
uses as input a second locus where the phenotype has
also been mapped in addition to the one where the user
is looking for the mutation (as in complex diseases).
The expectation is that the products of the genes in several
of the loci may be functionally associated, e.g. by
participating in the same pathway, or even by being part
of a protein complex (9,11). The system will prioritize the
candidates according to whether functional interactions
(both known and predicted) between proteins encoded
in genes of both loci are detected. We used the human
protein interactions from the STRING database (15) as
our source database.

Besides this web implementation, G2D has been applied
by us to the prioritization of genes for complex diseases
in two different studies so far: the aforementioned
collective computational study to suggest candidates for
obesity and type 2 diabetes (13), and to the selection of
asthma candidates for genotyping in two linkage regions
in a French Canadian founder population (manuscript in
preparation).

OUTLINE OF THE G2D SERVER

Given a chromosomal region where the user is looking for
candidate genes, there are three ways of using the G2D
server depending on the algorithm that will be applied.
The first option takes as input the phenotype of the disease
of interest described by means of an online Mendelian
inferitance in man (OMIM) disease entry (16). The system
will prioritize the genes according to the description of the
phenotype as provided by the MeSH disease annotations
(http://www.nlm.nih.gov/mesh/) to the linked bibliogra-
phy in the corresponding OMIM entry. For details of this
method see (2). A second option is to input one or several
human or mouse genes that are already known or are
suspected to be involved in the disease. The system will
prioritize the genes in the target region according to their
similarity to the known gene(s) as given by their GO
annotations and high sequence homology. In order to do
this, we compute scores for all GO terms according to
their similarity to the GO terms of the known genes
(measured in terms of their Resnik similarity). The
measure favors rare GO annotations. Next, we apply
this GO scoring system to the annotated genes in Entrez
Gene. Their corresponding RefSeq proteins are compared
through BLASTX to the chromosomal target region, and
the scoring is transferred to the hits that are below the
selected E-value. The third option can be used when
another chromosomal region has been also linked to the
disease of interest. The system will look for protein–
protein interactions in the STRING database, both
known and predicted that may be occurring between
a gene in the region of interest and a gene in the second
region. Since many interactions in STRING are predicted,
every interaction has associated a score (STRING score)
that reflects how likely is to be a true interaction. We use
the STRING score to sort the candidates within the region

of interest. Candidates that are more likely to interact
with a gene in the second region are then prioritized.
In our benchmark (see Conclusion and Supplementary
page in our web site), we observed higher precision when
STRING scores are very high. Additionally, it is possible
to access from our server a database of pre-calculated
results for more than 550 monogenic diseases on published
linkage regions using the phenotype method.
In the next sections, we describe the different use

options through examples. We have prepared step-by-step
web tutorials that contain very detailed information. They
can be accessed from our web server page (see Tutorial
section at our web site).

USE OF PHENOTYPE

The system will prioritize the genes according to the
description of the phenotype and its precomputed
associations to gene features as extracted from the
literature and the Entrez Gene database. The input
consists simply of the region where the user is looking
for the mutation, and the phenotype of interest, given as
an OMIM identifier. For example, suppose that you are
interested in candidate genes to Hirschsprung disease in
22q13.2. You have to enter in the appropriate boxes
a MIM number that defines the disease and the target
region. In this particular case, you would enter 131224
(the ID of the OMIM entry for Hirschsprung disease) in
the PHENOTYPE BOX, and q13.2 in the LOCATION
BOX. You would also select the chromosome, 22 and
‘Bands’ in the LOCATION BOX as you have entered
the genomic region in the form of a cytogenetic band.
You can refer to our web tutorial for more input
and output options. The output is an ordered list of
candidate genes, both known and predicted, ordered
according to their susceptibility for producing the
phenotype. For each candidate, you can explore any
overlapping with ESTs and pseudogenes, as well as trace
back the reasoning the system followed to associate the
candidates to the disease.

USE OF KNOWN GENES

This method can be used when one or more genes are
already known or are suspected to be related to the
disease. In order to use it, you have to provide your target
region in the LOCATION BOX in the same way as for
the phenotype method, plus one or several human genes
associated to the disease or related mouse genes.
Following with our example, Hirschsprung disease is
suspected to be a multigenic disease, and it is known that
mutations in the endothelin-B receptor (ETRB) gene cause
one of the variants of this disease. In order to find similar
or functionally related genes to ETRB in 22q13.2, you
could input the Entrez Gene IDs of human and mouse
ETRBs in the KNOWN GENES BOX. These are 2861
and 13 618, respectively. Like for the phenotype method,
the output is an ordered list of candidate genes that you
may explore in a similar manner. Candidates that overlap
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with genes that have (STRING) interactions with any of
the known genes input by the user are flagged.

USE OF STRING PROTEIN–PROTEIN
INTERACTIONS

The third method for finding candidate genes for multiple
gene phenotypes relies on protein–protein functional
interactions, either known or predicted. The rational is
that mutations on two proteins that participate on the
same pathway, or are directly interacting, will produce

the same or very similar phenotypes. The input for this
method consists of the target region, entered in the
LOCATION BOX like in the previous two methods, and
a second region where the phenotype of interest has been
also mapped to. The second region is entered in the
SECOND LOCUS BOX in the same manner, specifying
format and chromosome. The output is a list of genes in
the target region that may interact, according to STRING
(15), with any genes(s) in the SECOND BOX locus.
Candidates are sorted by how likely are their correspond-
ing interactions to be true indicated by their associated
STRING scores with 0.99 as maximum value. As an

Figure 1. G2D web server interface used to detect genes associated to MIS using the protein-protein method. Top left: the user inputs the coordinates
for Locus 1 (1p36-p34) and Locus 2 (1q25) that have been genetically linked to MIS. Top right: G2D displays 20 gene candidates in Locus 1 that
code for proteins that interact with proteins encoded by genes found in Locus 2. Bottom: tumor necrosis factor TNFSF4 and its receptor TNFRSF4
are encoded in Locus 2 and Locus 1, respectively, being therefore good candidates; a similar pair of genes (TNFSF8/TNFRSF8) appears as
candidate 3.
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illustration, suppose that you are interested in candi-
dates for myocardial infarction susceptibility (MIS) on
1p36-p34, one of the loci where the condition has been
linked to (17). The OMIM entry for MIS (608446) shows
that it is linked as well to regions 1q25, 6q25.1 and 1p22.1.
By entering 1q25 as the second locus, the output page
displays 20 candidates corresponding to proteins in
1p36-p34 that interact, according to the STRING
database, with at least one protein in 1q25. The first
candidate (see Figure 1) is the tumor necrosis factor
receptor superfamily, member 4 TNFRSF4 (Entrez Gene
ID 7293, located on 1p36). This gene comes out as the top
candidate because of its direct interaction (STRING
score¼ 0.999) with TNFSF4, the tumor necrosis factor
(ligand) superfamily, member 4 (tax-transcriptionally
activated glycoprotein 1, 34 kDa) (Entrez Gene ID
7292). The latter has been recently associated to athero-
sclerosis susceptibility increasing the risk for myocardial
infarction (18) making TNFRSF4 a very good candidate.
TNFRSF4 is therefore a quite attractive candidate from
a biological point of view, not yet tested but within the
linkage peak identified by the group that linked MIS to
1p36-p34 (E.J. Topol, personal communication).

CONCLUSION

The G2D web server allows users to prioritize candidate
genes for practically any disease phenotype in OMIM
through three different methods. The results of bench-
marking the methods on 227 diseases that have been
shown to be caused by more than one gene, are given in
detail in our web server (see Supplementary section at our
web site), and they can serve as a guidance on the expected
performance of each method. The phenotype and the
known-genes methods show a similar performance prior-
itizing the responsible gene in average among the top 25
and 27% of all genes in the band, respectively, when
considering target bands of 30 MB (averaging a content
of 300 genes). It must be taken into account, however,
that more input information about the molecular cause
of the disease is required by the known-genes method.
The protein–protein interactions method has a very
low recall but shows high precision when the STRING
scores associated to the candidates are ‘high’ and ‘very
high’ (0.9 score value and higher). This method could be
applied to a proportion of one in four cases, and in such
situations the responsible gene was among the top 10
candidates, 70% of the times for bands of size 30 MB.

Running times for the algorithms vary from very few
seconds to almost immediate yielding of results. Users can
examine, for all three procedures, the rational used by the
system to make the prioritization, keeping the process
transparent. We support this by including extensive
hyperlinks to related resources such as NCBI sequence
databases, Gene Ontology and the UCSC Genome
Browser.

SUPPLEMENTARY DATA

Supplementary Data are available at G2D web site.
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