organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-N-Benzyl-2,6-dideoxy-2,6-imino-3,4-O-isopropylidene-D-allononitrile

Benjamin J. Ayers,^a Sarah F. Jenkinson,^a* George W. J. Fleet^a and Amber L. Thompson^b

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 28 October 2013; accepted 7 November 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.121; data-to-parameter ratio = 10.4.

X-ray crystallography firmly established the relative stereochemistry of the title compound, $C_{16}H_{20}N_2O_3$. The acetonide ring adopts an envelope conformation with one of the O atoms as the flap and the piperidine ring adopts a slightly twisted boat conformation. The absolute configuration was determined by use of D-ribose as the starting material. The compound exists as O-H···O hydrogen-bonded chains of molecules running parallel to the b axis.

Related literature

For the biological activity of polyhydroxylated piperidines, see: Nash et al. (2011); Watson et al. (2001). For a related α iminonitrile, see: Ayers et al. (2012). For the hydrogen-atom treatment, see; Cooper et al. (2010). For details of the low temperature equipment used in the experiment, see: Cosier & Glazer (1986). For the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental

Crystal data C16H20N2O3

 $M_r = 288.35$

Orthorhombic, $P2_12_12_1$ a = 8.3978 (3) Å b = 11.2689 (4) Å c = 15.9210 (6) Å V = 1506.67 (9) Å³

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwi-
nowski & Minor, 1997)
$T_{\min} = 0.91, T_{\max} = 0.98$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	190 parameters
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
1970 reflections	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.4 \times 0.4 \times 0.2 \ \text{mm}$

11529 measured reflections 1970 independent reflections

1422 reflections with $I > 2.0\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int}=0.079$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1 - H11 \cdots O6^i$	0.86	2.05	2.850 (5)	156 (1)
Symmetry code: (i) -	$x + 1, y - \frac{1}{2}, -7$	$r + \frac{1}{2}$		

-z + ½

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5665).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Ayers, B. J., Jenkinson, S. F., Fleet, G. W. J. & Thompson, A. L. (2012). Acta Cryst. E68, 01474.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Nash, R. J., Kato, A., Yu, C.-Y. & Fleet, G. W. J. (2011). Future Med. Chem. 3, 1513-1521.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Watkin, D. (1994). Acta Cryst. A50, 411-437. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.

supplementary materials

Acta Cryst. (2013). E69, o1772 [doi:10.1107/S1600536813030584]

2-N-Benzyl-2,6-dideoxy-2,6-imino-3,4-O-isopropylidene-D-allononitrile

Benjamin J. Ayers, Sarah F. Jenkinson, George W. J. Fleet and Amber L. Thompson

1. Comment

Many polyhydroxylated piperidines have been found to display interesting biological properties (Nash *et al.*, 2011; Watson *et al.*, 2001). Piperidine α -iminonitrile **4** was prepared from 2,3-*O*-isopropylidene-5-*O*-toluenesulfonyl-*D*-ribose **3** by a tandem Strecker reaction and iminocyclization (Fig. 1). The title crystal structure establishes the relative configuration of **4**. The absolute configuration is determined by use of D-ribose **1** as the starting material. The acetonide ring adopts an envelope conformation with O4 out of the plane and the piperidine ring adopts a slightly twisted boat conformation with the nitrile group in the flagpole position (Fig. 2). The compound exists as O—H…O hydrogen bonded chains of molecules running parallel to the *b*-axis (Fig. 3). Only classical hydrogen bonding was considered.

2. Experimental

a-Iminonitrile **4** was recrystallized by diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 342–344 K; $[\alpha]_{D^{20}}$ +20.3 (*c* 1.75, methanol).

3. Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of D-ribose as the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints (Cooper *et al.*, 2010).

Computing details

Data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS* (Betteridge *et al.*, 2003).

Reagents & conditions: i) acetone, CuSO₄, 45 °C, 17h; ii) TsCl, pyridine, -30 °C to RT, 4 h; iii) BnNH₂, AcOH, KCN, MeOH, RT 16 h.

Figure 1

Synthetic Scheme

Figure 2

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 3

Packing diagram for the crystal projected along the *a*-axis. Hydrogen bonds are shown as dotted lines.

2-N-Benzyl-2,6-dideoxy-2,6-imino-3,4-O-isopropylidene-D-allononitrile

Crystal data

$C_{16}H_{20}N_2O_3$
$M_r = 288.35$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 8.3978 (3) Å
b = 11.2689 (4) Å
c = 15.9210 (6) Å
$V = 1506.67 (9) \text{ Å}^3$
Z = 4

Data collection

Nonius KappaCCDIdiffractometerIGraphite monochromatorI ω scansIAbsorption correction: multi-scanI(DENZO/SCALEPACK; Otwinowski & Minor, 1997)I $T_{min} = 0.91, T_{max} = 0.98$ I

F(000) = 616 $D_x = 1.271 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 1934 reflections $\theta = 5-27^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.4 \times 0.4 \times 0.2 \text{ mm}$

11529 measured reflections 1970 independent reflections 1422 reflections with $I > 2.0\sigma(I)$ $R_{int} = 0.079$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 5.1^{\circ}$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $l = -20 \rightarrow 20$ Refinement

Refinement on F^2	Method, part 1, Chebychev polynomial,
Least-squares matrix: full	(Watkin, 1994, Prince, 1982) [weight] =
$R[F^2 > 2\sigma(F^2)] = 0.044$	$1.0/[A_0^*T_0(x) + A_1^*T_1(x) + A_{n-1}]^*T_{n-1}(x)]$
$wR(F^2) = 0.121$	where A _i are the Chebychev coefficients listed
<i>S</i> = 0.95	below and $x = F / Fmax$ Method = Robust
1970 reflections	Weighting (Prince, 1982) W = [weight] *
190 parameters	$[1-(deltaF/6*sigmaF)^2]^2$ A _i are: 9.51 13.9 7.19
0 restraints	2.01
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.0000939$
direct methods	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
Hydrogen site location: difference Fourier map	$\Delta ho_{ m min}$ = -0.42 e Å ⁻³
H-atom parameters constrained	

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.6465 (3)	0.06340 (19)	0.37776 (14)	0.0305
C2	0.5963 (4)	0.1832 (3)	0.37195 (18)	0.0259
C3	0.6544 (4)	0.2450 (3)	0.29350 (18)	0.0245
O4	0.5816 (3)	0.19584 (18)	0.21979 (12)	0.0272
C5	0.5779 (4)	0.2890 (3)	0.15876 (18)	0.0261
O6	0.5489 (3)	0.39518 (18)	0.20739 (13)	0.0271
C7	0.6006 (4)	0.3759 (3)	0.29150 (18)	0.0256
C8	0.4595 (4)	0.4018 (3)	0.35050 (19)	0.0263
N9	0.3478 (3)	0.3035 (2)	0.34958 (16)	0.0261
C10	0.4160 (4)	0.1919 (3)	0.38247 (19)	0.0270
C11	0.1968 (4)	0.3292 (3)	0.3920 (2)	0.0318
C12	0.1021 (4)	0.4285 (3)	0.35313 (19)	0.0274
C13	0.0911 (5)	0.4450 (3)	0.26682 (19)	0.0315
C14	-0.0032 (5)	0.5344 (3)	0.23328 (19)	0.0323
C15	-0.0876 (4)	0.6088 (3)	0.2858 (2)	0.0308
C16	-0.0756 (5)	0.5947 (3)	0.3724 (2)	0.0343
C17	0.0182 (4)	0.5058 (3)	0.4056 (2)	0.0292
C18	0.5178 (5)	0.4307 (3)	0.4370 (2)	0.0328
N19	0.5612 (5)	0.4487 (3)	0.50421 (18)	0.0470
C20	0.4377 (4)	0.2689 (3)	0.1017 (2)	0.0328
C21	0.7352 (5)	0.3002 (4)	0.1127 (2)	0.0385
H21	0.6469	0.2260	0.4201	0.0308*
H31	0.7717	0.2399	0.2892	0.0303*
H71	0.6919	0.4291	0.3037	0.0311*
H81	0.4052	0.4724	0.3289	0.0310*
H101	0.3912	0.1842	0.4427	0.0319*
H102	0.3691	0.1265	0.3501	0.0317*
H111	0.2187	0.3478	0.4519	0.0382*
H112	0.1318	0.2571	0.3895	0.0380*
H131	0.1502	0.3963	0.2302	0.0381*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H141	-0.0094	0.5442	0.1754	0.0379*
H151	-0.1536	0.6691	0.2632	0.0372*
H161	-0.1325	0.6461	0.4082	0.0410*
H171	0.0255	0.4957	0.4642	0.0353*
H201	0.4276	0.3351	0.0634	0.0489*
H202	0.3408	0.2637	0.1346	0.0490*
H203	0.4527	0.1972	0.0698	0.0487*
H212	0.7322	0.3683	0.0748	0.0564*
H213	0.8215	0.3108	0.1527	0.0572*
H211	0.7541	0.2275	0.0804	0.0572*
H11	0.5995	0.0236	0.3393	0.0472*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
01	0.0390 (13)	0.0236 (11)	0.0289 (11)	0.0062 (10)	-0.0064 (10)	0.0008 (9)
C2	0.0334 (17)	0.0206 (14)	0.0237 (14)	0.0016 (14)	-0.0040 (13)	0.0000 (12)
C3	0.0305 (15)	0.0222 (13)	0.0208 (13)	0.0006 (14)	-0.0048 (14)	0.0002 (12)
O4	0.0383 (13)	0.0206 (9)	0.0227 (10)	-0.0004 (11)	-0.0020 (10)	0.0007 (9)
C5	0.0354 (17)	0.0203 (13)	0.0225 (14)	-0.0022 (14)	0.0008 (14)	0.0010 (12)
O6	0.0408 (13)	0.0194 (9)	0.0210 (10)	-0.0008 (10)	-0.0012 (10)	-0.0008(8)
C7	0.0325 (16)	0.0229 (14)	0.0214 (14)	-0.0036 (13)	-0.0041 (14)	0.0010 (12)
C8	0.0354 (18)	0.0217 (14)	0.0218 (13)	-0.0011 (14)	-0.0012 (13)	0.0010 (12)
N9	0.0293 (13)	0.0201 (12)	0.0289 (12)	0.0013 (11)	0.0032 (12)	0.0036 (11)
C10	0.0359 (17)	0.0205 (14)	0.0247 (14)	0.0011 (14)	0.0014 (14)	0.0061 (12)
C11	0.0353 (19)	0.0314 (17)	0.0285 (16)	0.0043 (15)	0.0085 (15)	0.0053 (14)
C12	0.0306 (17)	0.0264 (15)	0.0253 (14)	-0.0003 (14)	0.0030 (13)	0.0033 (13)
C13	0.0408 (19)	0.0280 (15)	0.0257 (14)	0.0045 (16)	0.0066 (15)	0.0009 (13)
C14	0.042 (2)	0.0315 (16)	0.0236 (15)	-0.0002 (16)	-0.0002 (15)	0.0040 (13)
C15	0.0306 (17)	0.0283 (15)	0.0336 (16)	0.0003 (15)	-0.0043 (15)	0.0030 (14)
C16	0.0340 (19)	0.0366 (18)	0.0323 (16)	0.0076 (16)	-0.0012 (15)	-0.0040 (14)
C17	0.0304 (18)	0.0315 (17)	0.0258 (15)	0.0027 (14)	0.0001 (14)	-0.0024 (13)
C18	0.046 (2)	0.0235 (15)	0.0292 (16)	0.0004 (16)	0.0010 (15)	-0.0013 (13)
N19	0.072 (3)	0.0403 (17)	0.0285 (15)	-0.0022 (19)	-0.0039 (16)	-0.0078 (13)
C20	0.0394 (19)	0.0299 (17)	0.0289 (16)	-0.0040 (15)	-0.0061 (16)	0.0013 (13)
C21	0.040 (2)	0.0405 (19)	0.0349 (19)	0.0005 (18)	0.0091 (16)	0.0004 (18)

Geometric parameters (Å, °)

01—C2	1.418 (4)	C11—C12	1.506 (5)
O1—H11	0.855	C11—H111	0.993
C2—C3	1.511 (4)	C11—H112	0.980
C2-C10	1.527 (5)	C12—C13	1.390 (4)
C2—H21	1.000	C12—C17	1.397 (4)
C3—O4	1.434 (4)	C13—C14	1.388 (5)
С3—С7	1.543 (4)	C13—H131	0.942
С3—Н31	0.990	C14—C15	1.381 (5)
O4—C5	1.431 (3)	C14—H141	0.929
C5—O6	1.446 (4)	C15—C16	1.392 (5)
C5—C20	1.504 (5)	C15—H151	0.948

C5—C21	1.516 (5)	C16—C17	1.379 (5)
O6—C7	1.424 (3)	C16—H161	0.943
С7—С8	1.540 (5)	C17—H171	0.943
C7—H71	0.992	C18—N19	1.148 (4)
C8—N9	1.452 (4)	C20—H201	0.968
C8—C18	1,498 (4)	C20—H202	0.970
C8—H81	0.980	C20—H203	0.963
N9-C10	1 477 (4)	C21—H212	0.976
N9C11	1.466(4)	C21_H212	0.970
C10 H101	0.086	C21 H211	0.972
C10_H101	0.980	021—11211	0.981
010-11102	0.982		
C2 01 H11	109 /	NO C10 H102	107.2
$C_2 = 01 = H11$	108.4	$N_{9} = C_{10} = H_{102}$	107.5
01 - 02 - 03	115.4 (3)	H101—C10—H102	111.1
01-02-010	110.4 (3)	N9-C11-C12	114.5 (3)
C3—C2—C10	112.4 (3)	N9—C11—H111	108.9
O1—C2—H21	106.4	C12—C11—H111	109.6
C3—C2—H21	105.9	N9—C11—H112	107.4
C10—C2—H21	107.8	C12—C11—H112	107.8
C2—C3—O4	111.2 (2)	H111—C11—H112	108.5
C2—C3—C7	111.3 (3)	C11—C12—C13	122.8 (3)
O4—C3—C7	103.1 (2)	C11—C12—C17	118.9 (3)
C2—C3—H31	110.6	C13—C12—C17	118.3 (3)
O4—C3—H31	110.2	C12—C13—C14	121.0 (3)
С7—С3—Н31	110.2	C12—C13—H131	119.9
C3—O4—C5	106.4 (2)	C14—C13—H131	119.1
04—C5—O6	104.3 (2)	C13—C14—C15	120.0 (3)
04-C5-C20	1084(3)	C_{13} C_{14} H_{141}	120.0
06-C5-C20	108.4(3)	C_{15} C_{14} H_{141}	120.0
04-C5-C21	111 8 (3)	C_{14} C_{15} C_{16}	119.6(3)
06 C5 C21	100.7(3)	C_{14} C_{15} H_{151}	120.3
$C_{20} = C_{21} = C_{21}$	109.7(3) 112.8(3)	$C_{14} = C_{15} = H_{151}$	120.5
$C_{20} = C_{3} = C_{21}$	113.0(3)	$C_{10} = C_{13} = 11151$	120.1
$C_{3} = 00 = C_{1}$	109.0(2)	C15 - C10 - C17	120.5 (5)
$C_{3} = C_{7} = C_{8}$	104.8 (2)	C15—C16—H161	119.4
$C_{3} - C_{7} - C_{8}$	113.2 (3)	C1/-C16-H161	120.3
06-07-08	108.1 (3)		120.8 (3)
С3—С7—Н71	110.3	C12—C17—H171	118.9
O6—C7—H71	109.1	C16—C17—H171	120.3
С8—С7—Н71	111.1	C8—C18—N19	177.4 (4)
C7—C8—N9	110.3 (2)	C5—C20—H201	109.5
C7—C8—C18	110.5 (3)	C5—C20—H202	109.9
N9—C8—C18	112.8 (3)	H201—C20—H202	108.3
С7—С8—Н81	107.4	С5—С20—Н203	110.1
N9—C8—H81	108.4	H201—C20—H203	109.0
C18—C8—H81	107.3	H202—C20—H203	110.1
C8—N9—C10	113.3 (3)	C5—C21—H212	110.0
C8—N9—C11	113.8 (3)	C5—C21—H213	110.1
C10—N9—C11	109.9 (2)	H212—C21—H213	109.1
C2—C10—N9	113.6 (3)	С5—С21—Н211	109.0

supplementary materials

C2-C10-H101	108.1	H212—C21—H211	109.6
N9—C10—H101	109.8	H213—C21—H211	109.0
C2-C10-H102	107.0		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H… <i>A</i>
O1—H11···O6 ⁱ	0.86	2.05	2.850 (5)	156 (1)

Symmetry code: (i) -x+1, y-1/2, -z+1/2.