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Abstract: Two oligomers, each containing 3 L-lysine residues, were used as model 
molecules for the simulation of the β-sheet conformation of ε-polylysine (ε-PLL) chains. 
Their C terminals were capped with ethylamine and N terminals were capped with  
α-L-aminobutanoic acid, respectively. The calculations were carried out with the hybrid 
two-level ONOIM (B3LYP/6-31G:PM3) computational chemistry method. The optimized 
conformation was obtained and IR frequencies were compared with experimental data. The 
result indicated that the two chains were winded around each other to form a distinct 
cyclohepta structure through bifurcated hydrogen bonds. The groups of amide and  
α-amidocyanogen coming from one chain and the carbonyl group from the other chain 
were involved in the cyclohepta structure. The bond angle of the bifurcated hydrogen 
bonds was 66.6°. The frequency analysis at ONIOM [B3LYP/6-31G (d):PM3] level 
showed the IR absorbances of the main groups, such as the amide and amidocyanogen 
groups, were in accordance with the experimental data.  
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1. Introduction  

L-Lysine is a kind of basic amino acid containing one carboxyl and two amino groups. Its carboxyl 
can combine with α or ε amino group of another L-lysine to form a cationic homopolmer,  
poly-L-lysine (PLL). This kind of cationic homopolymer can be used as emulsifying or delivery agents 
[1,2], anti-obese regents [3], hydrogels [4], biodegradable materials [5], food preservatives [6] and so 
on. Because α-PLL can take on different conformations such as α-helix, β-sheet, β-turn and random 
coil, there are many publications using it as a model to examine the structure of proteins [7-10]. The 
investigating methods, consisting of Fourier Transfer Infrared Spectra (FT-IR), Raman Spectra, 
Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR), etc, are usually used.  

Compared with α-PLL, there are fewer studies on ε-PLL. ε-PLL was first discovered in the culture 
filtrate of an actinomycete, Streptomyces albulus 346, which was isolated from soil [11]. ε-PL can 
inhibit the growth of a wide range of microorganisms, including Gram-negative and Gram-positive 
bacteria, yeasts and molds [12-15]. Because of its notable biological activity, stability and non toxicity 
to humans, it is now industrially produced in Japan as a food preservative [16]. The proposed 
mechanism for the antimicrobial activity of ε-PLL may be attributed to its electrostatic adsorption onto 
the cell surface of microorganisms leading to stripping of the outer membrane and abnormal 
distribution of cytoplasm. A chain length of at least 10 L-lysine monomers was found to be optimum 
for the antimicrobial activity of ε-PLL and chemical modification of the amino groups of ε-PLL 
lowered its antibacterial activity [12]. This phenomenon shows that the structure of the polylysine has 
an important effect on its antimicrobial activity. It was also reported that the antibacterial activity of 
some cationic peptide depends on its conformation [17]. Thus, the study on the conformation,  
inter- and intra- molecular interactions of ε-PLL can expand considerably the pool of peptide 
foldamers, also it may provide a new comprehension to the antimicrobial mechanism of peptides.  

The structures of ε-polylysine have been investigated with different methods. IR and CD 
spectroscopic studies showed that ε-lysine oligomers form a β-sheet structure in aqueous solution, the 
content of which is dependent on the chain length and pH [18]. In solid state, the parallel β-sheet 
conformation of ε-PLL similar to that of γ-type nylon-6 was demonstrated with FT-IR, Raman, and 
solid-state 13C-NMR spectra analyses [19]. However, because there is no crystal structure data 
available, little detailed information was obtained on the geometrical structure, inter- and  
intra- molecular interactions of ε-PLLs.   

Recently, with the development of the computer hardware and software, the computation studies on 
molecular structures and properties are increasing rapidly. It has been an important method for the 
investigation of the molecular structure, IR, Raman and NMR spectra, intra-molecular and  
inter-molecular interactions [20-22]. However, because there are large numbers of atoms in  
biomacro-molecules, the high accuracy computations are very time-consuming, for example, the ab 
initio quantum chemical computation methods, in particular those that cover most of the electron 
correlation, tend to give the accurate energetics. Unfortunately, ab initio calculations are expensive in 
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tradition. The computational cost of spin-restricted Hartree-Fock theory, among the least expensive of 
methods, scales with three power of the total atom number in the system [23]. The enormous size of 
protein systems then renders ab initio calculations intractable.  

Generally, reduced scaling correlated methods have been developed in order to lower the expenses 
of the high accuracy quantum chemistry method. However, reduced scaling correlated methods remain 
in limited circulation and have some problems associated with geometry optimizations of  
hydrogen-bonded complexes [24]. In order to avoid large calculations, computational chemists study 
large systems in the following three ways: (1) using the cheap semi-empirical or molecular mechanical 
methods to study large systems [25,26]; (2) using the periodic boundary conditions to mimic the large 
periodic systems [27,28]; (3) using the more accurate quantum chemistry methods to study small 
model molecules designed to mimic the behavior of the large real system [29-31]. The emerging 
hybrid quantum chemical/molecular mechanical method, ONIOM, incorporating the advantages of 
both approaches has been set up recently. It has been used extensively for the calculation of 
macromolecules in biosystems [32-35]. ONION divides the system into up to three segments which 
can deal with complicated calculations at different levels. The essential part of the system can be 
treated at high level, while the less critical parts of the system might be calculated at the medium or 
low level. For peptide systems, usually the non-polar groups such as methyl, methylenes are at high 
level, and the polar groups, for example, the carbonyl, hydroxyl, amidocyanogen, are at the low  
level [36,37].   

In this study, the geometry structures, the intra- and inter- molecular interactions of ε-PLLs in 
vacuum were studied with ONIOM computational chemistry methods and some results were compared 
with experimental data. 

2. Results and Discussion 

Because there are large numbers of amide bonds and α-amino groups in the ε-PLL molecule, the 
prediction of its secondary or tertiary structure is very complicated. In order to simplify the 
computation process, two oligomers, each having three L-lysine residues, were chosen as model 
molecules to simulate the interaction of ε-PLL chains with high degree of polymerization. The C 
terminal of the oligomer was capped with ethylamine, and its N terminal was capped with  
α-L-aminobutanoic acid (compound A, Figure 1).   

 
Figure 1. Sketch of the model compound A. 

 

2.1. Geometry and peptide combination of the ε-PLL double chains 

Because of the large atom amounts and the flexibility of 1,6-amide skeleton in ε-PLLs, many 
different optimum conformations may be formed in the natural state. Typical conformations for the 
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two ε-PLL molecule chains were simulated mainly through combinations of hydrogen bonds. Three 
main arrangements can be obtained according to the different arrangements of the C and N terminals: 

(1) Random coiled form - there is no order of the hydrogen bond combinations between the two  
ε-PLL molecules and the two chains are random coiled. 

(2) Parallel β-sheet form - the two molecular chains are arranged in parallel. The C terminals of the 
double chains are at one end, while the N terminals are at the opposite [Figures 2 (a) and (b)]. 

(3) Anti-parallel β-sheet form - the C terminal of one chain combines with the N terminal of the 
other one, and the two mono-chains are arranged in the opposite direction [Figures 3 (a)  
and (b)].  

 
Figure 2. Parallel β-sheet form of ε-PLL double chains. 

(a). Proton donors and acceptors are arranged in the chains alternately.  

 

(b). Proton donors and acceptors are arranged in the separate chains. 

 
 

Many inter-molecular hydrogen bonds are formed between two ε-PLL chains. These hydrogen 
bonds can exist between the carboxyl, carbonyl, amide, and α-amino groups. Because the terminal 
functional groups, such as carboxyl and ε-amino groups, constitute only a small portion of the total in 
ε-PLLs, we mainly focused on the inter-molecular hydrogen bonds existing between C=O and H-N in 
the intermediate part of the chains and neglected the interaction of the terminal groups of the ε-PLL 
chains. For each circumstance of (2) or (3), the conformation of the double-chain may have two 
subforms according to the different arrangement of inter-molecular hydrogen bonds: (I) Proton donors 
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(H-N bonds in amide or amino group) and acceptors (O=C groups) are arranged in the two chains  
alternately [Figure 2(a) and Figure 3(a)]; (II) Proton donors (H-N bonds in amide or amino group) and 
acceptors are located at separate chains [Figure 2(b) and Figure 3(b)]. In fact, for the two long chains 
of ε-PLLs with high molecular weight, the proton donors and acceptors may be arranged randomly as a 
whole, but there may be some sections where the proton donors and acceptors are arranged regularly. 
From the two dimensional sketches of the double chains, we might conclude that dimer 3a [Figure 3(a)] 
is the most stable conformation, while dimers 2b and 3b [Figure 2(b) and 3(b) are the least suitable 
arrangements in space matching. However, according to our optimizing attempts on the double chains 
of compound A with PM3 method, the optimum conformation of dimer 3a wasn’t obtained, the 
conformation of dimmer 2a was only achieved. The reason for this phenomenon might be attributed to 
the existence of the α-amino groups in the carbochain, which make the chain bend toward different 
directions and lead to the spacial unsuitability for the carbonyl group in one chain combining with H-N 
group in the other chain. Moreover, based on the optimization result at ONIOM (B3LYP/6-31G:PM3) 
level, not only the hydrogen bond can be formed between the C=O and H-N bonds in amide group, but 
also can it be formed between the carbonyl and the α-amino groups, and the heptatomic ring 
containing two hydrogen bonds are obtained (Figure 4).  

Figure 3. Antiparallel β-sheet form of ε-PLL double chains. 

(a). Proton donors and acceptors are arranged in the chains alternately. 

 

(b). Proton donors and acceptors are arranged in the separate chains. 

 

An interesting thing in this study was the spacial structure of the ε-PLL double chains. The two 
chains combine in a parallel β-sheet form with the hydrogen donor and acceptor groups being arranged 
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between the two chains alternately, and the chains fold freely to match the formation of the cyclohepta 
bifurcated hydrogen bonds (Figure 5). This spacial structure is not only different from the double helix 
structure of DNA, but also not the same as the β-sheet form of the normal α-peptide chains. One chain 
swings around along another chain. 

 
Figure 4. Optimized conformation of the double chains of compound A obtained from 
ONIOM (B3LYP/6-31G:PM3). 

 

 

2.2. Structure of the cyclohepta bifurcated hydrogen bonds 

In order to make a further comprehension of this kind of hydrogen bond, the structure of the 
heptatomic ring in the intermediate part of ε-PLL double chain is shown in Figure 5 and the main bond 
lengths and angles are listed in Table 1. It shows that a structure of cyclohepta-bifurcated hydrogen 
bonds are formed between the atoms of H(137), N(99), C(96), C(97), N(109), and H(151) from one 
chain and O(12) from the other chain.  The two hydrogen bonds are bifurcated since they share the 
same oxygen atom as proton acceptor. The angle of the two hydrogen bonds is 66.6°. The hydrogen 
bond lengths of O (12)-H (151) and O (12)-H (137) were 1.8Å and 2.2Å, respectively. The angles of O 
(12)-H (151)-N (109) and O (12)-H (137)-N (99) are 166.7° and 147°, respectively, which are all in 
the range of 130° to 180°. The values of bond lengths and the angles suggest that these H-bonds 
belonged to the medium strength hydrogen bonds [38]. However, the bond length of O(12)-H(151) is 
much shorter than that of O(12)-H(137). The angle of O(12)-H(151)-N(109) is closer to 180° than that 
of O(12)-H(137)-N(99). It can be concluded that the hydrogen bond of O(12)-H(151)-N(109) is much 
stronger than that of O(12)-H(137). Because of the formation of the hydrogen bond, the H-N covalent 
bond length will be changed. The computational results show that the bond length of H(151)-N(109) 
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(1.0276 Å) becomes longer than the normal H-N in amino group (1.022 Å), however, it is weird that 
the bond length of H (137)-N(99)  (1.0132 Å) becomes shorter than that of the normal H-N(1.035 Å). 

It also shows that one hydrogen bond is formed between the O=C of C(97)-O(98) in the cyclohepta 
ring and H(75)-N(31) in the other chain two residues ahead from that O(12) is located at. The distance 
of H(75)-O(98) is 2.02 Å and the angle of N(31)-H(75)-O(98) is 173.5°. This extra hydrogen bond is 
stronger than that of O(12)-H(137)-N(99). It intensifies the interaction of the two chains and is vital to 
the tertiary structure of the double chains. 

Figure 5. Structure of the cyclohepta bifurcated hydrogen bonds. 

 

Table 1. Main bond lengths and angles of the groups shown in Figure 5 obtained from 
ONIOM (B3LYP/6-31G: PM3). 

Atoms Bond lengths/ Å Atoms Bond angles/° 
C(11)-C(10) 1.5452 O(12)-C(11)-N(23) 125.9887 
O(12)-C(11) 1.2603 C(10)-C(11)-N(23) 114.1929 
N(13)-C(10) 1.4818 C(10)-C(11)-O(12) 119.8179 
N(23)-C(11) 1.3531 H(51)-N(13)-H(52) 112.2561 
N(31)-C(28) 1.4835 C(10)-N(13)-H(52) 115.5022 
H(51)-N(13) 1.0136 C(10)-N(13)-H(51) 114.2261 
H(52)-N(13) 1.0133 H(75)-N(31)-H(76) 111.7182 
H(75)-N(31) 1.0221 C(28)-N(31)-H(76) 113.0713 
H(76)-N(31) 1.0147 C(28)-N(31)-H(75) 114.5283 
C(97)-C(96) 1.5605 C(97)-C(96)-N(99) 115.5131 
O(98)-C(97) 1.2585 O(98)-C(97)-N(109) 125.1159 
N(99)-C(96) 1.4676 C(96)-C(97)-N(109) 114.5476 
N(109)-C(97) 1.3652 C(96)-C(97)-O(98) 120.3339 
H(137)-N(99) 1.0132 H(137)-N(99)- 114.2089 
H(138)-N(99) 1.0105 C(96)-N(99)-H(138) 115.0922 
H(151)-N(109) 1.0276 C(96)-N(99)-H(137) 115.9221 
O(12)-H(151) 1.8412 C(97)-N(109)-H(151) 119.9472 
O(12)-H(137) 2.1713 H(151)-O(12)- 66.6 
  O(12)-H(151)- 166.7 
  O(12)-H(137)-N(99) 147 
  N(31)-H(75)-O(98) 173.5 
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2.3. Frequency analysis and IR spectra 

Vibrational spectra can be extremely useful tools for the study of peptide structures and 
conformations [38-42]. There have also been some computational investigations on the peptide 
conformations based on vibration spectroscopy [36,37,43]. In this study, the frequency analysis was 
conducted at a higher level of ONIOM [B3LYP/6-31G (d):PM3] and the groups composing the 
cyclohepta bifurcated hydrogen bonds are all at the B3LYP/6-31G (d) level. Table 2 lists the main 
vibration frequencies of the groups shown in Figure 5. In addition, a comparison with FT-IR spectra of 
ε-PLL from experiment of Maeda et al. [19] was also made. Because of the formation of the hydrogen 
bond, the -NH2 asymmetrical and symmetrical stretching frequencies of N(31)-H shift toward the low 
frequency compared with the υas and υs of  N(13)-H, however, the υas and υs of N(99)-H shift to the 
high frequency. The blue shift phenomenon can be attributed to the formation of bifurcated hydrogen 
bonds of N(99)-H(137)-O(12) and N(109)-H(151)-O(12) [44,45]. As a whole, these absorbances are 
very weak in intensity apart from υsN(31)-H (3458 cm-1). The stretching vibration frequencies of 
N(23)-H and N(109)-H appear at 3,446 and 3,356 cm-1, respectively. Because there are so many 
absorbances in this region, a wide band forms in the range of 3,200 cm-1 to 3,600 cm-1, which agrees 
with the experimental data. According to Maeda et al., there is a wide band with the highest 
absorbance at 3,382 cm-1, which they improperly attributed to the asymmetric stretching of -NH2. The 
absorbances of υC(11)-O(12) and υC(97)-O(98) are at 1,639 and 1,629 cm-1, respectively, which 
correlates well with the experimental result of 1,633 cm-1; while the rocking vibration of N (109)-H 
and N(23)-H are at 1,567 cm-1 and 1,563 cm-1, respectively, and are consistent with the experimental 
value of 1,534 cm-1 from Maeda et al. [19].  

Table 2. Main IR frequencies of the groups shown in Figure 5 obtained from ONIOM 
[B3LYP/6-31G(d):PM3].  

-NH2 groups  Frequencies/cm- Amide N-H Frequencies/cm-1 C=O groups Frequencies/cm-1 

υasN(99)-H 3670vw υN(23)-H 3446w υC(11)-O(12) 1639w 
υasN(13)-H 3646 vw υN(109)-H 3356m υC(97)-O(98) 1629m 
υasN(31)-H 3592 vw ρN(109)-H 1567s   
υsN(99)-H 3551 vw ρN(23)-H 1563w   
υsN(13)-H 3538 w     
υsN(31)-H 3458m     
δN(31)-H 1711vw     
δN(13)-H 1686vw     
δN(99)-H 1679vw     
δC(28)-H 1316vw     
δC(96)-H 1315vw     
δC(10)-H 1328vw     

υ: Stretching vibration; δ: Bending vibration; ρ: Rocking vibration; v: Very; w: Weak;  
m: Middle; s: Strong.   
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3. Experimental Section 

In the computation processing, the molecules were first created by Chem3D software [47], then the 
structure optimization was sequentially conducted with MM2 and PM3 methods. On this basis, the 
hybrid two-level ONIOM method at B3LYP/6-31G: PM3 level was used for further optimization of 
the ε-PLL conformations. The vibrational frequencies were also calculated using a higher ONIOM 
[B3LYP/6-31G (d):PM3] level in order to ascertain the obtained structures or the interactions among 
ε-PLL molecules. The computational models of ε-PLL are supposed to be divided into two parts: 

(1) The polar functional groups such as the amide, amino and carbonyl groups are at the high 
quantum chemical level of RB3LYP/6-31G for the structure optimization. 

(2) All other atoms or groups such as methylene are at a semi-empirical PM3 level.  
After the structure optimization, a higher quantum chemical level of ONIOM (B3LYP/6-

31G(d):PM3) was used for the frequency analysis.  All the calculations were performed with the 
Gaussian 03 series of program [48]. The optimized structures were visualized by GaussView and 
Chem3D, respectively. 

4. Conclusions 

Two oligomers each containing three L-lysine residues were used as model molecules for 
conformational simulation of the interaction of ε-PLL chains. Their C terminals are capped with 
ethylamine and N terminals are capped with α-L-aminobutanoic acid. The conformation was optimized 
with two level ONIOM (B3LYP/6-31G:PM3) method and the parallel β-sheet form was obtained. The 
two chains swing around with cyclohepta-bifurcated hydrogen bonds, which are composed of an amide 
and an N-H from one chain as proton donors and an oxygen of C=O from the other chain as proton 
acceptor. The two chains are taken as proton donors and proton acceptors alternately. The frequency 
analysis with the ONIOM [B3LYP/6-31G(d):PM3] shows the IR absorbances of main groups such as 
the amide and amidocyanogen groups are consistent with the experimental data [9]. 

However, there are four more points that should be made clear: (1) although the DFT method is a 
comparatively cheap and fast method and is extensively used to mimic the structure, inter- and 
intramolecular interactions of peptides or proteins, it isn’t an exact and precise method for geometry 
optimization, and the conformation of ε-PLLs needs to be confirmed by other techniques [49,50];  
(2) the environment of the model molecules is different from the sample used in the FT-IR spectrum. 
The former is in gas phase and the latter is in solid state. It is more persuasive for evaluating the 
computational results when the IR spectra of the model molecules in gas phase can be obtained and 
used in a near future [51,52]; (3) the ε-polylysine is a homopolymer of ε-L-lysines. There are no 
specific corresponding locations between two chains. One section of a chain can combine with any 
part of the other chains around it as long as they form cyclohepta-bifurcated hydrogen bonds; (4) the 
oxygen proton acceptors of cyclohepta-bifurcated hydrogen bonds may come from other protein 
peptides. The antibacterial activity of ε-polylysine is generally considered to be attributed to the 
interactions between its positive charges and unlike charge interaction with microorganisms [53], but 
the interaction with cyclohepta bifurcated hydrogen bonds among the ε-polylysine and the 
microorganism proteins may give a new comprehension.  
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