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A B S T R A C T

Preferred particle orientation presents a major challenge for many single particle cryo-electron microscopy
(cryo-EM) samples. Orientation bias limits the angular information used to generate three-dimensional maps and
thus affects the reliability and interpretability of the structural models. The primary cause of preferred or-
ientation is presumed to be due to adsorption of the particles at the air/water interface during cryo-EM grid
preparation. To ameliorate this problem, detergents are often added to cryo-EM samples to alter the properties of
the air/water interface. We have found that many bacterial transcription complexes suffer severe orientation
bias when examined by cryo-EM. The addition of non-ionic detergents, such as NP-40, does not remove the
orientation bias but the Zwitter-ionic detergent CHAPSO significantly broadens the particle orientation dis-
tributions, yielding isotropically uniform maps. We used cryo-electron tomography to examine the particle
distribution within the ice layer of cryo-EM grid preparations of Escherichia coli 6S RNA/RNA polymerase ho-
loenzyme particles. In the absence of CHAPSO, essentially all of the particles are located at the ice surfaces.
CHAPSO at the critical micelle concentration coats the air/water interface and eliminates particle absorption
there, allowing particles to randomly orient within the vitreous ice layer. We find that CHAPSO reduces or-
ientation bias for a number of bacterial transcription complexes containing E. coli or Mycobacterium tuberculosis
RNA polymerases. Findings of this study confirm the presumed basis for how detergents can help remove or-
ientation bias in cryo-EM samples and establishes CHAPSO as a useful tool to facilitate cryo-EM studies of
bacterial transcription complexes.

1. Introduction

Advances in single particle cryo-electron microscopy (cryo-EM) now
allow structure determination of biological macromolecular complexes
to near atomic-resolution (Cheng, 2018). Nevertheless, a major com-
plication for many biological cryo-EM specimens is particle orientation
bias (Glaeser and Han, 2017; Glaeser, 2016). Specimens that suffer
particle orientation bias can have an anisotropic distribution of angular
projection directions leading to under-sampling of Fourier components
in the final three-dimensional reconstruction. This under-sampling
leads to an overall loss of structural information parallel to the axis of
preferred orientation, giving the maps an anisotropic point spread
function leading to a “smearing effect” artifact (Barth et al., 1989;
Naydenova and Russo, 2017; Tan et al., 2017), which affects the in-
terpretability of the cryo-EM maps.

In examining a complex of Escherichia coli (Eco) 6S RNA bound to

RNAP σ70-holoenzyme (6S-Eσ70) for single-particle cryo-EM structure
determination, we encountered a severe orientation bias problem (Chen
et al., 2017). We explored a range of solution conditions and detergent
additives to solve the orientation bias problem. We discovered that the
detergent 3-([3-Cholamidopropyl]dimethylammonio)-2-hydroxy-1-
propanesulfonate (CHAPSO) was uniquely effective. We hypothesized
that the preferred orientation was due to adsorption and orientation of
the particles at the air-water interface (Taylor and Glaeser, 2008) and
that CHAPSO mitigated this problem by preventing adsorption at the
interface. We used fiducial-less cryo-electron tomography (cryo-ET) on
the single-particle specimens to visualize particle distributions within
the vitreous ice (Noble et al., 2018a; Noble and Stagg, 2015). The re-
sults confirmed our hypothesis; the orientation bias arises from inter-
actions of the particles with the surfaces of the ice layer. In the presence
of a sufficient concentration of CHAPSO, the particles were excluded
from the ice surfaces and distributed within the ice layer with nearly
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random orientations. We show that CHAPSO solves preferred orienta-
tion problems for a number of single-particle samples comprising bac-
terial transcription complexes.

2. Results

2.1. 6S-Eσ70 particles show severe orientation bias which is significantly
relieved with CHAPSO

Initial single particle cryo-EM analysis of the 6S-Eσ70 complex was
performed using a potassium L-glutamate buffer (KGlu, Supplemental
Table 1). Micrographs showed uniform, homogenously dispersed par-
ticles that yielded detailed high-resolution 2D classes (Fig. 1A,
Supplemental Fig. 1A). However, 3D alignment resulted in “smeared”
maps (Supplemental Fig. 1B), suggesting that the particles in the vitr-
eous ice layer exhibited orientation bias. The angular distribution plot
of the particles aligned to a low-pass filtered X-ray crystal structure of
Eco core RNAP (PDB ID 4LJZ with σ70 removed; (Bae et al., 2013) as a
template revealed a distribution corresponding to essentially one or-
ientation (Fig. 1A). A rough characterization of the particle distribution
as a Gaussian yielded a peak at about rotation angle (rot) −19°, tilt
angle (tilt) −13°, and a standard deviation ( ± ) of 15°.

To overcome this particle orientation bias, we prepared samples in a
number of alternative conditions, such as a buffer containing KCl in-
stead of KGlu (KCl), and the addition of non-ionic detergents n-dodecyl-
β-D-maltoside (DDM), Triton X-100, Tween 20, and Nonidet P40 sub-
stitute (NP40S), and the Zwitterionic detergent CHAPSO (Supplemental

Table 2). All of the detergents were added at their critical micelle
concentration (CMC). We screened the samples for complex stability
using an electrophoretic mobility shift assay, and particle homo-
geneity/distribution using negative stain EM. Triton X-100 and Tween
20 (at CMC) affected the stability of the 6S-E σ 70 complex and were not
explored further. The 6S-E σ 70 complex appeared to be stable with
DDM, but negative stain EM images showed protein aggregation. From
these results, we proceeded with Cryo-EM analysis of the four sample
conditions listed in Supplemental Table 1).

Single particle cryo-EM analysis of the 6S-E σ 70 particles in the KCl
condition also showed severe orientation bias (Fig. 1B), with one peak
at an orientation and spread very similar to the KGlu condition (rot
−12°, tilt −8°, ± 14°), but with an additional peak at approximately
(rot 168°, tilt 8°), corresponding to a mirror image projection of the first
orientation. Since the mirror image projection does not contribute any
new information to the 3D reconstruction, having two mirror image
orientations is equivalent to having one orientation.

Preparation of the particles in KGlu + NP40S (Fig. 2A) also yielded
two mirror image peaks [(rot −130°, tilt −47°) and (rot 50°, tilt 47°)].
The distribution was broadened with respect to the KGlu and KCl dis-
tributions, with standard deviation ± 20°. Thus, the addition of the
detergent still gave only one effective orientation, but the bias was
slightly ameliorated. In contrast to KGlu, KCl, and KGlu + NP40S,
particles prepared in KCl + CHAPSO did not exhibit peaks of preferred
orientation; instead the particle orientations were spread over a large
fraction of Euler angles (Fig. 2B), resulting in isotropically uniform 3D
reconstructions (Supplemental Fig. 1B).

Fig. 1. Single particle cryo-EM analysis of 6S-Eσ70 particle orientation distributions in KGlu and KCl. A – B. (Top Panel) Top 10 2D classes calculated in RELION
(Scheres, 2012) based on particle population. Absolute number and percentage of particles for each class are designated in white text. (Middle Panel) 3D distribution
plot of particle orientations. Particles were 3D classified into one class using Eco core RNAP (PDB ID 4LJZ (Bae et al., 2013); σ 70 was deleted and the structure was
low-pass filtered using EMAN2) (Tang et al., 2007) as a 3D template in RELION (Scheres, 2012). The resulting density is shown as a solid grey volume and the angular
distribution from this alignment is shown as red spheres. Each sphere represents a particular Euler angle and the sphere volume represents the absolute number of
particles at that particular angle. (Bottom Panel) 2D distribution plot of particle orientations. Particles are plotted on a tilt angle vs rotation angle graph. Areas of the
points represents the percentage of particles at that particular orientation. A. 2D classes and angular distribution of 6S-Eσ70 particles in KGlu (see Supplemental
Table 1). B. 2D classes and angular distribution of 6S-Eσ70 particles in KCl (see Supplemental Table 1). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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For each individual sample, the particles were grouped into 163
bins according to their Euler angles (corresponding to 20° increments in
rotation and tilt angles) and ranked according to the percentage of
particles in each bin (bin #1, highest %; bin #2, next highest %; so on).
The orientation distribution of the particles prepared in each condition
was compared by plotting the histograms of the % particles in each bin
according to bin # (Fig. 2C). A completely random distribution of
particle orientations would yield a flat distribution, with 0.61% parti-
cles in each bin (dashed horizontal line in Fig. 2C). Visualizing the
orientation distributions this way highlights the bias of the KGlu, KCl,
and KGlu + NP40S samples. The KCl + CHAPSO sample, while not
completely randomized, approaches the random orientation

distribution more closely. The inset of Fig. 2C plots the cumulative % of
particles across the bins. This plot reveals that 50% of the particles are
binned into only 5, 9 and 12 bins for the KGlu, KCl, and KGlu + NP40S
conditions, respectively, while 50% of the KCl + CHAPSO particles are
spread out over 36 bins (Fig. 2C).

The particle orientation distributions and their effects on resulting
reconstructions were also analysed using cryoEF (Naydenova and
Russo, 2017). A cross-section through the middle of the expected point
spread functions (PSFs) calculated from the particle orientation dis-
tributions reveals the severe anisotropy of the KGlu, KCl, and
KGlu + NP40S PSFs while the KCl + CHAPSO PSF appeared as roughly
a spherical ball (Fig. 2D). Also tabulated in Fig. 2D is the orientation

Fig. 2. Single particle cryo-EM analysis of 6S-Eσ70 particle orientation distributions in KGlu + NP40S and KCl + CHAPSO. A-B (Top, middle, bottom panels) Refer to
Fig. 1. A. 2D classes and angular distribution of 6S-Eσ70 particles in KGlu + NP40S (see Supplemental Table 1). B. 2D classes and angular distribution of 6S-Eσ70

particles in KCl + CHAPSO (see Supplemental Table 1). C. Particles for each dataset were grouped into Euler angle bins (20° rotation angle × 20° tilt angle bind) and
then the bins were ranked according to the number of particles populating that bin (bin #1 has the most particles, so on). Plotted on a semi-log scale is the percent of
total particles in each dataset by bin #. The horizontal dashed line represents a totally random particle orientation distribution (equal number of particles in each
bin). (Inset) Plotted is the cumulative percent particles by bin #. The random distribution is denoted by the dashed line. D. Cross-sections through the middle of the
expected PSFs (calculated using cryoEF (Naydenova and Russo, 2017) are superimposed, illustrating the anisotropy for the KGlu (red), KCl (blue), and KGlu + NP40S
(orange) samples, while the KCl + CHAPSO sample yields an isotropic PSF (green). Parameters further characterizing the orientation distributions (the orientation
efficiency, Eod, and the fraction of unsampled Fourier space, fempty (Naydenova and Russo, 2017) are also tabulated. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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efficiency (Eod) and the fraction of unsampled Fourier space (fempty)
(Naydenova and Russo, 2017), illustrating the dramatic improvement
with CHAPSO.

2.2. Cryo-electron tomography shows that orientation bias corresponds to
adsorption to an ice surface

We employed fiducial-less cryo-electron tomography (cryo-ET) on
the single-particle specimens in order to visualize the locations of the
particles in the vitreous ice layer (Noble et al., 2018a; Noble and Stagg,
2015). Tilt series of cryo-grids of the 6S-Eσ70 complex were collected
for each solution condition (Fig. 3). The 6S-E σ70 particles prepared in
KGlu and KCl were restricted to a thin layer at one of the ice surfaces
(Fig. 3A, B). The complexes were prepared with excess 6S RNA and free
6S RNA molecules could be visualized distributed throughout the
vitreous ice layer (Fig. 3A, B, Supplementary videos). The 6S-E σ70

particles prepared in KGlu + NP40S were restricted to two thin layers
corresponding to both ice surfaces (Fig. 3C). By contrast, particles
prepared in KCl + CHAPSO were excluded from the air/water inter-
faces and were evenly distributed throughout the middle of the ice layer
(Fig. 3D).

2.3. Effect of CHAPSO on particle orientations is concentration dependent

Our results thus far indicate that adsorption of the 6S-E σ 70 particles
at air/water interfaces gives rise to the severe orientation bias seen in
the KGlu, KCl, and KGlu + NP40S samples (Figs. 1, 2). The addition of
CHAPSO at the critical micelle concentration (CMC, 8 mM) completely
eliminates surface interactions and significantly randomizes the particle
orientations (Fig. 2B-D, 3D). To investigate if CHAPSO at CMC was
required for the full effect, we compared particle orientations for da-
tasets collected with 0, 4 mM (0.5XCMC), and 8 mM (1XCMC) CHAPSO

Fig. 3. Cryo-ET reveals mechanism for preferred orientation. A – D. (Left Panel) Surface tomographic cross-section of the vitreous ice layer. (Middle Panel) Middle
tomographic cross-section of the vitreous ice layer. (Top Right Panel) Schematic diagram of particle distribution in vitreous ice. Top and bottom surfaces of the ice are
shown with a solid blue line. Thickness of ice is indicated on the bracket right of the cartoon. 6S-Eσ70 and free 6S RNA particles are shown as grey volumes in the
cartoon. (Bottom Right Panel) Spatial plot of particles in vitreous ice layer, oriented orthogonal to the ice surface. Each 6S-Eσ70 particle is represented as a blue point
and graphed based on 3D position in the ice layer. A. Tomogram of 6S-Eσ70 particles in KGlu. B. Tomogram of 6S-Eσ70 particles in KCl. C. Tomogram of 6S-Eσ70

particles in KGlu + NP40S. D. Tomogram of 6S-Eσ70 particles in KCl + CHAPSO. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 4. Effect of CHAPSO on particle orientations is concentration dependent. A – C. (Top Panel) 3D distribution plot of particle orientations. Particles were 3D
classified into one class using Eco core RNAP (PDB ID 4LJZ (Bae et al., 2013); σ70 was deleted and the structure was low-pass filtered using EMAN2) (Tang et al.,
2007) as a 3D template in RELION (Scheres, 2012). The resulting density is shown as a solid grey volume and the angular distribution from this alignment is shown as
red spheres. Each sphere represents a particular Euler angle and the sphere volume represents the absolute number of particles at that particular angle. (Bottom
Panel) 2D distribution plot of particle orientations. Particles are plotted on a tilt angle vs rotation angle graph. Areas of the points represents the percentage of
particles at that particular orientation. A. Angular distribution of TEC particles in TEC buffer (20 mM Tris-HCl, pH 8.0, 150 mM KCl, 5 mM MgCl2, 5 mM DTT) without
CHAPSO. B. Angular distribution of TEC particles in TEC buffer + 4 mM CHAPSO (0.5XCMC). C. Angular distribution of TEC particles in TEC buffer + 8 mM
CHAPSO (1XCMC). D. Particles for each dataset were grouped into Euler angle bins (20° rotation angle × 20° tilt angle bind) and then the bins were ranked according
to the number of particles populating that bin (bin #1 has the most particles, so on). Plotted on a semi-log scale is the percent of total particles in each dataset by bin
#. The horizontal dashed line represents a totally random particle orientation distribution (equal number of particles in each bin). (Inset) Plotted is the cumulative
percent particles by bin #. The random distribution is denoted by the dashed line. E. Cross-sections through the middle of the expected PSFs (calculated using cryoEF
(Naydenova and Russo, 2017) are superimposed. Parameters further characterizing the orientation distributions (the orientation efficiency, Eod, and the fraction of
unsampled Fourier space, fempty (Naydenova and Russo, 2017) are also tabulated. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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of a different bacterial transcription complex, an Eco RNAP ternary
elongation complex (TEC) (Kang et al., 2017). In the absence of
CHAPSO, the particles again exhibited severe orientation bias (Fig. 4A).
The particle orientations were significantly spread by the presence of
4 mM CHAPSO (Fig. 4B), but there is a clear difference in the particle
spread between 4 mM and 8 mM CHAPSO (Fig. 4B, C) and 8 mM
CHAPSO induces a distribution of particle orientations much closer to a
random distribution (Fig. 4D, E).

2.4. Cryo-EM maps reveal CHAPSO interacts with specific sites on the Eco
RNAP surface

Examination of the nominal 3.5 Å resolution cryo-EM map of an Eco
RNAP transcription elongation complex bound to RfaH (Kang et al.,

2018a), the highest resolution cryo-EM map available for an Eco RNAP
transcription complex, revealed three CHAPSO molecules bound to the
RNAP surface (Fig. 5A). Retrospective analysis of previously published
cryo-EM structures of Eco RNAP transcription complexes where 8 mM
CHAPSO was used to prevent orientation bias revealed CHAPSO mo-
lecules consistently bound at the same sites (Fig. 5B). In each case, the
cholic acid-derived amphifacial moiety of CHAPSO was bound to the
RNAP while the attached flexible chain and hydrophilic head group
were disordered.

3. Discussion

From the results of this study, we conclude that:

Fig. 5. CHAPSO molecules interact with RNAP particles. A. CHAPSO molecules bound to the Eco RNAP surface. (top middle) Overall view of the Eco RNAP ops-
ternary elongation complex bound to RfaH (6C6T) (Kang et al., 2018a). The structure is shown as molecular surfaces color-coded as shown in the color key at the
lower right. Shown in orange are three CHAPSO molecules bound to the RNAP surface. (lower left) Molecular structure of CHAPSO. The portion highlighted in orange
is resolved in the cryo-EM maps. (top left) Magnified view showing CHAPSO3 along with the nominal 3.5 Å resolution cryo-EM map (blue mesh). (top right)
Magnified view showing CHAPSO2 along with the cryo-EM map. The cryo-EM density for CHAPSO2 was not of sufficient quality to determine the CHAPSO
orientation. (bottom middle) Magnified view showing CHAPSO1 along with the cryo-EM map. B. Cryo-EM maps of previously published Eco RNAP transcription
complexes were retrospectively examined for the presence of bound CHAPSO in the three sites. The presence of CHAPSO density in the map is indicated by ‘X’. In the
HisPEC (6ASX) (Kang et al., 2018b), a conformational change shifts the position of βi9, disrupting CHAPSO site 3. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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1) Transcription complexes containing Eco RNAP adsorb strongly to
air/water interfaces during cryo-EM grid preparation, even in the
presence of non-ionic detergents such as NP40S (Fig. 3A-C).

2) The complexes adsorbed to the air/water interface are oriented,
confounding single particle reconstruction approaches (Figs. 1, 2,
4).

3) The addition of CHAPSO at the CMC (8 mM) completely prevents
adsorption of the complexes to air/water interfaces (Fig. 3D) and
dramatically broadens the distribution of particle orientations
(Figs. 2B-D, 3D, 4C-E), allowing for the determination of iso-
tropically uniform maps (Figs. 2D, 4E; Supplemental Fig. 1B)
(Naydenova and Russo, 2017).

Although CHAPSO at 0.5 CMC (4 mM) significantly broadens the
particle orientation distribution compared to no CHAPSO (Fig. 4A, B,
D) and the calculated PSF and orientational parameters indicate that a
detailed reconstruction would be achieved at this condition (Fig. 4E)
(Naydenova and Russo, 2017), the full effect on the relative randomi-
zation of the particle orientation distribution requires CHAPSO at its
CMC (8 mM; Fig. 4). At the same time, due to the high CHAPSO con-
centration, we observed CHAPSO molecules consistently bound to three
sites on the surface of Eco RNAP (Fig. 5). Our cryoET results showed
that in the presence of 8 mM CHAPSO, the RNAP complexes are com-
pletely excluded from the air/water interfaces and found in the middle
of the ice layer (Fig. 3D) where rotational diffusion allows for nearly
randomized particle orientations. This effect of CHAPSO on eliminating
RNAP adsorption at the air/water interface could be due to: 1) CHAPSO
at or above the CMC coating the air/water interfaces with a monolayer,
altering the interfacial surface properties to prevent RNAP adsorption,
and/or 2) CHAPSO molecules binding to the surface of RNAP (Fig. 5),
altering the RNAP surface properties to prevent adsorption at the air/
water interface. Our result that 8 mM CHAPSO is required for the full
effect (Fig. 4) strongly supports hypothesis (1) as the primary factor,
since at 4 mM CHAPSO we still observe CHAPSO molecules bound to
the RNAP (Supplemental Fig. 2).

In the single particle analyses under conditions where the RNAP
complexes are adsorbed to air/water interfaces and oriented, we
sometimes observe an orientation distribution comprising one peak
(Fig. 1A), while in other cases we observe two peaks, one corresponding
to the mirror image projection of the other (Figs. 1B, 2A, 4A). The
cryoET analysis revealed some samples where the complexes were ad-
sorbed to only one air/water interface (Fig. 3A, B), while in other
samples particles were adsorbed to both the top and bottom interfaces
(Fig. 3C), explaining the observation of mirror image projection or-
ientations. While we have not studied this phenomenon specifically, our
data suggest that whether the complexes are adsorbed to one or both
interfaces is a random occurrence dependent on grid preparation rather
than properties of the solution conditions.

A number of cryo-EM structures of bacterial RNAP transcription
complexes have benefitted from CHAPSO (Chen et al., 2017; Kang
et al., 2017; Kang et al., 2018a,b; Boyaci et al., 2018). The observation
of specifically-bound CHAPSO molecules on the Eco RNAP surface
(Fig. 5) raises the potential for the introduction of structural artifacts.
For this reason, it is important to examine the complexes under in-
vestigation with sensitive and quantitative functional assays to show
that the biochemical function is not altered by the presence of CHAPSO,
as was shown in each of the cases listed in Fig. 5B. We believe the very
high concentration of CHAPSO (8 mM) allows binding at the observed
sites on the RNAP (Fig. 5) but that the binding energy for these sites is
very low and is insufficient to alter the conformational/functional
properties of the RNAP. For instance, a conformational change in the
HisPEC altered the relationship between β i9 and the rest of the RNAP,
disrupting CHAPSO site 3 (Fig. 5), and no complexes were observed
with CHAPSO bound at this site. In biochemical assays, 8 mM CHAPSO
had a minimal (less than 2-fold) effect on the pause lifetime (Kang et al.,
2018b).

Orientation bias has long been an issue confounding single particle
cryo-EM structure determination (Glaeser and Han, 2017; Glaeser,
2016). Many of the recent advances in high-resolution structure de-
termination of macromolecular complexes by cryo-EM do not address
this potential obstacle (Naydenova and Russo, 2017). Maps generated
from oriented samples are limited in their interpretability due to a
“smearing” artifact in the final 3D construction (Supplemental Fig. 1B).
2D classification can be an effective method for diagnosing whether a
sample suffers from preferred orientations (Figs. 1A, B, 2A, B). A
common solution to mitigate particle orientation bias has been to add
surfactants during grid preparation (Taylor and Glaeser, 2008). It has
often been presumed that particle orientation bias arises from adsorp-
tion to the air/water interface and that surfactant additives mitigate the
orientation bias by reducing the propensity for interface adsorption.
Our cryoET analysis establishes that this is indeed the case for samples
comprising Eco RNAP transcription complexes and the surfactant
CHAPSO (Fig. 3).

Recent studies have established that severe particle orientation bias
can be overcome by cryo-EM data collection from tilted grids (Tan
et al., 2017) or by rapid grid freezing after sample application (Noble
et al., 2018b). These are important advances that are potentially gen-
erally applicable. Nevertheless, imaging on tilted grids presents many
technical obstacles to optimal high-resolution data collection. More-
over, tilting the grid does not address the issue of particle adsorption,
which has recently been suggested to cause denaturation for most
particles (D'Imprima et al., 2018). The specialized plunge-freezing de-
vices necessary for sufficiently rapid plunge-freezing to ‘outrun’ some of
the air/water interface adsorption effects are not yet widely available
(Noble et al., 2018b). We show here that the addition of CHAPSO
during cryo-EM grid preparation of samples comprising Eco RNAP
transcription complexes is relatively functionally inert, completely
eliminates interaction and orientation of the particles at air/water in-
terfaces (Fig. 3), and significantly broadens the particle orientation
distributions to allow determination of high-resolution cryo-EM maps
with isotropic PSFs (Figs. 2D, 4E). These properties greatly facilitate
high-resolution structure determination of these complexes using
modern cryo-EM approaches (Chen et al., 2017; Kang et al., 2017; Kang
et al., 2018a,b; Boyaci et al., 2018).

4. Materials and methods

4.1. Protein expression and purification

Eco RNAP TEC was assembled using Eco RNAP core lacking the α C-
Terminal Domain (ΔαCTD) and was prepared as previously described
(Kang et al., 2017; Twist et al., 2011). The 6S-E σ70 complex was pre-
pared as described previously (Chen et al., 2017).

4.2. Preparation of 6S-/Eσ70 for single particle Cryo-EM

Frozen aliquots of Eco RNAP ΔαCTD-core and σ70Δ1.1 were mixed
in a 1:2 M ratio and incubated for 15 mins at 37 °C. 6S RNA was added
in a 1:1.5 M ratio and incubated for 15 mins at room temperature. The
samples were diluted and detergents added (if used) immediately be-
fore grid preparation. 3.5 µL of sample were deposited on glow dis-
charged Quantifoil R 1.2/1.3, 400 mesh, copper grids (EMS) and
plunged frozen into liquid ethane using a Cryoplunge 3 system (Gatan).

4.3. Single particle cryo-EM of 6S-Eσ70 complex

Cryo-EM grids of 6S-Eσ70 were imaged using a 300 kV Tecnai G2
Polara (FEI) equipped with a K2 Summit direct electron detector
(Gatan). Dose-fractionated images were collected using UCSFImage4
(Li et al., 2015) in super-resolution mode with a nominal magnification
of 31,000×, corresponding to a calibrated pixel size of 1.23 Å on the
specimen level (0.615 Å for super-resolution). The dose rate on the
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camera was 8 counts/physical pixel/second using Digital Micrograph
(Gatan). The exposure time per movie was 6 s (30 frames) leading to a
total dose of 31.7 electrons/Å2. Movies were collected using a defocus
range from 1 µm to 2.5 µm. Movies were 2 × 2 binned using IMOD
(Kremer et al., 1996) and then drift corrected using MotionCor (Li et al.,
2013). Imaging conditions are summarized in Supplemental Table 3.

4.4. Preparation of 6S-Eσ70 for Cryo-ET

For KGlu and KGlu + NP40S conditions (Supplemental Table 1),
Eσ70 was purified in KGlu buffer using a Superose6 INCREASE column
(GE Healthcare). For KCl and KCl + CHAPSO, Eσ70 was purified in KCl
buffer. Peak fractions corresponding to Eσ70 were pooled and con-
centrated by centrifugal filtration (VivaScience) to 4 mg/mL protein
concentration. 6S RNA was added in 1.2 M excess compared to ho-
loenzyme and incubated at room temperature. Immediately prior to
grid freezing, samples of KGlu or KCl were diluted 1:10 with their re-
spective buffers while NP40S was added to the KGlu + NP40S to CMC
(0.06 mM) and CHAPSO was added to the KCl + CHAPSO sample to
CMC (8 mM). After centrifugation to remove aggregates, 3.5 μL of
sample were deposited on glow discharged Quantifoil R 1.2/1.3, Au,
400 mesh grids (EMS) and plunged frozen into liquid ethane using a
Vitrobot Mark IV (FEI).

4.5. Acquisition of cryo-electron tomograms of 6S-Eσ70

Tilt-series were collected at NYSBC using Titan Krios #1 (FEI
Company, Hillsboro, OR) with a Gatan K2 (Gatan, Inc., Pleasanton, CA).
Tilt-series were collected using Leginon (Suloway et al., 2009) with
100 ms frames for each tilt image, which were full-frame aligned using
MotionCor2 (Zheng et al., 2017). Tilt-series were collected bi-direc-
tionally with a tilt range of −45˚ to 45˚ and a tilt increment of 3˚. Most
tilt-series were collected at a nominal defocus between 4 and 6 µm. Tilt-
series were collected with a dose rate around 8 e-/pixel/s and an in-
cident dose of 3.29 e-/Å2 for the zero-degree tilt image, with increasing
dose for higher tilt angles according to the cosine of the tilt angle, re-
sulting in a total dose of 120 e-/ Å2. Most tilt-series were collected at a
pixel size of 1.33 Å. Imaging conditions are summarized in
Supplemental Table 4.

4.6. Cryo-ET data analysis

Tilt-series were aligned using Appion-Protomo (Noble and Stagg,
2015; Winkler and Taylor, 2006; Lander et al., 2009). Tilt-series were
first dose compensated using equation 3 in Grant, Grigorieff (Grant and
Grigorieff, 2015a), coarsely aligned, manually fixed if necessary, re-
fined using a set of alignment thicknesses, then the best aligned itera-
tion was reconstructed for visual analysis using Tomo3D SIRT
(Agulleiro and Fernandez, 2011; Agulleiro and Fernandez, 2015). CTF
correction was not performed. Subtomogram analysis was performed
with Dynamo (Castano-Diez et al., 2012; Navarro et al., 2018). First,
about 10 representative particles were manually picked with two de-
fined Euler angles, averaged together to make a template, then the
tomograms were template picked, and the picks were cleaned manu-
ally. Data processing is summarized in Supplemental Table 4.

4.7. Preparation of Eco RNAP TEC for single particle cryo-EM

Purified RNAP ΔαCTD-core was buffer-exchanged over the Superose
6 INCREASE (GE Healthcare Life Sciences) column into 20 mM Tris-
HCl, pH 8.0, 150 mM KCl, 5 mM MgCl2, 5 mM DTT. At a molar ratio of
1.3:1, template DNA:RNA hybrid was mixed into the eluted RNAP core
and incubated for 15 min at room temperature. Subsequently non-
template DNA was added and incubated for an additional 10 min (Kang
et al., 2017). The complex was concentrated by centrifugal filtration
(VivaScience) to 3 mg/ml RNAP concentration before grid preparation.

CHAPSO was added to the samples to give a final concentration of
0xCMC, 0.5xCMC, or 1xCMC. C-flat CF-1.2/1.3 400 mesh copper grids
(EMS) were glow-charged for 15 s. 3.5 µL of sample (∼2.0–3.0 mg/ml
protein concentration) was absorbed onto the grid, blotted, and plunge-
frozen into liquid ethane using a Vitrobot Mark IV (FEI).

4.8. Single particle Cryo-EM of RNAP TEC

Grids of RNAP TEC were imaged using a 300 keV Krios (FEI) (for
0xCMC CHAPSO and 1xCMC CHAPSO datasets) or a 200 keV Talos
Arctica (FEI) (for 0.5xCMC CHAPSO). Both microscopes were equipped
with a K2 Summit direct electron detector (Gatan). Imaging parameters
were as outlined previously (Kang et al., 2017). Dose-fractionated
images were recorded with Serial-EM (Mastronarde, 2005) in super-
resolution mode with a super-resolution pixel size of 0.65 Å (nominal
magnification 22,500x and a calibrated pixel size of 1.3 Å) on the Titan
Krios and with a super-resolution pixel size of 0.75 Å (nominal mag-
nification 28,000× and a calibrated pixel size of 1.5 Å) on the Talos
Arctica. The dose rate at the camera level was 10 electrons/physical
pixel/second in Digital Micrograph (Gatan). Images were recorded in
dose-fractionation mode with subframes of 0.3 s over a total exposure of
15 s (50 frames). Images were collected over a defocus range of 0.8 μm
to 2.6 μm. Movies were gain-normalized and 2X2 binned using 'mag_-
distortion_estimate' (Grant and Grigorieff, 2015b). Images were drift-
corrected and summed using Unblur (Grant and Grigorieff, 2015a).
Imaging conditions are summarized in Supplemental Table 3.

4.9. Single particle cryo-EM data analysis

The Cryo-EM data analysis pipeline used for all single particle cryo-
EM datasets is illustrated in Supplemental Fig. 1A. CTF estimations
were calculated for each dataset using Gctf (Zhang, 2016). Particles
were picked using Gautomatch (developed by K. Zhang, MRC Labora-
tory of Molecular Biology, Cambridge, UK, http://www.mrc-lmb.cam.
ac.uk/kzhang/Gautomatch) without a 2D template. Picked particles
were extracted from the dose-weighted images in RELION (Scheres,
2012). Particles were curated by 2D classification (N classes = 50) and
3D classification (N classes = 3) using a crystal structure of Eco RNAP
(PDB ID 4LJZ) (Bae et al., 2013) with σ70 removed. The crystal structure
was converted to an EM map and low-pass filtered to 60 Å using
EMAN2 (Tang et al., 2007) before classification and refinements. Par-
ticles were coarsely aligned to the 3D template using RELION (Scheres,
2012) 3D classification (N class = 1). Histograms of particle orienta-
tions (BILD format) were graphically represented as spheres. The PSFs
and orientation distribution parameters (Eod and fempty) were calculated
using cryoEF (Naydenova and Russo, 2017). Data processing of single
particle cryo-EM datasets is summarized in Supplemental Table 3.

5. Accession numbers

Single particle cryo-EM micrographs, cryo-ET tilt-series, cryo-ET
tilt-series alignment runs with Appion-Protomo, and cryo-ET tomo-
grams have been deposited to the Electron Microscopy Pilot Image
Archive (EMPIAR) with accession code EMPIAR-10214.
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