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Unilateral weakness of the lower limb is a hallmark of multiple sclerosis (MS) and
a significant contributor to the progressive worsening of walking ability. There are
currently no effective rehabilitation strategies targeting strength asymmetries and/or gait
impairments in people with MS (PwMS). Transcranial direct current stimulation (tDCS)
has improved motor outcomes in various populations, but the effect of tDCS on gait in
PwMS and the ideal timing window of tDCS application are still unknown. This study
investigated the effects of tDCS, either before or during a 6 min walk test (6MWT), on
the distance walked and gait characteristics in PwMS. Twelve participants were recruited
and randomly assigned into BEFORE or DURING groups (both n = 6). The BEFORE
group received stimulation before performing a 6MWT (sham/2 mA, 13 min). The
DURING group received stimulation only during a 6MWT (sham/2 mA, 6 min). Stimulation
was over the more MS-affected primary motor cortex (M1). Distance walked and gait
characteristics of the walk were the primary and secondary outcomes. The results
indicated a significant decrease in distance walked in the DURING group (p = 0.026)
and a significant increase in gait velocity in the BEFORE group (p = 0.04). These changes
were accompanied by trends (p < 0.1) in distance walked, gait velocity, and stride length.
Overall, the results of this study suggest that tDCS performed before a 6MWT might be
more effective than tDCS during a 6MWT and that a single session of tDCS may not be
sufficient to influence gait.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier #NCT03757819.

Keywords: transcranial direct current stimulation (tDCS), multiple sclerosis, gait, neuromodulation, 6-min
walk test

INTRODUCTION

Weakness on one side of the body is a hallmark of multiple sclerosis (MS) and has been determined
to be a significant contributor to the progressive worsening of walking abilities (Kent-Braun et al.,
1997; Thoumie and Mevellec, 2002; Mevellec et al., 2003; Ng et al., 2004; Kalron et al., 2011;
Broekmans et al., 2013). Currently, there are no efficient rehabilitation strategies targeting strength
asymmetries and/or gait impairments in people with MS (PwMS). Many of the current treatments,
including pharmaceuticals, are only mildly effective and are often very expensive. Thus, a practical,
inexpensive, and effective adjunct treatment is required. One possible modality that fulfills these
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requirements is transcranial direct current stimulation (tDCS;
Jeffery et al., 2007). tDCS uses small currents applied to the scalp
to increase the excitability of cortical neurons by increasing their
spontaneous firing rate (Jeffery et al., 2007).

tDCS has been consistently shown to enhance motor
performance in healthy participants (Williams et al., 2013; Lima
De Albuquerque, 2015; Kaminski et al., 2016; van Asseldonk and
Boonstra, 2016), older adults (Hummel et al., 2010; Zimerman
et al., 2013; Hardwick and Celnik, 2014; Poston et al., 2015),
stroke patients (Jayaram and Stinear, 2009; Sohn et al., 2013;
Au-Yeung et al., 2014), and people with Parkinson’s disease
(Fregni et al., 2006; Benninger et al., 2010; Grüner et al., 2010;
Poston et al., 2013). One study of tDCS in PwMS found that
a single session of anodal tDCS (1 mA for 20 min) over the
primary motor cortex (M1) contralateral to the more-impaired
hand resulted in increased corticospinal output and projection
strength compared to sham stimulation (Cuypers et al., 2013).
However, other findings (Meesen et al., 2014) indicated that one
tDCS session was not able to improve motor performance of
the more-impaired hand of PwMS more than sham. Only one
study has investigated a single application of anodal tDCS to
improve knee extensor fatigability in PwMS and found no effect
on an isometric task (Proessl et al., 2018). Although some have
investigated the effects of multiple tDCS sessions on dynamic
functional tasks, like gait, in PwMS (Oveisgharan et al., 2019) and
in other neurological populations (de Paz et al., 2019), the results
have been mixed. No study to date has investigated the effects of
a single application of tDCS to improve gait in PwMS.

Importantly, there is also a lack of evidence regarding the
best timing window for tDCS, as no studies have directly
compared tDCS before with tDCS during a functional motor
performance. tDCS applied to the resting motor cortex (before)
may activate neuronal populations in a non-specific way that
is unlike activation for a specific motor task (Nitsche et al.,
2008). Thus, theoretically, tDCS during a motor task could lead
to an improved motor performance because the stimulation
may further enhance the normal increases in cortical excitability
and synaptic efficiency in specific, task-related neural circuits
active during task execution. On this topic, one study measured
cortical excitability before, during, and after tDCS (Santarnecchi
et al., 2014) and found that excitability only reliably increased
after stimulation, but not during. In addition, most studies have
applied tDCS before measuring various outcomes (Cuypers et al.,
2013; Ferrucci et al., 2014; Saiote et al., 2014; Tecchio et al., 2015;
Hanken et al., 2016; Chalah et al., 2017). However, tDCS has
previously enhanced motor learning when applied during the
learning process (Ammann et al., 2016). Thus, the ideal timing
window for tDCS application remains ambiguous, especially
considering the lack of comparative studies.

Therefore, the purpose of this study was to determine whether
one application of tDCS over the M1 representation of the
more MS-affected leg would increase the distance walked in a
6 min walk test (6MWT) in PwMS. An additional purpose was
to determine if tDCS applied during a 6MWT would increase
the distance walked compared to tDCS before a 6MWT. We
hypothesized that, compared to sham, tDCS would increase
distance walked and that tDCS during the 6MWTwould increase

distance walked to a greater extent than tDCS before the 6MWT
in PwMS.

MATERIALS AND METHODS

Participants
Twelve participants with relapsing-remitting MS were recruited
(see Table 1 for demographic information). Inclusion criteria
were: (1) medically diagnosed with MS; (2) 18–70 years
of age; (3) moderate disability (i.e., a score of 2–6 on
the Patient-Determined Disease State (PDDS) questionnaire);
(4) self-reported differences in function between the legs; and
(5) able to walk for 6 min. Exclusion criteria included: (1) relapse
within the last 60 days; (2) changes in disease-modifying
medications within the last 45 days; (3) concurrent neurological
or neuromuscular disease; (4) hospitalization within the last
90 days; (5) diagnosed depression; and (6) inability to understand
or sign the consent form. Participants were randomly assigned
into two groups in a counterbalanced fashion. All participants
signed informed consent and the study was approved by the
Institutional Review Board at the University of Iowa. Study
procedures were conducted in accordance with the Declaration
of Helsinki.

Experimental Design
This study employed a double-blind, sham-controlled,
randomized crossover design. Each participant attended
three sessions. In the first session, participants were consented
and completed the PDDS and Fatigue Severity Scale (FSS)
questionnaires. Then, after a counter-balanced randomization
into BEFORE or DURING groups (both n = 6), the participants
completed a 6MWT for baseline/familiarization purposes. The
second and third sessions involved tDCS or sham either before
or during a 6MWT, depending on group assignment. The tDCS
stimulation was randomly assigned to either session two or
three, and sham was performed in the other session.

Leg Strength, 6MWT, and tDCS
Isokinetic maximal voluntary contractions (MVCs) of the right
and left knee extensors were performed to determine the

TABLE 1 | Subject demographic information.

Before During All

Sex (M/F) 2/4 4/2 6/6
Age (years) 47.0 ± 13.6 55.8 ± 7.4 51.4 ± 11.4
Height (cm) 160.4 ± 5.4 177.4 ± 10.8 168.9 ± 12.0
Weight (kg) 66.7 ± 13.4 86.1 ± 22.2 76.4 ± 20.2
Time since diagnosis (years) 17.7 ± 12.9 17.5 ± 12.7 17.6 ± 12.2
PDDS 2.7 ± 1.4 3.8 ± 1.2 3.3 ± 1.4
FSS 4.2 ± 2.3 5.3 ± 0.5 4.8 ± 1.7
Medications
DMT (%) 66.7 66.7 66.7
Others (%) 16.7 33.3 25.0

Data are mean ± SD. Note: PDDS, Patient-Determined Disease Steps; FSS, Fatigue
Severity Scale; DMT, disease modifying therapies (Aubagio, Ocrevus, Tecfidera, or
Copaxone); Others, fatigue (Modafinil, Adderall), spasticity (Baclofen), or walking
(Ampryra). FSS served as the covariate in the statistical analysis. Medications are
percentage of subjects taking either DMT or other MS-related drugs.
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more-affected leg. When strength differences were less than
10% (Sapega, 1990), the more-affected leg was based on the
participants’ self-report. For the 6MWT (Goldman et al., 2008;
Socie et al., 2014; McLoughlin et al., 2016), participants walked
back and forth between two markers spaced 30 m apart for
6 min. The distance walked was the primary outcome measure.
Additionally, because we expected that tDCS would alter the
utilization of the more-affected leg, standard gait characteristics
(e.g., gait speed, cadence, and stride length) for the 6MWT were
also collected as secondary outcomes using a six sensor OPAL
system (APDM Inc., Portland, OR, USA) for both tDCS and
sham sessions (Washabaugh et al., 2017).

A tDCS device (ActivaDose II, ActivaTek Inc., Salt Lake City,
UT, USA) delivered a small direct current through two sponge
surface electrodes (5 cm × 5 cm, soaked with 15 mMNaCl). The
anode was located over the motor cortex representation of the
more-affected leg (C3 or C4 on the International EEG System)
and the cathode was placed on the contralateral supraorbital
area (Au-Yeung et al., 2014). The electrodes were held in place
with a Caputron Universal tDCS Strap (Caputron, New York
City, NY, USA). When stimulation was applied in the 6MWT
for the DURING group, the device was secured to the middle of
the upper back of the participant using the OPAL sensor chest
strap. None of participants reported any discomfort from having
the device secured in this fashion. Active tDCS involved a 30 s
ramp-up to 2 mA, after which the intensity stayed at 2 mA for the
duration of the stimulation period. At the end of the stimulation
time, the intensity was ramped-down to 0 mA over 30 s. For
sham, participants experienced the initial 30 s ramp-up to 2 mA,
after which the intensity was ramped-down to 0 mA for the
remainder of the stimulation period.

For the BEFORE group, stimulation was applied for 13 min
while seated comfortably in a chair. Thirteen minutes of tDCS
results in after-effects sufficient to increase excitability for the
duration of the 6MWT (Nitsche and Paulus, 2001). Immediately
after the stimulation, the participants completed the 6MWT
as described above. For the DURING group, stimulation was
applied only during the 6MWT (i.e., for 6 min), which has been
shown to be sufficient to induce changes in cortical excitability
(Nitsche and Paulus, 2000, 2001; Santarnecchi et al., 2014; Buch
et al., 2017). Because a purpose of this study was to investigate
two different tDCS timing windows, it was necessary to include
tDCS only during the 6MWT and not a combination of before
and during. However, previous studies have indicated that short
duration stimulation (i.e., 5 min) results in a rapid decline in
excitability toward baseline levels (≤5 min; Nitsche and Paulus,
2000). Therefore, a relatively longer stimulation time for the
BEFORE group (i.e., 13 min) was necessary to induce excitability
increases to the same level as the 6 min duration, but also
sufficient to last through the completion of the 6MWT (Nitsche
and Paulus, 2001). Nevertheless, the intensity of tDCS was 2 mA
for both groups (Nitsche and Paulus, 2000; Meesen et al., 2014).
The participants were blind to which stimulation condition they
experienced and test administrators that measured the distance
walked were also blind to stimulation condition (i.e., double-
blind). To determine blinding integrity, participants were asked
to guess which stimulation condition (tDCS or sham) they

experienced at the end of sessions two and three. Feedback about
the accuracy of guesses was not provided until the participant had
completed all experimental conditions.

Statistical Analysis
The distance walked during 6MWT and gait characteristics
were analyzed with a repeated-measures ANCOVA, with
stimulation (tDCS vs. sham) as a within-subjects factor and
group (BEFORE vs. DURING) as a between-subjects factor.
Additionally, to control for the individual baseline fatigue of the
participants, FSS score was input as a covariate. Paired t-tests
clarified significant main and interaction effects. Significance was
accepted at p < 0.05, after Bonferroni correction. All analyses
were performed using SPSS 25 (IBM Corp., Armonk, NY, USA).
The percentage of correct guesses in each stimulation condition
(tDCS or sham) assessed blinding integrity. Data are reported as
mean ± SD in tables and as mean ± SE in figures.

RESULTS

All participants completed all scheduled sessions. The results of
the analysis indicated no significant main effects of stimulation
or group (p> 0.05), but there were significant stimulation∗group
interactions for total distance walked (p = 0.011), gait velocity
(p = 0.014), more-affected stride length (p = 0.023), and
less-affected stride length (p = 0.032). Pairwise tests further
indicated that DURING walked a significantly shorter distance
in tDCS compared with sham (mean difference (95% confidence
interval); −14.6 m (−27.0 to −2.2), p = 0.026; Figure 1)
accompanied by decreases in velocity and stride length on
the less-affected side that approached significance [−0.25 m/s
(−0.051 to −0.001), p = 0.06 and −0.21 m/s (−0.046 to −0.003),
p = 0.08, respectively]. BEFORE had a significant increase in gait
velocity in tDCS compared with sham [0.03 m/s (>0.000–0.053),
p = 0.04; Figure 2] accompanied by nearly significant increases in
distance walked [11.1 m (−1.319 to 23.445); p = 0.07] and stride
length on the more-affected side [0.02 m (−0.001 to −0.042,
p = 0.06]. See Table 2 for other paired test results. In addition,
the same percentage of subjects correctly guessed the tDCS and
sham conditions (both 83.3%).

DISCUSSION

The purpose of this study was to determine whether one
application of tDCS over the M1 representation of the more
MS-affected leg would increase the distance walked in a 6MWT
in PwMS and to determine if tDCS applied during a 6MWT
would increase the distance walked compared to tDCS before a
6MWT. The results indicated that tDCS increased gait velocity in
the BEFORE group only, which coincided with trending changes
in distance walked and stride length on the more-affected
side (Table 2). However, contrary to our second hypothesis
that distance walked would be greater in DURING, this group
walked a significantly shorter distance with tDCS, accompanied
by trending decreases in velocity and stride length on the
less-affected side that approached significance (Table 2). Taken
together, and considering the trends toward significance (i.e., p≤
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FIGURE 1 | Distance walked in the 6-min walk test. Data are mean ± SEM.
*Indicates significantly different from sham.

FIGURE 2 | Gait velocity in the 6-min walk test. Data are mean ± SEM.
*Indicates significantly different from sham.

0.1) that similarly reflected the distance walked and velocity
changes of both groups, these results indicate that tDCS before
a gait task might be more effective than tDCS during a gait task.

Interestingly, the effect of tDCS on the DURING group
was an overall decrease in 6MWT performance. This is in
contrast to previous studies that found significant enhancing
effects of tDCS during motor learning (Ammann et al., 2016).
However, an important distinction between the studies reviewed
by Ammann et al. (2016) and the current study is the purpose of

the stimulation. Studies on motor learning used tDCS during a
task (often called ‘‘online’’) to enhance the acquisition of a novel
skill; here, tDCS was used to affect the motor performance of
a presumably well-learned, everyday task. Thus, the difference
between the acquisition of a new skill and the performance
of a learned task may represent an important discrepancy
between the effects of tDCS during a task. Furthermore, a
previous study (Santarnecchi et al., 2014) investigating the time
course of the effects of tDCS on cortical excitability found
that excitability changes were ambiguous during the stimulation
(with the exception of an excitability increase at min 2.5), but
had consistent significant increases for several minutes after
stimulation (Santarnecchi et al., 2014), which agrees with the
data of the current study. Some have also suggested that the
cortex may try to maintain an excitability homeostasis, even in
a diseased state (Chai et al., 2019). Thus, in populations like
MS that have reduced baseline excitability (Zipser et al., 2018),
performing tDCS during gait might interfere with endogenous
gait signals and the homeostatic maintenance efforts of the
cortex. More investigation into the difference between the
effects of tDCS during skill acquisition and during a motor
performance, as well as the mechanisms underpinning these
differences, is certainly warranted.

In addition, many motor learning paradigms involve
relatively simple movements of the digits or upper extremity
(Ammann et al., 2016), while gait requires complex joint
movements and coordination of multiple motor and sensory
systems (Bollens et al., 2014). Likewise, a recent review
(Machado et al., 2019) analyzed the results of tDCS studies
on muscular strength and muscular endurance. The authors
found that 66.7% of studies on muscular strength and
50% of studies on muscular endurance reported significant
improvements from tDCS. However, most of these studies
investigated joints in isolation (i.e., using a dynamometer),
which makes the complexity of those tasks necessarily less than
walking. Therefore, task complexity, and or specificity, may
also explain the conflicting findings encountered in many tDCS
investigations on motor performance.

The different stimulation times between BEFORE and
DURING may also represent another important factor. Anodal
tDCS for 5 min has previously resulted in increased cortical
excitability (Nitsche and Paulus, 2000, 2001; Santarnecchi
et al., 2014; Buch et al., 2017), but these increases had
shorter latencies than longer stimulation times (i.e., 13 min;
Nitsche and Paulus, 2001). Therefore, even though cortical

TABLE 2 | Analysis results for the gait characteristics during the 6-min walk test.

Before During

Sham tDCS p Sham tDCS p

Distance (m) 366.3 ± 90.2 375.0 ± 77.8 0.07 298.0 ± 133.1 285.7 ± 131.0∗ 0.02
Velocity (m/s) 1.01 ± 0.23 1.03 ± 0.21∗ 0.04 0.80 ± 0.37 0.78 ± 0.37 0.06
Cadence (str/min) 110.5 ± 9.4 111.6 ± 8.0 0.25 92.6 ± 16.4 91.8 ± 5.7 0.38
Stride Length (m)
More-affected 1.09 ± 0.19 1.11 ± 0.17 0.06 0.98 ± 0.34 0.97 ± 0.35 0.09
Less-affected 1.08 ± 0.18 1.09 ± 0.16 0.11 0.98 ± 0.35 0.96 ± 0.36 0.08

Data are mean ± SD. Note: results are after controlling for Fatigue Severity Scale score and Bonferroni correction. Str, strides. ∗ Indicates significant difference between sham and tDCS.
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excitability may have increased with 6 min of stimulation, it
is possible that the short stimulation period for the DURING
group may have been insufficient to influence the performance
of the 6MWT. On the contrary, the stimulation time of the
BEFORE group was closer to previous studies that have reported
performance improvements with tDCS in other populations
(Benninger et al., 2010; Hummel et al., 2010; Au-Yeung et al.,
2014; van Asseldonk and Boonstra, 2016) and was accompanied
by increased gait velocity. Therefore, the results of the present
study may suggest that a certain (minimum) stimulation time
may need to be reached before performance improvements
become evident.

Similarly, the effect of a single session of tDCS may also
be inadequate to induce motor performance changes (Meesen
et al., 2014; Proessl et al., 2018). In particular, considering
that MS has presumably been affecting and driving motor
adaptations/maladaptations for years, it may be unrealistic to
expect large effects from one acute application of tDCS (Sadnicka
et al., 2014). Indeed, the significant increase in velocity found
in the BEFORE group may not be clinically relevant, but the
accompanying trending increase in distance walked (∼11 m)
may indicate clinically significant changes. To this point, there
is evidence that multiple sessions of tDCS may result in greater
performance outcomes (Workman et al., 2019), even during a
motor task (Dumel et al., 2016; Ho et al., 2016; Yosephi et al.,
2018). Thus, investigation of repeated applications of tDCS, both
before and during, to influence gait in PwMS is justified.

The most prominent limitation of this study is the relatively
small number of participants in each group, which suggests
caution in generalizing the results. In addition, the differences in
sex, height, weight, or disability (PDDS) could have contributed
to the lack of significant group effects. There was also no
assessment of cortical excitability with transcranial magnetic
stimulation (TMS), which would have provided information on
the excitability changes from tDCS in the BEFORE and DURING
groups. Additionally, changes in the ratings of perceived
exertion (RPE) in the different conditions were not measured.
A different RPE in tDCS compared with sham, or between the
two groups after the 6MWT, would have helped determine if
PwMS experienced changes in perceived exertion and further
clarified the clinical relevance of the results. Additionally, the
stimulation montage (i.e., unilateral M1) used may represent
another limitation. Previous studies using similar montages
have had yielded positive results (Cogiamanian et al., 2007;
Kan et al., 2013). However, there is evidence that bilateral
montages (i.e., targeting both hemispheres) may be superior
to unilateral montages (Naros et al., 2016; Angius et al., 2018;
Cancelli et al., 2018). Additionally, cerebellar montages may be
preferable in gait investigations because the cerebellum controls
several important aspects of gait (Thach and Bastian, 2004). In
addition, the relatively large size of the stimulation electrodes
may have influenced brain areas surrounding M1 (Bastani and
Jaberzadeh, 2013; Ho et al., 2016), which could also have
influenced performance.

Future studies should continue to assess the effects of
tDCS on complex motor performances and explore the ideal
window for applying tDCS, especially inmultiple sessions. Future

work should also investigate the mechanisms underpinning
motor performances and would benefit from TMS (cortical
excitability), electromyography (muscle activation), and positron
emission tomography (PET) or other brain activity measures.
Furthermore, explorations and comparisons of different task
complexities, different montages (i.e., bilateral, cerebellar),
and traditional vs. high definition tDCS (HD-tDCS) focal
stimulation (Reckow et al., 2018) will further refine tDCS
applications aimed at ameliorating the symptoms of debilitating
neurological conditions.

SUMMARY

The BEFORE group performed the 6MWT at a higher
gait velocity after tDCS and the DURING group walked a
significantly shorter distance in the 6MWT with tDCS. These
changes were accompanied by trends (p < 0.1) in distance
walked, gait velocity, and stride length in the same direction
as the significant results for each group. Overall, the results of
this study suggest that tDCS performed before a 6MWT might
be more effective than tDCS during a 6MWT and that a single
session of tDCS may not be sufficient to influence gait.
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