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Vascular stiffening in the pulmonary arterial bed is increasingly recognized as an
early disease marker and contributor to right ventricular workload in pulmonary
hypertension. Changes in pulmonary artery stiffness throughout the pulmonary vascular
tree lead to physiologic alterations in pressure and flow characteristics that may
contribute to disease progression. These findings have led to a greater focus
on the potential contributions of extracellular matrix remodeling and mechanical
signaling to pulmonary hypertension pathogenesis. Several recent studies have
demonstrated that the cellular response to vascular stiffness includes upregulation
of signaling pathways that precipitate further vascular remodeling, a process known
as mechanobiological feedback. The extracellular matrix modifiers, mechanosensors,
and mechanotransducers responsible for this process have become increasingly well-
recognized. In this review, we discuss the impact of vascular stiffening on pulmonary
hypertension morbidity and mortality, evidence in favor of mechanobiological feedback
in pulmonary hypertension pathogenesis, and the major contributors to mechanical
signaling in the pulmonary vasculature.

Keywords: vascular stiffness, pulmonary arterial stiffness, pulmonary hypertension, mechanotransduction,
cellular mechanosensors, YAP/TAZ, matrix stiffness, vascular remodeling

INTRODUCTION

Pulmonary Hypertension is characterized by progressive pulmonary vascular remodeling that leads
to exertional dyspnea, severe hypoxemia, and ultimately to right heart failure. The most severe form
of the disease, PAH, initially and primarily affects the pulmonary arterial tree, and is associated
with a 5-year survival of 61% (Farber et al., 2015). Other forms of PH result from other cardiac
or pulmonary pathologies, but can progress to severe arterial remodeling (Rabinovitch et al., 1979;
Wilkinson et al., 1988; Tuder et al., 2007; Kulik, 2014). For PH with significant vascular remodeling,
treatment options are currently limited to pulmonary vasodilator therapies. These can lead to
modest improvements in exercise capacity, but remain unable to reverse the disease process or
significantly prolong survival (Fredenburgh et al., 2009; McLaughlin et al., 2009; Sutendra and
Michelakis, 2014; Farber et al., 2015). These limitations have motivated extensive research to
disrupt or reverse vascular remodeling.

Pulmonary arterial stiffness is increasingly appreciated as an important marker and predictor
of disease severity and poor functional status in PH (Wang and Chesler, 2011; Schafer et al.,
2016; Thenappan et al., 2016). Multiple lines of evidence indicate that increased vascular stiffness
occurs prior to detectable changes in characteristic hemodynamic parameters, such as increased
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PVR (Pellegrini et al., 2014; Dragu et al., 2015; Ploegstra
et al., 2018). Unlike in the systemic circulation, both proximal
and distal vessels contribute to PA compliance, and current
research has found evidence for early stiffening throughout
the pulmonary vascular tree. Multiple processes may contribute
to this vascular stiffening in vivo, including vascular smooth
muscle tone, arrangement and structure of arterial laminae, local
composition of extracellular matrix, and alterations in arterial
geometry (thickness, diameter, and branching pattern).

This review will briefly address our current understanding of
the clinical impact of pulmonary vascular stiffness. We will then
focus on evidence for PA stiffening as a critical early driver of
vascular remodeling – a process known as mechanobiological
feedback. A close examination of the molecular mechanisms by

Abbreviations: α-SMA, α-smooth muscle actin, an actin monomer upregulated
in smooth muscle, myofibroblasts, and endothelial cells undergoing mesenchymal
transition; AFM, atomic force microscopy – a method for measurements of
local mechanical stiffness at the microscopic level; COX-2, Cyclooxygenase 2,
the key enzyme for production of multiple prostaglandin lipid mediators; ECM,
extracellular matrix; eNOS, endothelial nitric oxide synthase, a cellular enzyme
responsible for the production of nitric oxide in endothelial cells; FAK, focal
adhesion kinase, a mechanotransducer upregulated by integrin signaling; GSK3β,
Glycogen synthase kinase 3-β, the core member of the β-catenin destruction
complex; kPa, Kilopascal, SI units for pressure and stiffness; LINC, linker of
nucleoskeleton and cytoskeleton complex, a complex of proteins along the nuclear
membrane that facilitates interactions between the nucleus and actin cytoskeleton;
LOX, lysyl oxidase, a collagen cross-linking enzyme; LV, left ventricle; MCT,
monocrotaline, a compound that induces PH in a rodent model; miRs, Micro-
ribonucleic acid oligonucleotides that bind to messenger RNA and regulate gene
expression; MMPs, matrix metalloproteinases, enzymes responsible for enzymatic
cleavage of ECM components; mPAP, mean pulmonary artery pressure, the average
pressure measured in the proximal pulmonary arteries during catheterization;
MRI, magnetic resonance imaging; MRTFs, Myocardin-related transcription
factors, transcription factors activated by actin polymerization and known to be
important mechnotransducers and activators of serum response factor; NFκB,
Nuclear factor-κB, a transcription factor involved in inflammatory and immune
responses, as well as responses to flow stresses in endothelial cells; NO, Nitric
oxide, an exogenously produced vasodilatory signaling molecule; PA, pulmonary
artery; PAAFs, pulmonary artery adventitial fibroblasts; PAECs, pulmonary artery
endothelial cells; PAH, pulmonary arterial hypertension, Group 1 PH specifically
arising from pathology in the pulmonary arterial tree; PASMCs, pulmonary artery
smooth muscle cells; PECAM, platelet endothelial cell adhesion molecule, a cell-
cell adhesion molecule expressed on endothelial cells; PGF1α, Prostaglandin-F1α,
an enzymatic product of COX-2 activity; PH, pulmonary hypertension; PVR,
pulmonary vascular resistance, defined as the ratio between the fall in pressure
across the pulmonary arterial tree and the cardiac output; Rho GTPases, the
Rho family of guanine trinucleotide phosphate hydrolyzing enzymes, known
regulators of actin dynamics. The three canonical members are Ras-homolog
gene family, member a (RhoA), Ras-related C3 botulinum toxin substrate 1
(Rac1), and Cell division control protein 42 homolog (CDC42); ROCK, RhoA-
associated kinase, a well-known downstream effector of RhoA; RV, right ventricle;
RVH, right ventricular hypertrophy, enlargement of the RV free wall associated
with PH progression; SMADs, similar to mothers against decapentaplegic, these
intracellular proteins transduce signals from TGFβ superfamily members and
act as transcription factors; SMC, smooth muscle cell; TAZ, Transcriptional
co-activator with PDZ-binding motif, a transcriptional modifier and nuclear
mechanotransducer; TEADs, TEA Domain proteins are the primary nuclear
binding partners of YAP and TAZ; TG2, Transglutaminase-2, a calcium dependent
cross-linking enzyme that remodels collagen I and other ECM components;
TGFβ, A cytokine belonging to a superfamily of signaling proteins; TGFβ has
frequently been associated with inflammation and fibrosis; TIMPs, tissue inhibitors
of matrix metalloproteinases, secreted proteins that endogenously inhibit MMP
activity; TRPs, Transient receptor potential, a group of ion channels located on
the plasma membrane, some of which (TRPV4, TRPC3, TRPC6, TRPM7) are
mechanosensitive; Wnts, Wingless/integrase, a family of signaling molecules and
associated receptors; YAP, yes-associated protein, a transcriptional modifier and
mechanotransducer.

which vascular cells promote, sense, and pathologically respond
to stiffening is critical for our understanding of this process.
Therapeutic targeting of key mechanotransduction mediators
offers the potential to disrupt mechanobiological feedback and
prevent or reverse pathologic vascular remodeling.

CLINICAL IMPACT OF VASCULAR
STIFFENING IN PH

Increased vascular stiffness in the systemic circulation is strongly
associated with incident systemic hypertension, and has been
convincingly shown to precede the development of hypertension
in multiple cohorts (Mitchell et al., 2004; Kaess et al., 2012;
Weisbrod et al., 2013). Furthermore, arterial stiffness is a
predictor of cardiovascular mortality (Boutouyrie et al., 2002;
Wang et al., 2010; Ben-Shlomo et al., 2014). Loss of compliance
in the large arteries results in increased pulse pressure, pulsatile
afterload, and flow pulsatility, which have been shown to impact
left ventricular (LV) remodeling (Kelly et al., 1992; Kaess et al.,
2016; Bell et al., 2017) and promote microvascular damage in
distal vascular beds of the brain and kidney (Hashimoto and Ito,
2011; Cooper and Mitchell, 2016; Pase et al., 2016; Tsao et al.,
2016; Huang et al., 2017). Similarly, recent evidence from both
patients and disease models has led to a growing appreciation for
the impact of vascular stiffening in the pulmonary circulation as
well (Wang and Chesler, 2011; Schafer et al., 2016; Thenappan
et al., 2016).

Several groups have examined associations between mortality
and non-invasive measures of proximal pulmonary vascular
stiffness. Measurement techniques have varied across groups,
and include intravascular ultrasound (Ploegstra et al., 2018) or
MRI (Gan et al., 2007) to measure proximal arterial luminal
area change (and calculate PA distensibility), as well as more
global measures of vascular system capacitance [right ventricular
(RV) stroke volume/pulse pressure] via cardiac catheterization
or echocardiography (Mahapatra et al., 2006a,b; Pellegrini et al.,
2014; Al-Naamani et al., 2015). These measurements of vascular
stiffness have been strongly associated with mortality in pediatric
PAH patients (Ploegstra et al., 2018), idiopathic PAH cohorts
(Mahapatra et al., 2006a,b; Gan et al., 2007), scleroderma-
associated PH (Campo et al., 2010), and PH in the setting of heart
failure (Pellegrini et al., 2014; Al-Naamani et al., 2015; Dragu
et al., 2015). Several studies demonstrated that stiffness measures
were better predictors of mortality than the more typically
measured resistance indices (PVR, PVR index, transpulmonary
gradient) (Mahapatra et al., 2006b; Pellegrini et al., 2014; Al-
Naamani et al., 2015; Dragu et al., 2015; Ploegstra et al., 2018),
and particularly demonstrated prognostic utility in patients with
normal PVR (Pellegrini et al., 2014; Dragu et al., 2015; Ploegstra
et al., 2018).

Beyond its utility as a marker of mortality, PA stiffness may
better predict early disease and functional status in PH than PVR
and other traditional clinical parameters (Hunter et al., 2008;
Sanz et al., 2009; Kang et al., 2011; Lau et al., 2016; Malhotra
et al., 2016). One group measured vascular impedance (a global
measurement of opposition to pulsatile flow that incorporates
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resistance and arterial stiffness) using pulse-wave Doppler
ultrasound and right heart catheterization in a cohort of patients
with PAH (Hunter et al., 2008). Impedance was a better predictor
of worsening clinical status than PVR index alone in PAH
patients, and particularly improved predictions of mild clinical
worsening. Kang et al. (2011) used same-day MRI measurements
with right heart catheterization to calculate proximal PA
distensibility, and demonstrated that this was a better predictor
of poor functional status (6MWD < 400 m) than PVR index
or pulmonary capacitance in a small PAH cohort. Another set
of investigators demonstrated that these MRI-derived measures
of PA stiffness correlate well with hemodynamic severity and
were sensitive to abnormal pulmonary vascular response to
exercise that may represent early disease (Sanz et al., 2009).
More recently, global PA distensibility was calculated during
cardiopulmonary exercise testing using the Linehan distensible
vessel model (Linehan et al., 1992; Malhotra et al., 2016).
In a mixed cohort of patients with heart failure and PAH,
arterial distensibility was a good independent predictor of peak
oxygen consumption in a multivariable analysis that included
resting hemodynamics (Malhotra et al., 2016). Lau et al. (2016)
used a similar strategy to demonstrate decreased global arterial
distensibility in patients with normal resting hemodynamics who
had known (thromboembolic or biopsy-proven) PH or who
subsequently developed PH during follow-up.

The identification of early changes in PA stiffness and of
strong associations between stiffness and PH morbidity has
validated PA distensibility as a marker for early disease. This has
motivated further investigation into whether vascular stiffening
plays a key role in PH pathogenesis and progression (Figure 1).
Physiologically, there is strong evidence that arterial stiffening
contributes significantly to RV afterload and RV failure. Standard
measurements of RV afterload using PVR account for only
the steady-flow component of RV work, however, arterial
stiffness is the critical determinate of RV pulsatile afterload (Tan
W. et al., 2014; Bloodworth et al., 2015). In the pulmonary
circulation, pulsatile afterload contributes approximately 23%
to the workload of the RV, and has not been found to change
through the course of disease (Saouti et al., 2010a). Unlike
vascular resistance, which is localized primarily to small arteries
and arterioles, pulsatile afterload reflects the status of vessels
throughout the pulmonary vascular tree (Saouti et al., 2010a;
Wang and Chesler, 2011). Proximal large artery stiffness has
been comparatively well studied, but only contributes 15–25%
of the total oscillatory work; direct measurement of the distal
vasculature has been difficult to obtain (Bloodworth et al., 2015).
Through disease modeling and advanced imaging approaches,
measures of PA stiffness are increasingly being used to evaluate
RV function and outcomes. These pioneering physiological
studies suggest that evaluating PH without taking into account
vascular stiffness is incomplete; incorporating stiffness measures
allows a more complete analysis of RV workload, improves
outcome prediction, and will likely be useful for monitoring
response to therapy.

One important physiologic relationship that has emerged
from evaluations of global pulmonary artery stiffness is that PVR
and PA capacitance (a measure inversely related to stiffness) have

an inverse hyperbolic relationship (Lankhaar et al., 2008; Saouti
et al., 2009). In particular, Lankhaar et al. (2008) demonstrated
that this relationship holds true in patients with and without PH
and that current treatments do not greatly alter this coupling.
Clinically, this inverse relationship means that large measurable
changes in compliance are manifested by relatively small changes
in resistance in early disease, and that large measurable changes
in resistance yield only small changes in compliance in later
disease (Lankhaar et al., 2008; Saouti et al., 2010b). These authors
suggest that this physiology in large part explains why measures
of vascular stiffness are excellent markers for early PH (Wang and
Chesler, 2011; Thenappan et al., 2016).

Increasing evidence from disease models also implicates
a critical role for PA stiffening in a positive feedback cycle
of pathologic vascular remodeling. Distal vasculopathy can
promote increased mean pressures, resulting in large vessel wall
thickening, vessel dilation, and extensive alterations in ECM
content (Rabinovitch et al., 1979; Birukova et al., 2013). Stiffening
in the proximal vasculature can amplify pulse wave transmission
to the distal vessels, resulting in shear stress, inflammation,
and smooth muscle cell (SMC) remodeling behaviors (Li et al.,
2009; Scott et al., 2013). Finally, vascular stiffening itself
may promote local remodeling through alterations in gene
expression and cellular behaviors in response to the local
mechanical microenvironment – a process we have termed
mechanobiological feedback (Bertero et al., 2015; Liu et al., 2016;
Dieffenbach et al., 2017). We will discuss the impact of both
proximal and distal PA stiffening on vascular remodeling in
further detail below.

PROXIMAL PA STIFFENING AND ITS
CONSEQUENCES ON VASCULAR
REMODELING

Stiffness of proximal pulmonary arteries is determined in large
part by the composition and structure of the ECM proteins
comprising large portions of the vessel wall. These proteins
include proteoglycans and glycoproteins, but elastin and collagen
predominate (Tsamis et al., 2013). Elastin is a resilient, flexible
fiber that allows repetitive stretching of the vessel wall, whereas
collagen provides strength but is much less deformable, limiting
arterial compliance and preventing damage to the vessel (Tsamis
et al., 2013; Schafer et al., 2016). As a result, in healthy tissues
at low strains the more compliant mechanical properties of
elastin predominate, with collagen carrying loads only under
high-strain conditions (Hunter et al., 2011). Remodeling of these
arteries during PH leads to vessel dilation, inflammatory cell
accumulation, degradation of elastin, and collagen accumulation
(Lammers et al., 2008). Examination of mice with variable
vascular elastin expression shows a gradual increase in mPAP
that inversely correlates with elastin levels (Shifren et al., 2008).
Specifically, ex vivo biaxial strain testing and accompanying two-
photon microscopy in explanted human tissues demonstrated
severe elastin fragmentation and collagen accumulation in PH
that correlated well with collagen-predominant (stiff) mechanics
even under low-strain conditions (Rogers et al., 2013). Work in
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FIGURE 1 | Pulmonary arterial stiffening in PAH pathogenesis.

the chronic hypoxia neonatal calf model has also shown that the
elastin layer can stiffen to allow adaptation to higher pressures,
but this may primarily be a response observed early in life when
elastin synthesis is present at much higher levels (Lammers et al.,
2008; Schafer et al., 2016).

For many years, the standard dogma has been that proximal
vessel stiffening is a relatively late disease manifestation, however,
studies in animal models increasingly demonstrate that proximal
stiffening occurs relatively early after exposure to pathologic
stimulation (Tan W. et al., 2014). Seminal work by Myrick and
Reid suggested early increases in proximal pulmonary artery
stiffness in rats in the setting of hypoxia, with an increase in artery
diameter of more than 50% after 3 days of exposure (Meyrick and
Reid, 1979b). These investigations later showed a doubling in the
thickness of the elastic lamina after 10 days of exposure, with
collagen and elastin contributing proportionally (Meyrick and
Reid, 1980). In the same rat hypoxia model, the Riley laboratory
group found increased collagen synthesis by 3 days and a twofold
increase in hydroxyproline wall content within 5 days of hypoxia
exposure that correlated with a doubling in stiffness of the PA
bed, as measured by pressure-volume loops (Poiani et al., 1990;
Tozzi et al., 1994). Kobs et al. (2005) more recently performed
ex vivo testing of the passive mechanical properties of mouse PAs
in the hypoxia model at relatively early time points (1–2 weeks of
hypoxia). They found a significant (∼25%) increase in effective
elastic modulus and decreased compliance of proximal mouse
PAs that correlated histologically with proportional thickening of
both collagen and elastin elements of the arterial wall (Kobs et al.,
2005).

Work by the Rabinovitch laboratory has demonstrated early
internal elastic lamina disruption and increases in elastolytic
activity in the monocrotaline (MCT) rat model of PH within the
first few days after injection, and weeks before the development
of hemodynamic changes (Todorovich-Hunter et al., 1992).
Serine elastase appears to be responsible for this degradation,
and its upregulation is associated with later development of
neointimal lesions (Kim et al., 2011). Furthermore, disruption
of this early change in stiffness via serine elastase inhibition
is beneficial in preventing or reversing elevated PA pressures
and RV hypertrophy. This has been convincingly shown in
multiple disease models, including hypoxia, MCT, S100A4, and
sugen-hypoxia models of PH (Maruyama et al., 1991; Ye and
Rabinovitch, 1991; Cowan et al., 2000a; Zaidi et al., 2002; Kim
et al., 2011; Nickel et al., 2015), although recent studies suggest an
independent effect on bone morphogenic protein signaling that
may also contribute (Nickel et al., 2015). Collagen remodeling has
also been found to be important in this early time period, as mice
with impaired ability to degrade collagen fail to improve proximal
vascular stiffening and tend to have higher PA pressures during
recovery (Ooi et al., 2010).

A large body of recent work by Stenmark, Tan, and colleagues
has elucidated a putative mechanism by which early proximal
pulmonary vascular stiffening can impact PH progression via
induction of high pulsatile flow in the distal vasculature (Li
et al., 2009, 2013; Scott et al., 2013; Tan W. et al., 2014;
Tan Y. et al., 2014). In the pulmonary circulation, proximal
pulmonary arteries are 10–20-fold more compliant compared
to systemic arteries (Lammers et al., 2008), but smaller vessels
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also contribute significantly (∼80%) to the total compliance of
the pulmonary vascular tree (Saouti et al., 2010b). Nevertheless,
the large and medium-sized elastic pulmonary arteries of
the upstream vasculature expand passively during systole and
recoil during diastole, serving to convert pulsatile flow to a
more constant flow in distal vessels while also dampening
pressure variations throughout the cardiac cycle (Tan W. et al.,
2014). Constant, low-pulsatility laminar flow is physiologic for
vascular endothelium, resulting in high levels of NO production,
endothelial barrier integrity, and low expression of adhesion
and procoagulatory molecules. Experimental disturbance of flows
from this state in vivo lead to compensatory vascular remodeling
that functions to maintain shear stresses near physiologic levels,
but may also contribute to pathological processes such as
atherosclerosis (Chiu and Chien, 2011). During PH progression,
stiffer proximal vessels will distend less with each stroke volume
and therefore transmit greater flow and pressure pulsatility
to the more distal vasculature (Scott et al., 2013; Su et al.,
2013).

To study the effects of increased flow transmission from
stiffened proximal arteries, these investigators used an in vitro
system that simulated high flow pulsatility compared to low
flow pulsatility with the same mean flow stresses (simulating the
same static pressures/mPAP) on human PAECs. Compared to
normal flow pulsatility, high flow pulsatility led to attenuated
release of the pulmonary vasodilators NO and prostaglandin-F1α

(PGF1α) and enhanced release of the potent vasoconstrictor
endothelin (Li et al., 2009). Over short timeframes, this
change in pulsatility induced expression of inflammatory
leukocyte adhesion molecules (such as intercellular adhesion
molecule, endothelial leukocyte adhesion molecule, and
monocyte chemo-attractant protein-1) and led to endothelial
cell proliferation (Li et al., 2013). Using a co-culture system
of PAECs and PASMCs, these authors demonstrated that
high-pulsatility flow induced PASMC hypertrophic responses,
including expression of the contractile proteins α-smooth
muscle actin (αSMA) and smooth muscle myosin heavy chain,
without affecting proliferation (Scott et al., 2013). Treatment
with a variety of vasodilators, including ACE inhibitors and
endothelin antagonists, could prevent this effect. The putative
mechanosensing mechanisms underlying endothelial responses
to shear stress will be discussed below. These in vitro models
suggest that proximal vascular stiffening may induce or
exacerbate distal vascular vasoconstriction, inflammation, and
remodeling, providing a key contribution to the progression of
disease.

DISTAL AND MICROVASCULAR PA
STIFFENING AND
MECHANOBIOLOGICAL FEEDBACK

Muscularization of normally non-muscularized “intra-acinar”
pulmonary arteries was recognized as an early finding (day 3 of
exposure) by Meyrick and Reid in their initial studies of hypoxia-
and Crotolaria-induced PH in rats (Meyrick and Reid, 1979a,b).
This neomuscularization notably occurs before proliferation,

and was found to represent hypertrophy and metaplasia of
precursor SMCs not normally visible by light microscopy (Hislop
and Reid, 1976; Meyrick et al., 1978). Recent lineage tracing
experiments by the Greif lab in the mouse hypoxia model
have meticulously identified these SMC progenitors, which arise
from the border region between muscular and non-muscular
arteries and express both αSMA and the undifferentiated
mesenchymal marker platelet derived growth factor receptor-β
(Sheikh et al., 2014, 2015). Early in the development of
hypoxia-induced PH, individual progenitor cells migrate distally,
dedifferentiate, and clonally expand to enable muscularization
in the distal arteries by days 5–10 post-hypoxia (Sheikh et al.,
2015).

Our recent work has added to the field by directly
characterizing the stiffness of the pulmonary vasculature locally
at the micron scale in models of PH and human PAH.
To do so, we developed a methodology to characterize
the local elastic properties of the lung using atomic force
microscopy (AFM) (Liu F. et al., 2010; Liu et al., 2015;
Liu and Tschumperlin, 2011). Optimal measurements use
large spherical tips (1–2.5 µm radius) on thick (20–50 µm)
sections with sufficient force (50 pN) to interrogate vessel
mechanical properties (Sicard et al., 2017). Although this
method requires unfixed tissue, limiting some applications, it
allows for unparalleled spatial resolution to measure local tissue
stiffening in even the smallest vessels (Liu and Tschumperlin,
2011). Examination of human tissue has allowed us to
determine the range of medial stiffness relevant to disease (Liu
et al., 2016), and interestingly demonstrated a normal ∼2-
fold increase in PA stiffness with aging (Sicard et al., 2018).
These observations raise the possibility that some forms of
PH may be related to an accelerated aging phenotype or
represent genetic/epigenetic dysregulation of the normal age-
related process.

Using this AFM approach, we examined the spatial and
temporal distribution of PA stiffening in both the MCT and
sugen-hypoxia rat models of PH (Liu et al., 2016). We found
that there is an early (7 day) 1.5–2-fold increase in pulmonary
artery stiffening in distal vessels (<100 µm in diameter) in
both the MCT and sugen-hypoxia models that subsequently
progresses to an approximately sixfold (0.6 kPa to 3.6–4 kPa)
increase in vascular stiffness in later stage disease (Liu et al.,
2016). Wall thickening detectable by light microscopy and more
proximal arterial medial stiffening (vessel diameter 100–300 µm)
occurs subsequent to this distal stiffening, followed by changes
in PA pressures and frank RVH. Taken together, our results
suggest that medial PA stiffening arises early in distal vessels
and progresses proximally in these models, preceding detectable
hemodynamic changes and frank RV dysfunction. Notably, our
methodology examines local-scale changes in stiffness in the
vessel media of intrapulmonary vessels, so we would not have
detected early changes in elastic laminae of the large arteries
discussed above. Current evidence indicates that both proximal
and distal vascular remodeling are likely important to disease
pathogenesis, but their relative contributions and the direction
of propagation require further study, particularly in human
disease.
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These changes in the local mechanical environment in early
PH suggest a potential role for PA stiffness in the progression of
disease. From a physiologic standpoint, smaller vessels contribute
significantly to total arterial compliance as well as to vascular
resistance; thus, increased stiffness and muscularization will
impact both static and oscillatory RV workload (Saouti et al.,
2010b). Due to pulse-wave reflection and proximal artery dilation
in response to mean pressure changes, there will be increased
circumferential stress on proximal vessels, contributing to
inflammation and vascular remodeling in these vessels (Figure 1;
Wang and Chesler, 2011).

Beyond physiologic principles, the mechanical micro-
environment is being increasingly recognized for its critical
role in regulating key cellular processes during organogenesis
(Mammoto and Ingber, 2010) and in the development of
pathology (Georges et al., 2007; Klein et al., 2009; Liu F.
et al., 2010; Liu et al., 2015, 2016; Gulino-Debrac, 2013;
Perepelyuk et al., 2013; Pickup et al., 2014; Huveneers et al.,
2015; Tschumperlin, 2015). Pathogenic vascular stiffness has
been found to precede the development of systemic hypertension
(Kaess et al., 2012), and leads to microvascular endothelial and
SMC dysfunction (Huveneers et al., 2015). We have extensively
examined the response of pulmonary vascular cells to pathologic
matrix stiffness in vitro using discrete stiffness polyacrylamide
hydrogels (Liu F. et al., 2010; Liu et al., 2016; Dieffenbach
et al., 2017), and have found that stiffness induces changes
that can drive further vascular remodeling – a process we call
mechanobiological feedback.

Human PASMCs and PAECs grown on hydrogels that
span the range from normal parenchyma to highly remodeled
vessels (shear modulus 0.1–25.6 kPa) show a robust proliferative
response to matrix stiffness (Liu et al., 2016). In PASMCs,
contractile force generation, as assessed by traction force
microscopy, is likewise highly stiffness dependent (Dieffenbach
et al., 2017), which may in part be due to remodeling of the
actin cytoskeleton. These remodeling phenotypes correlate with
increased expression of matrix proteins, such as collagen I,
fibronectin, and LOX, a key collagen cross-linking enzyme (Liu
et al., 2016; Dieffenbach et al., 2017). Additional downstream
consequences of arterial stiffness include increased fibrotic
changes and ECM modifications via a miR-130/301-mediated
mechanism and stiffness-dependent alterations in glutaminolysis
that impact proliferation and migration of vascular cells
(Bertero et al., 2015, 2016). We have also found that stiffness-
induced activation of pulmonary vascular cells is at least in
part dependent on downregulation of cyclooxygenase-2 (COX-
2) expression and COX-2-dependent prostanoid production
(Fredenburgh et al., 2008; Liu F. et al., 2010; Liu et al.,
2016; Dieffenbach et al., 2017). Importantly, suppression of
matrix stiffening or stiffness-induced signaling using a LOX
inhibitor (β-aminopropionitrile) or a long-acting prostanoid
(iloprost) at the time of early PA stiffening prevented distal
PA stiffening and later hemodynamic consequences of PH
in vivo, demonstrating the therapeutic potential of disrupting
mechanobiological feedback (Bertero et al., 2015; Liu et al., 2016).
Over the past several years, a number of molecules have
emerged as likely mediators of mechanobiologic feedback in the

pulmonary vascular system, and may make promising future
therapeutic targets to disrupt PH development and progression
(Figure 2).

KEY MOLECULAR PATHWAYS
INVOLVED IN MECHANOBIOLOGICAL
FEEDBACK

Non-structural Determinants of Matrix
Stiffness
Vascular stiffness ultimately arises from a combination of
factors, including increased ECM deposition, matrix stiffening,
vascular cell proliferation/hypertrophy, and active smooth
muscle contraction. The major structural ECM components and
their role in large vessel stiffness were discussed previously,
however, matrix composition and mechanical properties are also
altered by enzymatic activity that is closely regulated at the
cellular level (Figure 2).

As detailed above, serine elastase production is elevated
in several models of PH (Maruyama et al., 1991; Ye and
Rabinovitch, 1991; Cowan et al., 2000a; Zaidi et al., 2002; Kim
et al., 2011; Nickel et al., 2015), and its expression has been
found to correlate with development of neointimal lesions in
one model (Kim et al., 2011). In addition to shifting workload
to less compliant collagen fibers (Schafer et al., 2016), elastin
fragmentation within the medial layer can directly promote
a variety of SMC remodeling behaviors, including phenotype
switching, migration, and proliferation (Chelladurai et al., 2012).
Mechanistically, this occurs through liberation of matrix bound
SMC mitogens such as fibroblast growth factor (Thompson and
Rabinovitch, 1996) and exposure of fibronectin-derived peptides
and previously hidden integrin binding sites (Kafienah et al.,
1998). Inhibition of serine elastases can lead to regression of
progressive medial PA hypertrophy in culture ex vivo (Cowan
et al., 2000b), and is also associated with decreased PA remodeling
in disease models (Maruyama et al., 1991; Ye and Rabinovitch,
1991; Cowan et al., 2000a; Zaidi et al., 2002; Kim et al.,
2011; Nickel et al., 2015). Recent studies by the Stenmark and
Harrison groups have also shown inflammatory activation of
macrophages by elastin fragments (Schafer et al., 2016). Pidkovka
and colleagues, in particular, reported upregulation of the elastase
matrix metalloproteinase 12 (MMP12) by mechanical stretch
in vitro and MMP12-dependent aortic macrophage accumulation
and subsequent vascular stiffening in vivo (Luft, 2012).

MMP12 is one of a large family of MMPs and their
endogenous inhibitors (tissue inhibitors of MMPs, or TIMPs)
that likely play a role in altering the vascular mechanical
microenvironment. MMP2 and MMP9 are metalloproteinases
with diverse ECM cleavage functions which were initially
identified by their ability to degrade collagen IV of the basement
membrane; they are also referred to as gelatinases based
on their efficient cleavage of denatured collagen I. Elevated
MMP2 expression and collagen IV degradation are seen in PH
neointimal lesions (Matsui et al., 2002), and gelatinase levels
are elevated in both serum and PASMCs derived from patients
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FIGURE 2 | Mechanisms of mechanobiological feedback.

with PH (Benisty et al., 2005; Cantini-Salignac et al., 2006;
Chelladurai et al., 2012). MMP2 and MMP9 activity are also
increased in MCT and hypoxia-induced PH models (Frisdal
et al., 2001; Schermuly et al., 2004; George and D’Armiento,
2011). Disruption and turnover of the basement membrane,
like the internal elastic lamina, is therefore likely important to
the development of intimal and medial hypertrophy. Indeed,
gelatinase inhibition can disrupt PA medial hypertrophy ex vivo
(Cowan et al., 2000b). Much remains to be understood about
the drivers and mechanical impact of these basement membrane
alterations.

MMPs also have extensive non-matrix secondary effects via
cytokine processing and release from the ECM that likely
contribute to the complexity of their regulation and their role
in disease (Chelladurai et al., 2012). On a more global level,
changes in matrix altering activity through MMP inhibition have
been shown to have a mixed phenotype in PH (Chelladurai
et al., 2012). While adenoviral-induced overexpression of TIMP1
in the lung is protective in the pro-inflammatory MCT
PH model (Vieillard-Baron et al., 2003), both viral-mediated
TIMP1 induction and MMP inhibition with doxycycline lead
to increased vascular remodeling in the setting of chronic
hypoxia (Vieillard-Baron et al., 2000). It is likely that initial
collagen breakdown and ECM turnover contribute to PASMC
proliferation and vascular remodeling through growth factor
release and mechanotransduction, followed by increased collagen

deposition and vascular stiffening (Bloodworth et al., 2015).
Further study is greatly needed to clarify this process.

Lysyl oxidases are copper-dependent amine oxidase enzymes
responsible for covalent cross-linking of collagen and elastin
fibers, a process that imparts structural stability. Recently, Nave
et al. (2014) identified upregulation of LOX family members
(LOX, LOXL1, LOXL2, LOXL3, LOXL4) in multiple forms of
human PH, including within plexiform and concentric vascular
lesions. Expression of LOX, LOXL1, and LOXL2 was upregulated
in human PASMCs in response to hypoxia, and increased in both
the MCT rat model and the hypoxia mouse model of PH. In
the hypoxia model, inhibition of LOX attenuated small artery
muscularization, reduced vascular wall thickness and elastin
accumulation, and decreased total collagen accumulation and
cross-linking (Nave et al., 2014). We and the Chan laboratory
have expanded on these findings, demonstrating that stiff matrix
could induce LOX expression in PAAFs, as well as increase
fibrillar collagen isoforms and collagen expression (Bertero et al.,
2015). In particular, LOX upregulation was a key component
of a complex mechanobiological positive feedback loop along
with mechanotransductors YAP/TAZ and MiR 130/301 (see
below) that led to progressive ECM stiffening in vivo. We
verified the impact of LOX inhibition on hypoxia-induced PH,
and tied it directly to inhibition of this mechanotransduction
circuit. More importantly, we closely examined the impact of
LOX inhibition in the MCT PH model, and demonstrated
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decreased collagen deposition and remodeling, reduced medial
thickening, and directly decreased arterial stiffness as assessed
by AFM (Bertero et al., 2015). These findings correlated
with improvement in RV systolic pressures and RVH, as
well as reduced activity of downstream mechanotransduction
effectors as indicated above. The impressive impact of LOX
inhibition in the MCT and hypoxia models illustrates successful
disruption of mechanobiological feedback, and serves as a useful
demonstration of the potential power of this approach.

Transglutaminase-2 (TG2) is a calcium-dependent
crosslinking enzyme that is known to remodel collagen I
and other components of the ECM, resulting in increased matrix
stability and tissue rigidity (Eckert et al., 2014). In the systemic
circulation, abolition of endothelial NO synthase (eNOS) activity
upregulated matrix TG2 expression and crosslinking, and led
to increased aortic and carotid stiffening (Jung et al., 2013).
In PH, the Fanburg laboratory has shown that TG2 activity is
upregulated in multiple rodent disease models, as well as in
the serum of patients with PAH (Wei et al., 2012; DiRaimondo
et al., 2014). In human PASMCs, TG2 was regulated both by
mechanosensitive calcium channels (TRPV4, see below) and
by hypoxia-inducible factor 1α, and was required for hypoxia-
induced PASMC hyperproliferation (Penumatsa et al., 2014).
Finally, TG2 inhibitor studies in the mouse sugen-hypoxia model
demonstrated TG2-dependent upregulation of fibrotic markers
in the lung and RV (Penumatsa et al., 2017), and also showed
attenuated PA pressure elevations with TG2 inhibitor treatment
(DiRaimondo et al., 2014). These studies indicate TG2-mediated
ECM crosslinking also contributes to matrix stiffness in PH
development.

Mechanosensors
All adherent cells derive critical signals from their interactions
with the ECM and their mechanical microenvironment in
order to regulate cell shape, survival, proliferation, and
other phenotypes. Mechanical disruption can be converted to
chemical signaling directly via mechanosensitive ion channels.
In endothelial cells, a number of mechanosensitive channels,
including the TRPV4 and PIEZO1 calcium channels and the
inwardly rectifying potassium (Kir) channels, are responsible
for shear-flow induced vasodilation through activation of eNOS
(Hartmannsgruber et al., 2007; Mendoza et al., 2010; Wang et al.,
2016; Ahn et al., 2017). Although not normally subject to blood
shear flow, PASMCs are exposed to transmural interstitial flows
proportionally to transmural pressure differences, and can also
have direct exposure to luminal shear flow in the setting of PH-
induced endothelial injury (Makino et al., 2011; Shi and Tarbell,
2011). Calcium signaling subsequently leads to pulmonary
vasoconstriction (via activation of myosin light chain kinase)
and proliferation (through activation of calmodulin kinase and
pro-growth transcription factors) (Kuhr et al., 2012). Song et al.
(2014) found that three known mechanosensitive ion channels,
TRPV4, TRPM7, and TRPC6 were significantly upregulated in
idiopathic PAH PASMCs compared to cells from non-diseased
controls. This upregulation correlated with greatly increased
cytoplasmic calcium in response to shear stress that could be
partially blocked with TRPM7 and TRPV4 channel inhibitors.

Yang X.R. et al. (2012) found that TRPV4 was upregulated in
the setting of hypoxia in rats, and correlated with increased
vascular tone in endothelium-denuded small PAs in this model.
Furthermore, TRPV4 knockout mice demonstrated delayed and
attenuated vascular remodeling in response to hypoxia, further
supporting that these channels play a role in disease pathogenesis
(Yang X.R. et al., 2012).

The transmission of mechanical information from the ECM
to the cell cytoskeleton and signal transduction machinery
is mediated primarily through integrin-based adhesions
(Tschumperlin, 2011; Tschumperlin et al., 2018). Integrins,
comprising heterodimers of α and β subunits, are transmembrane
proteins that recognize specific matrix polypeptides, such as the
arginine-glycine-aspartic acid (RGD) sequence in fibronectin.
Integrin subunits have only small cytoplasmic domains, but serve
as scaffolds for recruiting a variety of cell-signaling machinery
into adhesion complexes. Activated integrins are connected to
the actomyosin system structurally through interactions with
linking proteins such as talin and vinculin (Sun et al., 2016).
This machinery, often referred to as a “molecular clutch” allows
cells to both transmit forces to the ECM and translate forces
into molecular signaling (Case and Waterman, 2015). The inner
workings of this machinery are just beginning to be understood.
For example, some specific integrin heterodimers display
catch-bond properties, allowing longer binding time under
increased loading (Kong et al., 2009). Recently, Elosegui-Artola
et al. (2016) demonstrated that the force-regulated unfolding of
talin competes with integrin unbinding to generate a “rigidity
threshold” for downstream mechanical activation in response to
force transmission. In the setting of higher rigidity (above 5 kPa
in their system), talin unfolding tends to occur before catch-bond
release, exposing vinculin binding sites, activating adhesion
complexes, and stimulating mechanotransduction signals
(YAP nuclear translocation, see below). These processes likely
occur through multiple mechanisms, including recruitment of
additional integrins by talin and reinforcement of the mechanical
clutch by vinculin-actin binding (Saltel et al., 2009; Hirata et al.,
2014; Elosegui-Artola et al., 2016). This fine-tuned machinery
allows for assembly of cell-matrix adhesion complexes that can
respond rapidly to changes in applied forces (Tschumperlin et al.,
2018).

As some of the most important mechanosensors, integrins
likely have an extensive impact on mechanical signaling
during the development of PH. In PASMCs, integrins are
differentially regulated in PH disease models, with augmentation
of downstream signaling (Umesh et al., 2011). In particular,
α1, αv, and α8 signaling are increased in both MCT and
chronic hypoxia, whereas α5 and β1 are decreased in chronic
hypoxia and α5 and β3 are decreased in the MCT model
(Umesh et al., 2011). Chronic vasoconstriction in the setting of
worsening disease causes an integrin-dependent reorganization
of the actin cytoskeleton favoring increased integrin contacts
and cellular stiffening, and allows for an adaptive reduced
engagement of the active contractile apparatus (Martinez-Lemus
et al., 2004; Sehgel et al., 2013). In endothelial cells, the
cytoskeleton is dominated by F-actin stress fibers that attach
to integrin-based focal adhesions, and this organization is
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highly affected by vascular stiffness (Sun et al., 2016). Integrin
signaling is involved in and enhances mechanoactivation of ion
channels (Huveneers et al., 2015). TRPV4 and integrins play a
synergistic role in a positive feedback loop driving endothelial
cell alignment in response to cyclic stretch on flexible substrates
(Thodeti et al., 2009). Integrin signaling is also known to drive
extracellular transforming growth factor-β (TGFβ) activation
through mechanically mediated release from its matrix-bound
latent complex (Buscemi et al., 2011; Shi et al., 2011). Although
high pulsatile flow has been found to increase TGFβ signaling
(Scott et al., 2013) and altered TGFβ superfamily signaling is
one of the hallmarks of familial and idiopathic PAH (Eickelberg
and Morty, 2007; Aschner and Downey, 2016), direct mechanical
activation of TGFβ has not yet been well studied in pulmonary
vascular cells.

Cells also derive information regarding their mechanical
microenvironment through cell-cell contact in the form of
intercellular adhesions. The most studied of these cell-cell
mechanotransducers are cadherin-based adhesions formed
by membrane-spanning proteins of the cadherin family on
adjacent cells (Tschumperlin et al., 2018). Several elegant
experiments examining cell shape and cytoskeletal responses in
cell monolayers have demonstrated conclusively that stiffening
of the ECM, as well as internal or external tension forces,
lead to remodeling of cell-cell junctions, changes in cell shape,
and altered cell migration (Liu Z. et al., 2010; Krishnan et al.,
2011; Huveneers et al., 2012). The increase in endothelial
contractility and traction force development in stiff matrix
via these mechanisms leads to enhanced responsiveness to
angiogenic or inflammatory permeability factors during PH
progression (Liu Z. et al., 2010; Huynh et al., 2011; Krishnan et al.,
2011). In addition to investigations of effects of vascular stiffness,
the mechanism of cell-cell response to luminal shear flow has
been particularly well-studied in endothelial cells. Acute onset of
shear stress or mechanical force leads to engagement of platelet
endothelial cell adhesion molecule-1 (PECAM-1), along with
vascular endothelial cadherin as an adaptor protein, leading to
activation of downstream mechanotransductors (in particular Src
family kinases) and upregulation of phosphoinositide 3-kinase
and eNOS to regulate vascular tone (Osawa et al., 1997; Tzima
et al., 2005; Conway et al., 2013). Fluid shear stress-mediated
activation of PECAM-1 also triggers cytoskeletal remodeling in
endothelial cells via interaction with integrins and downstream
Rho GTPases (Tzima et al., 2001; Goldfinger et al., 2008;
Collins et al., 2012). Cell stretch also can activate endothelial
proliferation in a VE-cadherin-dependent fashion, likely via
the downstream mechanotransductors YAP and TAZ (Neto
et al., 2018). Thus, cell-cell adhesions contribute extensively to
mechanical and biochemical signaling in ways that are highly
relevant to endothelial homeostasis and endothelial injury.

Notable Cytosolic Mechanotransducers
Downstream of cell-matrix and cell-cell adhesion molecules,
a large network of biochemical and cytoskeletal-interacting
pathways contribute to the transduction of mechanical signals,
however, a few key molecules have emerged as critical (Figure 2).
For instance, the Src family of tyrosine kinases and FAK are

both recruited to focal adhesions, modulate integrin-cytoskeletal
links, and regulate each other’s activity (Tschumperlin, 2011;
Bloodworth et al., 2015). In particular, Src activity has been
shown to increase FAK expression at the cell surface and lead to
greater force transmission in vascular smooth muscle; conversely,
inhibition of FAK decreases Src activity in PASMCs (Paulin et al.,
2014; Bloodworth et al., 2015).

Interestingly, Src activity is elevated in rodent models of
PH, and tyrosine kinases with strong Src family inhibitory
properties demonstrate improved reversal of experimental PH
with treatment (Pullamsetti et al., 2012). Src phosphorylation
of p130Cas, a stretch-responsive protein that exposes Src
substrate domains under tension, has been shown to mediate
mechanotransduction via multiple partners (Zamir and Geiger,
2001; Sawada et al., 2006). Furthermore, p130Cas has been found
to be elevated in the serum, distal pulmonary arteries, and
cultured PAECs and PASMCs from PAH patients, as well as in
hypoxia and MCT models, and serves to amplify pro-remodeling
receptor tyrosine kinase activity in the setting of progressive
disease (Tu et al., 2012).

Similar to Src, FAK localizes to focal adhesions, self-
activates tyrosine phosphorylation, and interacts with numerous
components in response to mechanical strain (Fluck et al., 1999;
Lee et al., 2000; Wang J.G. et al., 2001; Provenzano et al., 2009).
Studies with FAK inhibitors have shown that FAK activation is
required for mechanosensing in migration of both fibroblasts
(Wang H.B. et al., 2001) and PASMCS (Paulin et al., 2014), and
that FAK inhibition can abrogate PH development in the MCT
rat model (Paulin et al., 2014).

Mechanical cues downstream of integrin signaling can
influence the regulation of small Rho GTPases, including RhoA,
Rac1, and CDC42, to alter the dynamics of the actin cytoskeleton
and influence cell migration and proliferation. Rho GTPases are
activated through recruitment of guanine nucleotide exchange
factors (Birukova et al., 2006). Although these factors are often
recruited via calcium signaling (Pardo-Pastor et al., 2018) and/or
activation of FAK and Src family kinases (Guilluy et al., 2011;
Bae et al., 2014; Pardo-Pastor et al., 2018), the exact regulatory
mechanisms are integrin and cell-context dependent, and in
many cases have not been fully worked out (Hoon et al., 2016).
Activated Rho GTPases all promote actin assembly. RhoA is
more involved in stress fiber formation, and Rac1 and CDC42 in
filopodia and lamellipodia formation, respectively (Hoon et al.,
2016).

RhoA is required for focal adhesion assembly and operates
within focal adhesion complexes to regulate the dynamics and
contractile activity of the actin cytoskeleton (Ridley and Hall,
1992). RhoA and its best-known downstream effector, RhoA-
associated protein kinase (ROCK), are stimulated by cell stiffness
(Klein et al., 2009), and also contribute to increased intracellular
stiffness through stress fiber development and stimulation of
actomyosin contraction (Maekawa et al., 1999; Riento and
Ridley, 2003; Wang et al., 2009). RhoA and ROCK have been
studied extensively in cardiovascular diseases, and have been
found to be involved in the development of PH in disease
models and in human disease. In endothelial cells, ROCK
activity downregulates eNOS (Takemoto et al., 2002), upregulates
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inflammatory markers, and is responsible for cytoskeletal
responses to shear stress (Li et al., 1999; Tzima et al., 2001;
Katoh et al., 2008; Conway et al., 2013). ROCK activity is
increased in both the media and the intima of pulmonary arteries
(Shimizu et al., 2013) and also in cultured PASMCs derived from
patients with idiopathic PAH (Guilluy et al., 2009). Treatment
with the ROCK inhibitor fasudil suppresses both MCT and
hypoxia-induced PH in rodents (Abe et al., 2004, 2006). In PH
patients, fasudil has been found to decrease PVR after short-term
use, and has had modest success in early clinical trials (Zhang
and Wu, 2017). Furthermore, vascular smooth muscle-specific
ROCK2 knockout mice were protected from hypoxia-induced
PH, decreasing the likelihood of any off-target explanation for
fasudil’s success (Shimizu et al., 2013).

Proteomics-based efforts have assiduously identified more
than 500 additional individual proteins that are associated
closely with cell-matrix adhesion complexes and facilitate cellular
interactions with the surrounding mechanical environment (Kuo
et al., 2011; Schiller et al., 2011). The overwhelming complexity of
the interactions that occur due to mechanical perturbations has
led to greater focus on pathways that integrate this information
to drive transcriptional programs in response to environmental
changes (Tschumperlin et al., 2018).

Transcriptional Mechanotransducers
Gene activation in response to mechanical signaling requires
conveying mechanical information to the cell nucleus. While
many transcription factors can play a role in this process, a small
number of central coordinators of mechanical signaling appear
to convey critical mechanical signals via nuclear translocation
(Figure 2). β-catenin is a well-known transcriptional coactivator
that is normally targeted for degradation in the cytosol via
phosphorylation by glycogen synthase kinase-3β (GSK3β), the
core member of the β-catenin destruction complex. β-catenin
activation canonically occurs via wingless/integrase (Wnt)
signaling pathways, and leads to β-catenin-dependent activation
of processes involved in proliferation, survival, and migration
in many cell types. In epithelial cells, mechanical stretch and
tissue stiffness lead to activation of β-catenin downstream of
RhoA and ROCK activation (Heise et al., 2011; Samuel et al.,
2011). Although stiffness-induced activation has not been well
studied in PH, enhanced canonical (β-catenin-activating) Wnt
signaling was associated with multiple cell types derived from
PAH patients in a large non-biased screen examining gene
expression signatures associated with PAH (West et al., 2014).
Enhanced Wnt signaling was also found in a separate screen for
targets of miRNAs elevated in end-stage PAH (Wu et al., 2016).
Pulmonary artery resistance vessels from patients with idiopathic
PAH demonstrated endothelial upregulation of β-catenin in
idiopathic PAH vessels that correlated with upregulation of
RhoA, ROCK, and Rac1 as assessed by immunohistochemistry
and qPCR (Laumanns et al., 2009). Finally, downregulation of
β-catenin reduces hypoxia-induced PASMC proliferation and PA
remodeling in hypoxia models of PH (Yu et al., 2013; Alapati
et al., 2014; Jin et al., 2015). These data together indicate a
potential role for β-catenin activation downstream of stiffness-
induced vascular remodeling in PH.

Nuclear factor-kappa B (NFκB) is a transcription factor most
well-known for its involvement in inflammatory and immune
responses, including flow-mediated inflammatory responses in
endothelial cells (Davis et al., 2004; Orr et al., 2008; Petzold et al.,
2009). The Stenmark laboratory group have shown that NFκB
activation and subsequent upregulation of inflammatory markers
occurs early and continuously in the setting of high-pulsatility
flow (Li et al., 2013). Furthermore, this activation is dependent
upon cell polarity changes and structural reorganization via actin
and microtubule remodeling (Li et al., 2013). NFκB activation
is also known to be sensitive to calcium influx, and can
be activated by mechanical stretch-induced calcium currents
via the TRPC3 channel in fibroblasts (Ishise et al., 2015). In
endothelial cells, non-receptor activated currents through TRPC3
can lead to NFκB activation and expression of inflammatory
cell adhesion molecules (Smedlund et al., 2010). Inhibition of
NFκB genetically in the lung reduced endothelial apoptosis,
endothelial-mesenchymal transition, and development of PH in
the MCT model. Although further study on mechanical signaling
via NFκB is needed, the current studies indicate a role for NFκB
in inflammatory and endothelial cell responses to alterations in
the mechanical microenvironment.

One critical link between stiffness-mediated cytoskeletal
remodeling and gene expression are the MRTFs. The MRTFs
form stable complexes with monomeric soluble actin (G-actin),
leading to the sequestration of these complexes in the cytoplasm.
Polymerization of G-actin into F-actin filaments and stress
fibers in the setting of increased mechanical stress or migration
liberates these factors to translocate to the nucleus, where they
act as cofactors for serum response factor (Tschumperlin et al.,
2018). Activity of MRTFs regulates the expression of multiple
gene products central to contractile machinery in myofibroblasts
(Small et al., 2010; Huang et al., 2012; Haak et al., 2014;
Scharenberg et al., 2014), and is a downstream effector of
profibrotic signaling by matrix stiffness (Huang et al., 2012)
and Rho/ROCK pathways in this setting (Esnault et al., 2014).
As stiffness-driven activators of pro-fibrotic and contractile
activity, MRTFs are therefore critical components of a profibrotic
mechanobiological feedback loop. In endothelial cells, MRTF-
A has been shown to mediate inflammatory marker production
downstream of RhoA activity in response to exposure to oxidized
LDL (Fang et al., 2011). In vascular smooth muscle, MRTF-
A was likewise involved in inflammatory mediator activation
downstream of endothelin-1 activity (Yang Y. et al., 2014).
Inhibition of MRTF-A in the pulmonary vasculature using
shRNA injection significantly attenuated the development of
hypoxic PH in rats (Yuan et al., 2014). This improvement
correlated with reduced expression of inflammatory chemokines
in the lung, ECM protein production by PASMCs, and collagen
deposition in the PA beds (Yuan et al., 2014). Whether MRTF
contributes significantly to mechanobiological feedback in PH via
these or other mechanisms has yet to be fully elucidated.

YAP and TAZ are closely related transcriptional modifiers
that have recently emerged as powerful effectors of mechanical
signaling (Dupont et al., 2011; Halder et al., 2012; Aragona
et al., 2013; Dupont, 2016). YAP/TAZ subcellular localization
is tightly linked to ECM stiffness, with stiff matrix driving
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nuclear localization and activation, and soft matrix promoting
cytoplasmic retention. Manipulation of YAP/TAZ levels can
mimic changes in matrix stiffness with regard to proliferation,
apoptosis, and cell differentiation, and can drive lung fibrosis
(Dupont et al., 2011; Aragona et al., 2013; Liu et al., 2015).

Recent investigations into the complex signaling that regulates
YAP/TAZ activity have only now begun to make this process
clear. As members of the Hippo pathway, YAP and TAZ
are biochemically regulated by phosphorylation by the serine-
threonine kinases LATS1 and LATS2, with phosphorylation
leading to cytoplasmic sequestration or degradation (Halder
et al., 2012). However, a large variety of mechanical cues,
including ECM rigidity, strain, shear stress, and adhesive area,
facilitate YAP nuclear localization (Dupont et al., 2011; Wada
et al., 2011; Aragona et al., 2013; Chaudhuri et al., 2016; Das
et al., 2016; Nakajima et al., 2017) in a fashion potentially
independent of YAP phosphorylation status (Dupont et al., 2011;
Das et al., 2016; Elosegui-Artola et al., 2017). Inhibitor studies
have demonstrated that this mechanical regulation requires
cytoskeletal integrity (Dupont et al., 2011; Das et al., 2016), as
well as actomyosin contractility (Dupont et al., 2011; Valon et al.,
2017), and is inhibited by actin capping and severing proteins
(Aragona et al., 2013).

YAP activation is also dependent on sufficient force-loading
of integrins to allow talin unfolding and reinforcement of cell-
matrix adhesions after integrin-ligand binding (Elosegui-Artola
et al., 2016). Based upon these mechanical stimuli, it is not
surprising that YAP nuclear localization is impaired by inhibition
of FAK (Kim and Gumbiner, 2015; Lachowski et al., 2018), Src
(Kim and Gumbiner, 2015), and Rho/ROCK signaling (Dupont
et al., 2011; Yu et al., 2012). Most recently, two different reports
demonstrated that YAP nuclear localization requires intact stress
and strain transmission to the nucleus itself through integrity
of the LINC complex (Driscoll et al., 2015; Elosegui-Artola
et al., 2017). Nuclear strain transfer is notably dependent only
on a patent actin cytoskeleton independent of microtubules
and intermediate filaments, providing an explanation for
the observation that YAP/TAZ nuclear localization is not
impaired by microtubule depolymerization (Dupont et al., 2011).
Elosegui-Artola et al. (2017) expanded on this finding by
demonstrating that nuclear force application using AFM is
sufficient to drive YAP nuclear translocation on soft matrix or
stiff substrates with cytoskeletal disruption. Further examination
using nuclear transport inhibitors and osmotic perturbations
of nuclear shape demonstrated that rigidity-induced nuclear
flattening led to increased cytosolic nuclear pore exposure and
increased YAP nuclear import (Elosegui-Artola et al., 2017). This
elegant series of experiments demonstrates that YAP and TAZ
mechanotransduction is a direct readout of force transmission
from the matrix through the actin cytoskeleton to the nucleus in
the form of stress fiber-mediated nuclear flattening.

Upon nuclear translocation, YAP and TAZ associate with
a number of promoter-specific transcription factors to drive
mechanical signaling. The most notable and canonical of these
factors are members of the transcriptional enhancer activator
domain (TEAD) family, whose downstream products drive
cellular proliferation and survival (Halder et al., 2012). However,

there is mounting evidence for considerable cross-talk between
YAP and TAZ and other key mechanotransduction pathways.
Specifically, YAP and TAZ were found to be cofactors for SMAD
signaling in the nucleus and involved in nuclear cross-talk with
MRTFs (Varelas et al., 2008, 2010b; Speight et al., 2016; Yu et al.,
2016; Kim et al., 2017), both of which have impacts on mechanical
and TGF-β signaling. Additional YAP/TAZ interactions with
both TGF-β/SMAD and β-catenin signaling are complex,
involving some degree of mutual cooperativity in nuclear
transcription but mutual sequestration and degradation in the
cytoplasm (Varelas et al., 2010a; Heallen et al., 2011; Azzolin et al.,
2012, 2014). In general, these cross-talk mechanisms appear to
allow significant synergy in the setting of co-activation or co-
inhibition while preventing pathologic feed-forward loops in the
setting of mixed signaling.

Recent studies have revealed important roles for YAP and
TAZ in vascular pathology and PH development. In vascular
smooth muscle, YAP is induced after injury and promotes
cellular migration, proliferation, and neointimal formation
(Wang et al., 2012; Kimura et al., 2016). In PH, we and
the Chan laboratory have found that YAP/TAZ upregulation
in response to matrix stiffness promotes collagen deposition
and cross-linking in PAAFs via miRNA-130/301 induction
(Bertero et al., 2015). ECM remodeled by cells over-expressing
YAP or miRNA-130/301 induced proliferation of PAECs,
PASMCs, and PAAFs, demonstrating the potential for a positive
feedback loop in response to ECM stiffening. Kudryashova
et al. (2016) also identified an ECM-associated upregulation
of YAP expression that was maintained by PASMCs derived
from idiopathic PAH patients compared to controls. This
fibronectin-associated elevation in YAP activity was linked
to enhanced proliferation and survival via integrin signaling
(Kudryashova et al., 2016). In PAECs, YAP/TAZ signaling
is required for stiffness-associated increases in glutaminolysis;
inhibition of either YAP/TAZ (via verteporfin) or glutaminolysis
led to improvements in vascular stiffness, RV pressures, and
RVH in the MCT rat model of PH (Bertero et al., 2016).
Finally, we have recently examined PASMC response to matrix
stiffening, and have found that YAP/TAZ signaling is a
critical regulator of stiffness-associated remodeling behaviors
(Dieffenbach et al., 2017). Mechanoactivation of YAP and TAZ
promotes proliferation, LOX activity, enhanced contractility, and
increased migration, all of which lead to further arterial stiffening
and feedback amplification of remodeling. Mechanistically, this
mechanobiological feedback is driven by YAP/TAZ-mediated
suppression of COX-2 expression and prostaglandin signaling,
which normally help maintain pulmonary vascular homeostasis
(Dieffenbach et al., 2017). Genetic COX-2 deficiency alone in
mice leads to PASMC remodeling and more severe hypoxia-
induced PH (Fredenburgh et al., 2008, 2009), whereas early
treatment with a long-acting prostacyclin analog can attenuate
stiffness-induced remodeling behaviors and MCT-induced PH
(Liu et al., 2016). Despite very different approaches to the
investigation of pulmonary vascular remodeling, these studies
each found a central role for YAP/TAZ activation in the process,
highlighting the important role of mechanical signaling in PH
development.
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Alternative Mechanical Effectors
Recent studies of the nuclear lamina have identified several
key mechanosensing proteins that connect the nucleus to the
actin cytoskeleton (now identified as the LINC complex) (Zhen
et al., 2002; Padmakumar et al., 2004, 2005; Poh et al., 2012).
Beyond their potential role in mechanical alterations in nuclear
transport (as with YAP/TAZ, above) (Elosegui-Artola et al., 2017),
these structural components can alter chromatin organization
and impact gene transcription in response to substrate stiffness
(Janmey et al., 2013; Swift et al., 2013; Alam et al., 2016).
Genetic defects in these structural proteins lead to mesenchymal
dysfunction and organ fibrosis, including cardiac fibrosis, but
have not been linked to PH (Peng et al., 2006).

Like most significant cellular inputs, mechanical forces are
likely to induce epigenetic changes in chromatin remodeling
via DNA methylation and histone modifications; however, this
process is relatively understudied. Some recent examinations
have found that matrix stiffness and mechanical inputs can alter
chromatin organization (Downing et al., 2013; Crowder et al.,
2016; Le et al., 2016) and increase histone acetylation (Valenzuela-
Fernandez et al., 2008; Li et al., 2011). These epigenetic changes
can persist over time and through cell divisions, and may
play a key role in long term changes in response to more
transient alterations in the mechanical environment, a term
called “molecular memory” (Yang C. et al., 2014; Heo et al., 2015).
Further study of these mechanisms will allow a more complete
understanding of mechanical signaling.

Finally, the rapidly expanding field of microRNA (miR)
biology has led to the examination of miR regulation by
mechanical signaling. A recent elegant investigation by Frith
et al. (2018) screened for miRs upregulated by stiffness and/or
RhoA signaling in mesenchymal stromal cells (MSCs). They
verified two miRs (miR-100-5p and miR-143-3p) that biased
MSCs further toward differentiation pathways associated with
stiff ECM, demonstrating positive mechanobiological feedback
via miR activity (Frith et al., 2018). In the endothelium,
a large number of “mechano-miRs” have been found to
respond to alterations in shear stress, and have been implicated
in subsequent inflammatory signaling, apoptosis, and NO
production (Kumar et al., 2014). In PH, we and the Chan group
identified miR21, miR27a, and YAP/TAZ-dependent miR130/301
complex upregulation in response to ECM stiffness (Bertero
et al., 2015). miR21 has been extensively studied in PH
and found to have pleiotropic effects, with miR21 knockout
mice displaying increased PH severity while miR21 inhibition
leads to reduced vascular remodeling after hypoxia (Parikh
et al., 2012; Yang S. et al., 2012; Iannone et al., 2014; White
et al., 2014). Inhibition of the miR130/301 complex, however,
decreased LOX production, fibrillar collagen deposition, and
YAP nuclear translocation in cultured fibroblasts and the
pulmonary vasculature in vivo, demonstrating disruption of

mechanobiological feedback (Bertero et al., 2015). This translated
to improved pulmonary pressures and RVH as well as decreased
vascular stiffening in experimental PH models (Bertero et al.,
2015).

Naturally, given the numerous miRs and their vast networks
of targets, there are many miRs that have been found to modulate
mechanical signaling pathways, including ECM components
(Nanoudis et al., 2017), FAK (Eskildsen et al., 2011), β-catenin
(Wu et al., 2016), and YAP (Xu et al., 2015). The role for these
miRs in the regulation of mechanical signaling in PH, as well
as their therapeutic potential, warrants further study (Negi and
Chan, 2017). In particular, miRs are pleiotropic and often broadly
expressed, so additional focus on the relative safety and efficacy of
miR targeting of these mechanical pathways will be required.

CONCLUDING REMARKS

Over the past several years, the increasing evidence for early
development of PA stiffening and its contribution to RV workload
in PH has led to an increased focus on arterial stiffness
changes in the pathogenesis and potential early treatment
of disease. Arterial stiffening has been found to occur fairly
early throughout the pulmonary vasculature, affecting both
large elastic arteries and small distal vessels. The downstream
effects of this vascular stiffening include alterations in flow
characteristics and changes in ECM composition that predispose
to inflammation and continued pathologic vascular remodeling.
The molecular mechanosensors that facilitate this process are
now beginning to be understood, and their links to downstream
signaling that locally reinforce matrix stiffening and force
transmission delineated. Multiple recent studies have highlighted
this process during PH development, and in so doing have
demonstrated a potential therapeutic effect of disrupting this
feedback loop. Further study of mechanobiological feedback in
PH will be needed to more thoroughly interrogate these pathways
and ultimately identify optimal targets for future therapy.
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