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ABSTRACT

By regulating transcript isoform expression levels, alternative splicing provides 
an additional layer of protein control. Recent studies show evidence that cancer 
cells use different splicing events to fulfill their requirements in order to develop, 
progress and metastasize. However, there has been less attention for the role of the 
complex catalyzing the complicated multistep splicing reaction: the spliceosome. The 
spliceosome consists of multiple sub-complexes in total comprising 244 proteins or 
splice factors and 5 associated RNA molecules. Here we discuss the role of splice 
factors in the oncogenic processes tumors cells need to fulfill their oncogenic 
properties (the so-called the hallmarks of cancer). Despite the fact that splice factors 
have been investigated only recently, they seem to play a prominent role in already 
five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, 
deregulating cellular energetics and invasion and metastasis formation by affecting 
major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg 
effect, DNA damage response and hormone receptor dependent proliferation. 
Moreover, we could relate expression of representative genes of four other hallmarks 
(enabling replicative mortality, genomic instability, avoiding immune destruction and 
evading growth suppression) to splice factor levels in human breast cancer tumors, 
suggesting that also these hallmarks could be regulated by splice factors. Since many 
splice factors are involved in multiple hallmarks of cancer, inhibiting splice factors 
might provide a new layer of oncogenic control and a powerful method to combat 
breast cancer progression.
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INTRODUCTION

During gene transcription, a pre-mature messenger 
RNA (pre-mRNA) molecule is generated that requires 
further processing to a mature in a mRNA molecule that 
will be translated into a protein. In this maturation step, the 
introns are usually removed and the exons are ligated. This 
process, called splicing, is one of the post-transcriptional 
processes essential for RNA translation into functional 
proteins and requires the activity of the splice factors. 
Besides simple intron removal and exon coupling, the 
activity of those splice factors enable that multiple protein 
isoforms can be translated out of one pre-mRNA transcript 
by selective incorporation of pre-mRNA parts in the mature 
mRNA transcript [1–4]. This is called alternative splicing 

(AS) and provides an essential layer of post-transcriptional 
regulation that only recently received much attention from 
the research community. In particular, it is becoming clear 
that tumor cells benefit greatly from this flexible regulatory 
process since many specific isoforms have been identified 
as promoting and supporting neoplastic transformation, 
tumor growth and progression. Many reports have linked 
AS to up-regulation of proto-oncogenes, deregulated cell 
division, increased survival, altered metabolism, onset of  
angiogenesis, increased invasion and metastasis in different  
cancer types including breast cancer [5–8].

Splicing is a complex multistep process catalyzed 
by the spliceosome, a large, dynamic, multicomponent 
complex consisting of five small nuclear ribonucleoproteins 
(snRNPs) U1, U2, U4, U5 and U6 and many associated 
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proteins. In the human spliceosome, the 141 core factors 
are highly abundant and/or are specifically associated with 
the U1, U2, U5, U4/U6 snRNPs, or the U4/U6. U5 tri-
snRNP [9, 10]. The auxiliary splice factors that are not part 
of the core spliceosome regulate AS and are less abundant 
when co-purified with the core spliceosome members 
[9, 10]. Splice factors are highly diverse considering 
both function and structure. For example, hnRNPs are 
characterized by a RNA Recognition Motif (RRM) domain 
that accommodates site-specific binding to the target RNA 
typically resulting in splicing inhibition by suppressing 
assembly of the spliceosome [11] or attraction of snRNPs 
[12, 13]. SR splice factors contain a domain consisting of 
arginine/serine repeats (RS domain) and at least one RRM 
domain [14–16] and facilitate recruitment of the snRNPs to 
the splice sites [2]. Additionally, their activity is regulated 
through phosphorylation by SR protein kinases (SRPKs). 
Currently almost 250 splice factors distributed over 
different classes have been identified, all playing a specific 
role at a specific stage of the splicing process [9, 17, 18]).

Breast cancer is the most frequent type of cancer 
in women with an estimation of 268,670 new cases and 
41,400 deaths in the United States in 2018 [19]. In order 
to develop and progress, (breast) cancer cells move 
through various steps to fulfill their requirements for 
certain oncogenic properties. These processes – the so-
called ‘hallmarks of cancer’ – have been summarized 
by Hanahan and Weinberg in 2000 and 2011 [20, 21] 
and currently include ten processes essential for tumor 
development and progression. In this review, we will 
discuss the spliceosomal changes across the different 
hallmarks of breast cancer. Since many of the already 
known spliceosome target genes have already been 
reviewed extensively elsewhere [5–8], we will focus on 
the role of splice factors as potential oncogenes or tumor 
suppressors in breast cancer. We will highlight newly 
identified splice factors of which abnormal regulation is 
linked to the different hallmarks of breast cancer [21]. 
For the hallmarks that have not yet been linked to splice 
factors expression, we identified factors strongly related 
to hallmark-specific oncogenic processes using publicly 
available RNA sequencing data. Finally, we discuss the 
clinical relevance of using splice factors as biomarkers and 
potential targets in breast cancer therapy.

SPLICE FACTOR DYSREGULATION  
IN BREAST CANCER

Cancer-specific splicing events are established via 
different routes: 1) changes in expression levels, activity 
and localization of splice factors and/or 2) mutations 
in functional domains of splicing related proteins and/
or mutations in regulatory sequences, such as enhancer/
silencer sequences and branch points [22, 23]. Both 
processes can result in differential splice factor activity 
leading to differential splice site usage or increased or 

suppressed intron or exon inclusion. Those deregulatory 
events in splicing have been shown to play a prominent 
role in breast cancer.

Altered expression, activity and localization of 
splice factors

Altered expression

In two independent studies, the comparison of the 
transcriptome of human breast tumors versus matched 
healthy tissue revealed that 10%–50% of the protein-
coding genes have altered transcript variant expression 
levels [24, 25]. These patient data are in line with recent 
in vitro findings that show a significant switch in splicing 
pattern during epithelial-to-mesenchymal transition 
(EMT) accompanied with a specific EMT splicing 
signature [26]. Interestingly, this shift in splicing pattern 
was correlated to the expression levels of specific splice 
factors; all three studies revealed splice factor RBFOX2 
as one of the most differentially expressed between the 
epithelial and mesenchymal cell state [24–26]. Moreover, 
expression levels of MBNL1, QKI, PTBP1, ELAV1, 
HNRNPC, KHDRBS1, SRSF2 and TIAR were also linked 
to the mesenchymal state [24]. By applying a splicing 
motif analysis in EMT regulated alternative transcripts, 
Shapiro et al. concluded that the MBNL, CELF, hnRNP, 
or ESRP splice factors were most likely involved in the 
EMT splicing patterns [26]. Furthermore, depletion of the 
mesenchymal splice factor RBFOX2 or overexpression of 
the epithelial factor ESRP in mesenchymal cells induced a 
more epithelial morphology and reduced cell motility [26]. 
Altogether, these data clearly suggest that splice factors 
can be in control of EMT and breast cancer progression.

Post-translational modifications and chromatin 
structure

Next to changes in expression levels, activity 
of certain splice factors can also be regulated by post-
translational modifications (PTMs) such as acetylation, 
phosphorylation and ubiquitination. Strong interactions 
between ubiquitination and the spliceosome have been 
demonstrated and SR proteins are widely known to regulate 
the activation of other splicing factors by phosphorylation 
[27–29]. For example, acetylation and ubiquitination of the 
splicing factor SRSF5 has been shown to control tumor 
growth [30]. The phosphorylation status of SRSF1 and 
SRSF7 controls their function as only non-phosphorylated 
SR proteins were shown to facilitate the recruitment of 
mRNA to nuclear export receptors [31–34].

Moreover, the intracellular distribution can be 
crucial for downstream signaling events. Although most 
splice factors reside in the nucleus, cytoplasmic splicing 
has been recently shown to take place in mammalian 
cells implying that splice factors might have differential 
activities depending on their intracellular location [35]. 
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Splice factor dynamics is also highly dependent on the 
chromatin structure that is often disturbed in cancer cells 
[36]. Non-coding RNAs (ncRNAs) and in particular long 
ncRNAs (lncRNAs) can alter the chromatin environment 
preventing the recruitment of a repressive chromatin-
splicing adapter complex and consequently regulate AS 
of the FGFR2 [37]. Moreover, histone hyper acetylation 
has been shown to affect the distribution of several 
splicing factors such as SRSF1, SRSF2 SRSF3 and 
U2AF65, causing accumulation in the nuclear speckles 
[38] and decreased spliceosomal assembly at 3′ splice 
sites, while calcium-mediated histone hyperacetylation 
regulates AS of genes important in heart development 
[39]. Finally, splicing can be regulated by miRNAs within 
the supraspliceosome that can target different RNAs 
via alternative base pairing, thereby regulating gene 
expression and quality control of AS [40].

Mutations in splice factors or regulatory sites

Next to altered splice factor expression levels and 
activity, abnormal splicing can be caused by mutations in 
the genes that encode these factors. Few studies and our 
own analysis (Supplementary Table 1) demonstrate that 
the splice factors U2AF1, SRSF2 and SF3B1 are often 
mutated in myelodysplastic syndromes [41], but also in 
solid cancers amongst which breast cancer [42]. These 
mutations mainly caused haematopoiesis due to impaired 
3′-splice site recognition followed by RNA splicing 
deficiencies [41]. U2AF1 mutations specifically affected 
AS of genes in various pathways pivotal for cancer 
development, such as apoptosis via CASP8, DNA damage 
response via ATR and FANCA and DNA methylation via 
DNMT3B [43].

For the luminal breast cancer subtype, mutations 
in SF3B1 were found to be possible driver mutations 
[44–46]. These mutations result in a change-of-function 
and have been associated with hundreds of atypical splice 
sites at the 3′ end of the intron, thereby inducing AS of 
SF3B1 downstream target genes [47, 48]. Accordingly, 
our splice factor mutation analysis of breast cancer tumors 
from the COSMIC database revealed frequently mutated 
spliceosome genes amongst which SF3B1 (Supplementary 
Table 1). Interestingly, 10 splicing factors were classified 
as driver genes of which mutations are selected 
during tumor development by the Intogen database 
(Supplementary Table 1), 5.4% of all driver genes in 
breast cancer were regulating splicing, suggesting a major 
role for these proteins in breast cancer oncogenesis.

Next to mutations that could affect the functionality 
of splice factors, mutations in 5′- or 3′ splice site or 
branch point can disrupt or create splice sites [49] and 
thereby cause AS [50, 51]. Furthermore, specificity of AS 
is controlled by cis-regulatory elements that regulate the 
recruitment of trans-acting splicing factors to the splice site; 
exonic splicing enhancers (ESEs), exonic splicing silencers 

(ESSs), intronic splicing enhancers (ISEs) and intronic 
splicing silencers (ISSs) [2]. Mutations can modulate 
activity of these elements thereby affecting AS. For 
instance, a point mutation in exon 18 of important tumor-
suppressor gene BRCA1 disrupts an ESE resulting in exon 
skipping [52], while mutations in the ESEs and branchpoint 
recognized by SRSF2 dysregulates spliceosome assembly 
and result in AS in myelodysplasia [53].

ROLE OF SPLICE FACTORS IN THE 
HALLMARKS OF BREAST CANCER

In order to develop and progress, (breast) cancer 
cells move through various oncogenic processes. These 
hallmarks of cancer were summarized by Hanahan and 
Weinberg in 2000 and 2011 and now contain ten processes 
essential for tumor development and progression  
[20, 21]. Although the splice factor research in relation 
to breast cancer emerged only recently, there are already 
five hallmarks of cancer known to be affected by splice 
factors: sustaining proliferation, activation of invasion 
and metastasis, resisting cell death, deregulating cellular 
energetics and angiogenesis. Here we will discuss splice 
factors and up –and downstream pathways important in 
these five hallmarks (Figure 1, Supplementary  Table 2). 
Moreover, we could relate expression of representative 
genes of four other hallmarks to splice factor levels in 
human breast cancer tumors (Figure 2, Supplementary 
Table 3), suggesting that also these hallmarks might 
be modulated by splice factors. However, the causal 
relationship between splice factor levels and these 
hallmarks of cancer remains to be elucidated.

Sustaining proliferation

Hormone-receptor dependent pathways

Sustained proliferation is probably the most critical 
and studied cancer hallmark. Normal tissues precisely 
control cell number through many signaling pathways, 
amongst which the well-known MAPK and PI3K cascades 
[20, 54, 55]. In transformed cells, these pathways are 
upregulated resulting in uncontrolled growth. In breast 
cancer this mainly occurs via mutations resulting in 
overexpression of hormone receptors including the 
estrogen receptor (ER), androgen receptor (AR), epidermal 
growth factor receptor (EGFR), human epidermal growth 
factor receptor 2 (HER2) and their corresponding ligands 
[20, 56, 57].

The ER consists of two subtypes: ERα and ERβ. 
Upon ligand binding ERα and/or ERβ will form homo- or 
heterodimers, leading to nuclear translocation and possibly 
transcriptional activation [58]. ERα stimulates cell 
proliferation and survival by regulating the transcription 
of hundreds of genes [59, 60]. The role of ERβ in cancer 
has yet to be defined as several studies report contradictory 
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correlations between transcript level and patient prognosis 
[61–63]. Emerging evidence suggests a role for splice 
factors in ER cancer signaling either by direct or indirect 
interactions with the receptors. For instance, RNA levels 
of SF3B3 correlate significantly with the overall survival 
of patients bearing ERα-positive tumors [64], PRPF4B 
protein expression levels are directly regulated by ERα 
activation [65] and HMGA1 is directly involved in ERα 
splicing [66]. Nassa et al. discovered that the interactome 
of both ERα and ERβ contains multiple splice factors of 
which some are common for both receptor subtypes (e. g. 
EFTUD2, SRSF2), while others only interact with a single 
receptor subtype, such as SNRPD1 for ERα and SF3A1 
for ERβ [67]. Introduction of ERβ expression diminished 
72% of ERα induced splicing events, but also introduced 
distinct splicing events in 28 genes that were functionally 
involved in many cellular processes including DNA 
replication and repair, DNA transcription, cell cycle and 
apoptosis [68]. Whether these changes are counteracting 
the proliferative effects of ERα transcriptional activity is 
yet unknown.

In addition to being regulated by ER signaling, 
PRPF4B levels are also controlled by HER2 signaling. 
Knockdown of HER2 results in downregulation of 
PRPF4B, whereas HER2 upregulation increases the 
levels of this splice factor in breast cancer cell lines 
[69]. Moreover, HER2 itself can be alternatively spliced 
resulting in different variants exhibiting either pro- or 
anti-tumorigenic functions. Skipping exon 16 results 
in the variant HER2D16, that is linked to increased 
resistance to HER2-targeting therapy and associated with 
cancer cell dissemination [70, 71]. Inclusion of intron 8 

results in a truncated version of HER2 named Herstatin. 
Herstatin binds to the extracellular domain of HER2, 
preventing transfer to the cell membrane and receptor 
dimerization and phosphorylation, thereby exhibiting 
anti-tumor activities [72–74]. Although HER2 and ER 
expression patterns are inversely correlated because 
of negative feedback loops, they are interconnected via 
downstream pathways, such as the MAPK pathway. This 
crosstalk between ER and HER2 seems to be important in 
endocrine resistance [75] and therefore treatment might 
be improved by identifying more pathways or proteins 
regulated by both ER and HER2. Since splice factors 
like PRPF4B fit this double activation pattern, it might 
be worth investigating the role of PRPF4B in hormone 
receptor growth resistance conditions.

Hormone receptor independent pathways

Next to involvement in known proliferation 
pathways, splice factors are also implicated in tumor 
growth via partly unknown mechanisms that might be 
independent of these hormone cascades. Examples are 
PTBP1 which inhibits cell growth in breast cancer cell 
lines [76], Tra2β, a target of transcription factor and 
oncogene ETS-1 that is upregulated in breast cancer and is 
associated with cancer cell survival [77], SRSF3 that upon 
inhibition decreased breast cancer cell proliferation [78], 
the loss of PRMT5 or WDR77 resulting in AS and loss 
of proliferative genes [79] and HNRNPC which is highly 
expressed in breast tumors and of which knockdown 
results in double strand breaks and reduced proliferation 
[80]. Furthermore, DDX3× modulates the cell cycle by 

Figure 1: The role of splice factors and their associated pathways in the five hallmarks of cancer. Core splicing factors are 
listed in bold. Non-core splicing factors are listed in italic. Adapted from Hanahan and Weinberg, 2011 [21].
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affecting splicing and expression of the cell cycle repressor 
KLF4, resulting in G1 arrest [81], while hnRNPA2B1 
knockdown affects MAPK and STAT3 signaling resulting 
in prolonged S-phase [82]. Altogether, we can conclude 
that splice factors play an important role in breast cancer 
sustained proliferation by either directly or indirectly 
activating hormone receptors and other growth associated 
pathways.

Furthermore, in line with the existing concept of 
breast cancer cells being addicted to oncogenes such as 
MYC for their proliferative and survival capacity, few 
recent studies have reported the dependence of breast 
cancer on spliceosomal components [83, 84]. In general, 
the overall increase in gene expression in cancer cell 
implies their aggravated dependence on splicing factors 
which open up a new strategic window for targeting 

Figure 2: Relation of splice factor expression levels to other hallmarks of cancer. (A) Steps used to link splice factor RNA 
expression levels to the other hallmarks of cancer. (B) Heatmap displaying the log2 fold change of genome instability markers comparing 
primary tumor tissue to normal tissue. NER = nucleotide excision repair, DSBR = double strand break repair, BER = base excision repair, 
DMMR = DNA mismatch repair. (C) Heatmap of log2 fold change of genome instability markers in ten control and hallmark patients 
comparing normal to primary tumor tissue. (D) Log2 fold change of splice factors in control and hallmark patients comparing normal to 
primary tumor tissue.



Oncotarget6026www.oncotarget.com

BC. Indeed, several splice factors including BUD31, 
SF3B1 and SRSF1 [85] are known to be gene targets of 
the oncoprotein MYC and inhibition or knockdown of 
those in MYC hyperactivated breast cancer cells impairs 
tumorigenesis [86].

Activation of invasion and metastasis formation

Because the human breasts are non-vital organs, 
primary tumors in breast tissue can be surgically removed 
without major consequences. Ultimately, it is the formation 
of metastatic lesions in secondary organs that causes 
breast cancer mortality. Metastasis formation is often 
described as a multi-step process, also called the invasion-
metastasis cascade [87, 88]. Primary breast cancer cells 
start to locally invade into the surrounding tissue and often 
those cells undergo a phenotypic switch characterized 
by epithelial-to-mesenchymal transition (EMT). In this 
process, epithelial cells bearing strong adhesion structures 
can switch to a migratory mesenchymal phenotype with 
loss of cell polarity and cell-cell contacts [89]. Those 
features acquired by mesenchymal cells allow not only 
infiltration into adjacent tissue, but also escape into the 
blood or lymphatic vessels.

Many splice factors have been linked to this 
EMT process. A genome-wide screen for EMT inducers 
identified many RNA-binding proteins, with splice factors 
QKI and RBFOX1 as main candidates. These factors 
regulated splicing of the actin binding protein FLNB, 
followed by release of FOXC1 leading to an intermediate 
mesenchymal cell state [90]. Moreover, the ratio of splice 
factors ESRP1/RBFOX2 was decreased during EMT and 
related to cancer progression and metastatic potential [91]. 
Next, the splice factor ESPR regulates fibroblast growth 
factor receptor 2 (FGFR2) splicing and thereby affects 
ligand binding, favoring FGFR2-IIIb which is specific to 
epithelial cells [92]. Genome-wide analysis of the ESRP 
splicing network uncovered hundreds of alternatively 
spliced genes that are involved in EMT related processes 
such as cellular adhesion and migration including ITGA6 
and RALGPS2 [92].

Another important class of splice factors involved 
in metastasis formation are the heterogeneous nuclear 
ribonucleoproteins (hnRNPs), which can control splice site 
selection by either directly antagonizing the recognition of 
splice sites or interfere with proteins bound to enhancers 
[93]. For instance, cytoplasmic localization of hnRNPA1 
is associated with metastatic relapse and activates RON 
translation that is known to affect cell migration and 
dissemination [94]. Conversely, nuclear hnRNPA1 acts as 
a tumor suppressor and inhibits exon 3b inclusion of the 
small GTPase Rac1, thereby repression formation of the 
Rac1b isoform [95]. Rac1b has a constitutively activated 
GTPase domain [96, 97] and is overexpressed in breast 
cancer [95, 98]. Matrix metalloproteinase-3 treatment 
interferes with hnRNPA1-Rac1 interactions, resulting 

in increased Rac1b levels and EMT [95, 99]. Moreover, 
breast cancer patients express high hnRNPA1 and low 
Rac1b levels in normal breast tissue, but low hnRNPA1 
and high Rac1b levels in cancer tissue, suggesting that 
splicing of the Rho GTPase is also in vivo regulated by 
hnRNPA1 [95].

hnRNPM competes with the pro-epithelial splice 
factor ESRP1 for guanine-uridine rich motifs to regulate 
splicing of exons in genes involved in EMT-related 
pathways [100]. Furthermore, hnRNPM controls EMT 
by modulating CD44 isoform expression, which in turn 
increases TGFβ signaling. Elimination of hnRNPM 
prevents TGFβ induced breast cancer metastasis in mice 
by decreasing the mesenchymal-related standard CD44 
isoform. hnRNPM mRNA levels were shown to correlate 
with aggressive breast cancer subtypes (basal and ER 
negative) and increased CD44 standard levels in breast 
cancer patients [101, 102]. Interestingly, the adhesion 
molecule CD44 that regulates the aggressive phenotype 
of breast cancer cells seem to be a common target of AS. 
KHDRBS1 is a factor involved in a dynamic protein 
complex variable in size and sensitive to EGF stimulation. 
EGF activation favors the smaller KHDRBS1 complex, 
which induces CD44 exon v5 inclusion resulting in 
enhanced cell migration [103]. Furthermore, SR splice 
factor TRA2β is overexpressed in invasive breast cancer 
and induces exon v4 and v5 inclusion [104], suggesting 
that besides the standard CD44 isoform also the v4 and v5 
isoforms are related to increased invasion and metastasis 
formation.

The third hnRNP, PTBP1 is upregulated in 
progressively transformed human mammary epithelial 
cells (HMECs). Knockdown of PTBP1 impairs tumor cell 
growth, colony formation, in vitro invasiveness of breast 
cancer cell lines and transformation state of HMECs [76].

Next to the hnRNPs, the splice factor SRSF protein 
kinase 1 (SRPK1) was shown to be highly expressed 
in more aggressive basal breast cancer, correlating to 
less metastasis-free survival and specifically increased 
number of lung and brain metastases in patients. Stable 
knockdown of this kinase reduced metastasis to distant 
organs in a mouse model and inhibited focal adhesion 
reorganization, which were surprisingly not correlated to 
a downstream decrease in serine/arginine-rich (SR) splice 
factor phosphorylation [105]. However, an important 
role for these SR splice factors – in particular serine and 
arginine splice factor 1 (SRSF1) – cannot be excluded. 
SRSF1 is amplified and upregulated in breast cancer and 
transforms immortal cells when overexpressed [106, 107]. 
This transformation is mediated by SRSF1 collaboration 
with transcription factor MYC thereby amplifying eIF4E 
activation. This potential mechanism is further supported 
by patient data that reveal a significant co-expression 
of MYC and SRSF1 in human breast tumors [107]. 
Furthermore, SRSF1 mutants prevent tumorigenesis and 
soft agar colony formation by inhibiting activation of 
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the B-Raf-MEK-ERK pathway [106]. Finally, SRSF1 
activates EMT and cell migration by induction of DRon, 
a constitutively active isoform of the Ron tyrosine 
kinase receptor that is causally connected to EMT [108]. 
Interestingly, hnRNPA1 has been shown to antagonize 
SRSF1-mediated EMT activation: through the inhibition of 
DRon production, hnRNPA1 activates the MET program at 
distant sites, thereby enhancing metastasis formation [108].

Next to its oncogenic roles in sustaining 
proliferation, PRPF4B demonstrated an anti-oncogenic 
role in relation to EMT: loss of PRPF4B resulted in 
reduced EGFR degradation, increased expression of 
mesenchymal markers vimentin and ZEB1, detachment 
from the extracellular matrix and anoikis resistance 
[109]. Besides EMT, some splice factors have also been 
linked to the metastatic cascade in general, and their role 
in a specific step of the metastatic cascade remains to be 
elucidated. For example, RALY and SNW1 stimulate 
exon 2 inclusion in PRMT1, promoting breast cancer 
invasiveness [110] and CDK12 promote alternative last 
exon splicing of DNA damage genes ATM and DNAJB6 
thereby increasing migration and invasiveness of breast 
cancer cells [111].

Resisting cell death

Resisting physiological stresses 

During tumorigenesis or anticancer therapy, cancer 
cells are exposed to numerous physiological stresses. In 
normal cells, these cellular stresses will cause apoptosis. 
However, cancer cells adapt in such environments and 
rewire their apoptotic program to survive. The SR related 
splice factor SRSF1 appears to play an important role 
in this process by promoting AS of crucial regulators of 
apoptosis BIM γ1 and γ2. Both isoforms lack the BH3 
domain necessary to bind the anti-apoptotic Bcl-2 family 
members. Moreover, SRSF1 stimulates AS of a BIN1 
isoform that is not able to bind MYC anymore, thereby 
losing its tumor suppressor activity leading to decreased 
levels of apoptosis [107]. This is in agreement with the 
observed upregulation of SRPK1 that contributes to the 
cytoplasmic accumulation of RNA-binding motif protein 
4 (RBM4). This leads to the production of anti-apoptotic 
isoforms IR-A and MCL-1L and decreased sensitivity to 
apoptotic signals in breast cancer cells [112]. Furthermore, 
depletion of splice factor PHF5A increased apoptotic 
signaling by promoting expression of short truncated 
FAS-activated serine/threonine kinase enabling Fas-
mediated apoptosis [113], while KHDRBS1 regulates 
exon 3 inclusion of the anti-apoptotic protein survivin that 
is higher expressed in advanced breast cancers [114]. The 
relation between splice factor levels and the ratio between 
the pro-apoptotic Bcl-Xs and anti-apoptotic Bcl-Xl splice 
variants is less evident. The activity of the splice factors 
PTBP1 [115], hnRNPF/H [116] and KHDRBS1 [117] 
increase the expression of Bcl-Xs, whereas hnRNPK 

favors Bcl-Xl expression [118]. In the end, the overall 
altered splicing in transformed cells is likely defined by 
different key factors which most probably changes during 
the different stages of cancer progression.

Transformation of normal cells into cancer cells 
almost invariably results in reduced genome stability. 
Tumor cells adapt to the load of mutations by activation 
of the DNA damage response (DDR) which prevents 
further proliferation and requires extra time to repair the 
lesions and might even result in apoptosis. Interestingly, 
splice factors TRA2α and TRA2β are clearly upregulated 
in breast cancer and those oncogene-like factors limit the 
amount of DNA damage thereby preventing cell death 
before entering the G2 phase. Indeed, dual knockdown 
of these factors results in a decreased expression of full 
length of CHEK1 (G2 checkpoint protein), leading to 
increased levels of the DNA damage marker γH2AX 
and decreased cell viability [77]. Moreover, upon DNA 
damage DDX54 interacts with pre-mRNAs containing 
introns with weak acceptor splice sites, leading to lower 
intron retention and increased survival [119].

Drug resistance

In addition to resisting cell death due to physiological 
stresses, cancer cells might also gain properties resulting in 
resistance to cytotoxic agents. For example, overexpression 
of RNA-binding protein and splice factor RBM17 occurs 
in many cancer types and is associated with drug resistance 
to general chemotherapeutic agents such as doxorubicin 
and vincristine [120]. Next, SRPK1 inhibition increased 
apoptotic potential and cell killing when combined with 
gemcitabine and cisplatin treatments through impaired 
MAPK1, MAPK3 and PI3K pathways [121]. Furthermore, 
TRA2A overexpression results in AS of RSRC2 and 
decreased protein expression, contributing to paclitaxel 
resistance in triple-negative breast cancer patients [122]. 
Low levels of PRPF4B correlate to patient acquired 
resistance to microtubule targeting chemotherapeutics, 
presumably by regulating the spindle assembly checkpoint 
[69]. Moreover, the subunits of the SF3B complex 
SF3B1 and SF3B3 are upregulated in ER-α positive 
cells with acquired tamoxifen and fulvestrant resistance, 
with SF3B3 overexpression relating to a decrease in 
overall survival [64]. Opposite to the previous factors, 
spliceosome component SRSF4 induces splicing events 
followed by apoptosis in cancer cells when combined with 
the cytotoxic agent cisplatin. Knockdown of this factor 
reverses these splicing events and as a result significantly 
reduces cisplatin induced apoptosis [123]. Interestingly, 
this confirms that there is a dual role for different splice 
factors in apoptosis regulation.

Deregulating cellular energetics

Closely related to uncontrolled cell proliferation 
is the deregulation of cellular energetics, which is 
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necessary to feed cells during growth and division. In 
aerobic conditions, healthy cells fuel their energy by 
processing glucose through glycolysis in the cytoplasm 
and oxidative phosphorylation in the mitochondria. 
Because the mitochondria consume high amounts of 
oxygen, energy production in anaerobic conditions relies 
only on glycolysis. However, cancer cells can reprogram 
their glucose metabolism using mainly glycolysis even in 
the presence of oxygen, named the Warburg effect. Splice 
factors that are suggested to control the Warburg effect 
are multiplayers PTBP1, hnRNPA1 and hnRNPA2 which 
not surprisingly are also involved in breast cancer growth 
and invasion. All three factors favor pyruvate kinase exon 
10 inclusion causing higher levels of the M2 isoform 
(PKM2) compared to M1 (PKM1) resulting in decreased 
oxygen consumption contributing to the Warburg effect 
[76, 124]. PTBP1, hnRNPA1, hnRNPA2 levels are 
regulated by MYC [124]. Interestingly, hnRNPA1 also 
regulates MYC by regulating AS of the MYC-interacting 
protein Max, resulting in increased Delta Max levels 
in glioblastoma. Delta Max but not Max stimulates the 
expression of glycolytic genes and is required for tumor 
growth in vivo [125].

PTPBP1, hnRNPA1 and hnRNPA2 are currently 
the only splice factors that have been related to the 
Warburg effect. However, since hypoxia is driving AS 
in breast cancer cells [126] and other splicing events 
of key metabolic genes such as PFKFB4 – which is 
responsible for retaining fructose-2,6-biphosphate, a key 
regulator of glycolysis – are altered in tumor tissue [127], 
we hypothesize that more spliceosome components are 
involved in cancerous cell metabolism.

Angiogenesis

New blood vessel formation or angiogenesis is 
critical for tumor progression since it i) provides the tumor 
with nutrients needed for growth and ii) brings the tumor 
cells in close proximity to blood circulation facilitating 
invasion and metastasis formation. Vascular endothelial 
growth factor (VEGF) is a key component in both 
physiological and pathological angiogenesis. Breast cancer 
patients with elevated VEGF levels have a higher risk to 
develop metastases or death compared to other patients 
[128] and therefore inhibition of this factor is a promising 
therapeutic strategy [129]. VEGF can be alternatively 
spliced by using a distal splice site selection in exon 8, 
resulting in the anti-angiogenic isoform VEGFxxxb bearing 
a different C-terminus [130–132]. Splice site selection 
is dependent on SRPK1/2 phosphorylation of the RNA-
binding splice factor SRSF1. Furthermore, SRPK1 
regulates VEGF splicing and activity in prostate cancer: 
SRPK1 knockdown results in up-regulation of the anti-
angiogenic isoform VEGFxxxb and decreased angiogenesis 
in a xenograft model [133]. Accordingly, mutations in the 
tumor suppressor gene WT1 lead to increased SRPK1 
levels and hyper phosphorylated SRSF1, reducing anti-

angiogenic VEGFxxxb levels [134]. Treatment with 
SRPK1/2 inhibitors results in reduced angiogenesis, 
suggesting that AS regulation might provide a promising 
strategy to inhibit angiogenesis through depletion of pro-
angiogenic components such as VEGF [135]. This is 
confirmed by the prediction that targeting of specific VEGF 
isoforms might be the best strategy to reduce free VEGF 
in tumors [136]. Another example is the splicing regulator 
Nova2 that is involved in vascular lumen formation, 
an essential step in angiogenesis. Nova2 targets exons 
implicated in the partitioning-defective (Par) complex and 
its regulators including Par3, Arhgef6 and Rapgap1. The 
Par complex interacts with tight junctions and cadherins 
and is important for lumen formation by endothelial cells, 
thereby being essential for cellular and tissue homeostasis 
[137–140]. Nova2 knockdown interferes with vascular 
lumen development in vivo and impairs endothelial cell 
polarity [137]. Although Nova2 has not been linked to 
tumorigenesis yet, it might be a potential target to inhibit 
angiogenesis.

Splice factors in the other hallmarks

In the last decade, splice factors levels have 
extensively been related to five hallmarks (Figure 1), 
suggesting a strong relation between splicing regulation 
and cancer development and progression. However, 
the remaining five hallmarks (genomic instability, 
tumor promoting inflammation, enabling replicative 
immortality, avoiding immune destruction and evading 
growth suppression) are still unaddressed. Here, we 
used RNA sequencing data from primary breast tumors 
from The Cancer Genome Atlas to investigate the 
potential role of splice factors in these hallmarks. For 
all of these hallmarks, we selected representative genes 
based on literature (Figure 2A, Supplementary Table 4)  
and calculated their log2 fold change (FC) between 
normal and tumor tissue. Key representative genes were 
selected based on their differential expression between 
normal and tumor tissue. For example, genome instability 
is characterized by a loss of repair mechanisms [21]. 
Comparing normal and primary tumor expression levels 
for genes involved in repair mechanisms, we identified 
four genes involved in nucleotide excision repair to be 
significantly downregulated in tumor tissue (Figure 2B). 
Next, we selected ten patients that were not affected 
(control patients) and ten patients that were heavily 
affected (hallmark patients) by the hallmark of interest 
(Figure 2C for genome instability). Finally, splice factor 
expression levels were compared between control 
and hallmark patients using a student’s t-test and after 
correction for multiple testing, splice factors significantly 
related to the specific hallmark could be identified 
(Supplementary Table 3). Interestingly, we could detect 
splice factors related to all remaining hallmarks, except 
for tumor promoting inflammation. Some of these splicing 
factors have already been associated with other hallmarks. 
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EFTUD2 expression levels are linked to markers of 
replicative immortality while it was previously shown to 
interact with ER and affect breast cancer proliferation [67]. 
Loss of WDR77 resulted in loss of proliferative genes and 
expression levels are linked to genome instability [79]. 
Interestingly, we also identified splice factors that have 
not been linked to other hallmarks in breast cancer before, 
such as CRNKL1, RALY and JUP. Future functional 
studies can use our analysis as a starting point to unravel 
the causal relationship between splice factor levels and 
these hallmarks of cancer.

FUTURE PERSPECTIVES AND 
CONCLUSION

As splice factors are frequently overexpressed 
in cancer compared to normal tissue, but also in highly 
invasive compared to less invasive tumors, splice 
factors might be a new promising therapeutic avenue 
in preventing breast cancer metastasis thereby lowering 
mortality in women. A possible drawback of inhibiting 
these factors could be the generation of adverse side 
effects when considering their critical function in intron 
removal in normal tissue. However, recent studies 
demonstrate that splice factor inhibition might certainly 
be applicable to the clinical situation. Both tumor-bearing 
mice and pre-diagnostic human samples of ER positive 
and triple negative breast cancer demonstrate autoantibody 
reactivity against spliceosomal proteins suggesting that at 
least partial inhibition for some of these factors should 
be possible [141, 142]. Furthermore, screens with natural 
products with antitumor characteristics resulted in the 
identification of spliceosome targeting drugs exhibiting 
cytostatic effects in multiple tumor cell lines by causing 
cell cycle arrest in G1 and G2/M phase [143–145]. 
Antitumor activities were confirmed in animal models 
and remarkably, general cytotoxicity was not observed. 
Moreover, these potential drugs seem to be more effective 
in cancer cells with some of them even targeting multidrug-
resistant cells [146–148]. Recently, the natural compound 
resveratrol demonstrated to inhibit the oncogenic splice 
factor hnRNPA1 by inducing tumor suppressive miRNAs 
miR-424 and miR-503 via p53 thereby controlling tumor 
growth [149]. Also treatment with the CLK inhibitor 
T-025 reduced SR protein phosphorylation, which resulted 
in general effects on exon skipping and reduced cancer 
cell growth in vitro and in vivo [150]. Of note, most of the 
drugs described in the literature target the SF3B complex, 
a five-polypeptide subcomplex of the spliceosomal U2 
snRNP. Small molecules affecting spliceosomal function 
by inhibiting different splicing complexes are known 
[151], but their potential role in combatting (breast) cancer 
has to be investigated. Other interesting targets would be 
the SR proteins or its upstream kinases like SRPK1 that 
has been demonstrated to be critical in multiple steps 

of breast cancer progression and for which inhibitors 
have been developed [105, 133, 152, 153]. Finally, 
pharmacological inhibition of the spliceosome would be 
a promising therapeutic strategy for MYC-addicted breast 
cancer tumors.

Next to the use of small molecules, the potential 
of using splice-switching antisense oligonucleotides 
(SSOs) to modulate AS is of great therapeutic interest. 
SSOs are single-stranded oligonucleotides consisting of 
20-30 nucleotides that bind to pre-mRNA and sterically 
prevent splicing factor binding, resulting in splice site 
switching. In contrast to normal antisense oligonucleotides 
(ASOs), SSOs are chemically modified to prevent 
breakdown of the targeted transcript to specifically target 
splicing without affecting total transcript levels [154]. 
Furthermore, SSOs are easy to synthesize and deliver, are 
relatively stable and can enter many different cell types 
[155, 156]. Although the use of SSOs was initially mainly 
studied in neuromuscular diseases such as Duchenne 
muscular dystrophy and spinal muscular atrophy [157], 
the therapeutic potential of SSOs as anti-cancer therapy is 
currently widely exploited [158]. For example, treatment 
with SSO stimulating exon 11 skipping caused better 
response to PARP inhibitors by inducing DNA double 
strand breaks [159]. Additionally, treatment with SSOs 
inducing exon 15 HER2 skipping caused downregulation 
of full length HER2 resulting in decreased downstream 
signaling, reduced cell proliferation and induction of 
apoptosis [160]. As a next step, clinical studies have to 
prove the use of these SSOs as anti-cancer therapy in 
breast cancer patients.

Since 94% of human genes are alternatively spliced 
[161, 162], splicing can be a very powerful new layer of 
oncogenic control. As discussed in detail above, splice 
factors demonstrated to play major roles in different 
hallmarks of cancer during tumorigenesis (Figure 1 and 
Supplementary Table 2) and some of these factors were 
already described as new oncogenes or tumor suppressors. 
Since the role of many splice factors is not limited to a 
specific step or cancer hallmark they might provide a 
new approach to combat (breast) cancer progression. 
However, there are still many AS events that have been 
associated with cancer progression which cannot be 
attributed to specific splice factors yet. The introduction 
of the RNAi libraries and more recently the CRISPR 
Cas9 technology together with the development of high-
throughput screening technologies [105, 163–165] would 
allow systematic evaluation of spliceosomal components 
in multiple aspects of breast cancer progression, such as 
proliferation and migration. Future studies should apply 
these technologies to uncover the complete signaling 
landscape of splice factors in breast cancer progression 
that then can be used to develop specific splice factor 
inhibitors preventing metastasis formation and patient 
deaths.
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