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Bacteria and insects have a mutually beneficial symbiotic relationship. Bacteria participate 
in several physiological processes such as reproduction, metabolism, and detoxification 
of the host. Adelphocoris suturalis is considered a pest by the agricultural industry and 
is now a major pest in cotton, posing a serious threat to agricultural production. As with 
many insects, various microbes live inside A. suturalis. However, the microbial composition 
and diversity of its life cycle have not been well-studied. To identify the species and 
community structure of symbiotic bacteria in A. suturalis, we used the HiSeq platform to 
perform high-throughput sequencing of the V3–V4 region in the 16S rRNA of symbiotic 
bacteria found in A. suturalis throughout its life stages. Our results demonstrated that 
younger nymphs (1st and 2nd instar nymphs) have higher species richness. Proteobacteria 
(87.06%) and Firmicutes (9.43%) were the dominant phyla of A. suturalis. At the genus 
level, Erwinia (28.98%), Staphylococcus (5.69%), and Acinetobacter (4.54%) were the 
dominant bacteria. We found that the relative abundance of Erwinia was very stable during 
the whole developmental stage. On the contrary, the relative abundance of Staphylococcus, 
Acinetobacter, Pseudomonas, and Corynebacterium showed significant dynamic changes 
at different developmental stages. Functional prediction of symbiotic bacteria mainly 
focuses on metabolic pathways. Our findings document symbiotic bacteria across the 
life cycle of A. suturalis, as well as differences in both the composition and richness in 
nymph and adult symbiotic bacteria. Our analysis of the bacteria in A. suturalis provides 
important information for the development of novel biological control strategies.
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INTRODUCTION

Insects are found almost everywhere in the world. Most insects carry symbiotic microorganisms 
that are involved in the life cycle processes of the host (Yong et  al., 2017; Zhao et  al., 2019). 
There is an interactive relationship between insects and symbiotic bacteria, which play an 
important role in the health, survival, and behavior of the host (Dillon and Dillon, 2004; 
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Kikuchi et  al., 2007; Moran et  al., 2008; Santos-Garcia et  al., 
2017). However, the vast majority of symbiotic microorganisms 
are concentrated in the intestines of insects, where they act 
as key regulators of the insect host’s multiple lifestyles (including 
diet and ecological niche; Gupta and Nair, 2020). Studies have 
shown that symbiotic bacteria in the intestinal tract of insects 
can promote host food consumption and digestion; provide 
immunity and protection against various predators, pathogens, 
and parasites; control the success rate of host mating and 
reproduction; provide essential amino acids, metabolic 
compounds, and nutrients (Russell et  al., 2014; Douglas, 2015; 
Arbuthnott et al., 2016; Wielkopolan and Obrępalska-Stęplowska, 
2016; Engl and Kaltenpoth, 2018; Grenier and Leulier, 2020; 
Horak et  al., 2020). In a recent study, the main roles of insect 
gut bacteria were demonstrated to be  providing essential 
nutrients, followed by digestion and detoxification (Jing et  al., 
2020). Therefore, insects are highly dependent on intestinal 
symbiotic bacteria to complete their own growth and 
development. In short, a very complex and interesting relationship 
is formed between intestinal symbiotic bacteria and their hosts.

Hemiptera insects have piercing and sucking mouthparts, 
which not only can directly suck plant juice and kill crops, 
but also cause serious economic losses by spreading plant 
viruses. They are notorious agricultural pests (Wang et  al., 
2015; Liu et  al., 2018; Qin et  al., 2018). Adelphocoris suturalis 
was originally a minor pest of cotton, but the widespread 
application of Bacillus thuringiensis (Bt) cotton and the reduction 
of broad-spectrum insecticides has made it a major problem 
in cotton-growing areas in China (Wu et  al., 2008; Lu and 
Wu, 2011; Luo et  al., 2017a). Bt plants can effectively control 
Lepidopteran pests and can significantly reduce the use of 
chemical pesticides that are often required in conventional 
planting systems (Wu et  al., 2008; Wang et  al., 2018). A major 
challenge in planting Bt crops to control pests is that insects 
may evolve resistance to Bt (Wu et  al., 2008). Adelphocoris 
suturalis is a typical omnivorous insect, which regularly feeds 
on crop plants (e.g., cotton and garden pea), other insects 
like aphids, and occasionally its weaker siblings (Lu and Wu, 
2011; Luo et  al., 2021). Additionally, A. suturalis also has the 
characteristic of high liquidity (Wu et  al., 2010), resulting in 
poor chemical controls. At present, chemical pesticides such 
as organophosphates and pyrethroids are widely used in China 
to control these insects (Zhen et  al., 2016). The question of 
whether these insects are resistant or not needs to be  resolved 
urgently. There is increasing evidence that there is a link 
between symbiotic bacteria in the insect gut and the evolution 
of drug resistance (Broderick et  al., 2006; Kikuchi et  al., 2012; 
Engel and Moran, 2013; Xia et  al., 2013). In addition, the 
omnivorous nature of A.suturalis increases the difficulty of 
pest control. Previous studies have reported that some symbiotic 
bacteria help insect hosts form new feeding habits, thus expanding 
food sources and enhancing the adaptability of insects to the 
environment (Lu et  al., 2001; Douglas, 2009), which may also 
increase the difficulty of A.suturalis control. There are currently 
few studies examining the symbiotic bacteria of A. suturalis, 
making the number and species of the symbiotic bacteria in 
A. suturalis uncertain (Luo et  al., 2021; Ma et  al., 2021). 

Therefore, it is necessary to investigate the distribution of 
symbiotic bacteria at different stages of A. suturalis, which 
will provide a framework for exploring the function of symbiotic 
bacteria and pest control in A. suturalis.

In this study, the bacterial community composition and 
relative abundance of 1st instar to 5th instar A. suturalis nymphs 
and 1, 6, and 9  days male and female adults of A. suturalis 
were investigated via high-throughput Illumina sequencing of 
the 16S rRNA gene. To identify new pest control strategies, 
we  explored the cooperative coevolution of A. suturalis and 
its symbiotic bacteria to better understand how A. suturalis 
relates to the symbiotic bacteria community structure, to examine 
the symbiotic bacteria related to A. suturalis, and to provide 
a theoretical basis for revealing a series of principles such as 
its resistance regulation mechanism and feeding characteristics.

MATERIALS AND METHODS

Insect Rearing and Maintenance
The A. suturalis used in this study were collected from the 
field in Wuhan (Hubei Province, China). Adelphocoris suturalis 
strains were maintained in climate chambers (75  ±  5% relative 
humidity, 26  ±  2°C temperature and a 16:8  h, light:dark cycle) 
and fed green beans and a 5% sugar solution (Lu et  al., 2008). 
Adelphocoris suturalis started feeding cotton aphid from the 
third instar nymph. Cotton aphids are reared on non-transgenic 
cotton seedlings, living in the same environment as A. suturalis.

Sampling and DNA Extraction
DNA was extracted from whole insects (1st instar nymph, 
2nd instar nymph, 3rd instar nymph, 4th instar nymph, 5th 
instar nymph, and 1, 6, and 9  days male and female adults) 
using MagPure Stool DNA KF kit B (Magen, China) according 
to the manufacturer’s instructions. Six biological replicates were 
set for samples at each developmental stage (females and males 
were counted as two treatments). Insects were rinsed three 
times in distilled sterile water prior to DNA extraction (without 
soaking in ethanol). DNA was quantified using a Qubit 
Fluorometer with a Qubit dsDNA BR Assay kit (Invitrogen, 
United  States) and the quality was checked by performing an 
aliquot on 1% agarose gel.

Library Construction
The variable regions V3–V4 of the bacterial 16S rRNA gene 
were amplified with the degenerate PCR primers 341F 
(5'-ACTCCTACGGGAGGCAGCAG-3') and 806R (5'-GGACTA 
CHVGGGTWTCTAAT-3'). Both forward and reverse primers 
were tagged with Illumina adapter, pad, and linker sequences. 
PCR enrichment was performed in a 50 μl reaction containing 
a 30  ng template, a fusion PCR primer, and a PCR master 
mix. PCR cycling conditions were as follows: 94°C for 3  min, 
30  cycles of 94°C for 30  s, 56°C for 45  s, 72°C for 45  s, and 
a final extension at 72°C for 10  min. The PCR products were 
purified with AmpureXP beads and eluted in an Elution buffer. 
Libraries were qualified by the Agilent 2100 bioanalyzer (Agilent, 
United States). The validated libraries were used for sequencing 
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on an Illumina HiSeq platform (BGI, Shenzhen, China) according 
to standard Illumina procedures, and generated 2 × 300  bp 
paired-end reads. The sequences obtained in this study were 
deposited in the GenBank short-read archive (SRA), accession 
number PRJNA662509.

Sequencing and Bioinformatics Analysis
The data obtained from independent sequencing were analyzed 
separately. Samples were marked as follows: ZL1: 1st instar 
nymph; ZL2: 2nd instar nymph; ZL3: 3rd instar nymph; ZL4: 
4th instar nymph; ZL5: 5th instar nymph; ZM1D: adult male 
eclosion at 1 day; ZF1D: adult female eclosion at 1 day; ZM6D: 
adult male eclosion at 6  days; ZF6D: adult female eclosion at 
6  days; ZM9D: adult male eclosion at 9  days; and ZF9D: adult 
female eclosion at 9  days.

Raw reads were filtered to remove adaptors and low-quality 
and ambiguous bases, and paired-end reads were added to tags 
using the Fast Length Adjustment of Short reads program 
(FLASH, v1.2.11; Magoc and Salzberg, 2011) to obtain the tags. 
The tags were clustered into operational taxonomic units (OTUs) 
with a cutoff value of 97% using UPARSE software (v7.0.1090; 
Edgar, 2013) and we used UCHIME (v4.2.40) and Gold database 
for chimera sequence alignment and detection (Edgar et  al., 
2011). OTU representative sequences were then taxonomically 
classified using the Ribosomal Database Project (RDP) Classifier 
v.2.2 with a minimum confidence threshold of 0.6, and trained 
on the Greengenes database v201305 by QIIME v1.8.0 (Caporaso 
et  al., 2010). The USEARCH_global (Edgar, 2010) was used to 
compare all tags to obtain an OTU statistical abundance table 
for each sample. Alpha and beta diversity were estimated by 
MOTHUR (v1.31.2; Schloss et  al., 2009) and QIIME (v1.8.0; 
Caporaso et  al., 2010), respectively, at the OTU level. Principal 
component analysis (PCA) in OTUs was plotted with the R 
package “ade4.” The difference in alpha diversity among groups 
was compared using Kruskal-Test, with values of p  ≤  0.05 
considered statistically significant (*, 0.01  <  p  ≤  0.05; **, 
0.001  <  p  ≤  0.01; ***, p  ≤  0.001). We  used PICRUSt to obtain 
the KO corresponding to the OTU through the greengene ID 
corresponding to each OTU, and calculated the abundance of 
the KO from the sum of the abundances of the OTU corresponding 

to the KO. We  calculated the abundance of each functional 
category based on the information in the KEGG database and 
the OTU abundance information. In addition, PICRUSt was 
used to obtain the levels of metabolic pathway information, 
and the abundance of each level was obtained.

Phylogenetic Analysis of the Erwinia and 
Acinetobacter
In order to explore the phylogenetic relationship of the two most 
abundant bacterial genera, we  compared the Erwinia and 
Acinetobacter DNA sequences obtained by high-throughput 
sequencing in the NCBI nucleotide (nr) database. Six 16S rRNA 
fragments belonging to Erwinia and 16 16S rRNA fragments 
belonging to Acinetobacter were downloaded from GenBank to 
construct a phylogenetic tree. The phylogenetic tree analysis of 
249 base pairs was carried out. Using MEGA7.0, the phylogenetic 
tree was constructed by Neighbor-joining method (1,000 bootstraps).

RESULTS

General Description of 16S rRNA Gene 
Sequencing Results
The bacteria of A. suturalis were analyzed by Illumina HiSeq 
via the sequencing of the 16S rRNA gene. We  obtained a 
total of 800,836 raw reads and 707,474 clean reads, with an 
average length of 296  bp. Based on 97% species similarity, 
we  clustered the spliced tags into OTU. The number of OTUs 
at each developmental stage is detailed in Table 1. We constructed 
dilution curves for Ace, Chao1, Shannon, Simpson, Good’s 
Coverage and Observed species, which demonstrated the quality 
and credibility of sequencing quantity (Supplementary Figure 1). 
Good’s coverage of all samples was above 99%, indicating that 
our sequencing results were sufficient to fully estimate the 
diversity of A. suturalis bacterial community (Table  1).

Nymphal Microbiota
Nymphs had higher species richness in ZL1 and ZL2 periods, 
and were significantly higher than other periods (Table  1; 
Figure  1A). Proteobacteria and Firmicutes were the dominant 

TABLE 1 | 16S rRNA gene sequencing data.

Sample Number of reads Mean length Number of OTUs Chao1 ACE Shannon Simpson Good’s coverage

ZL1 64,316 296.50 589 200.42 204.28 2.46 0.20 0.99
ZL2 64,317 294.83 483 163.68 168.73 1.99 0.24 0.99
ZL3 64,288 296.33 162 61.75 66.73 0.90 0.60 0.99
ZL4 64,325 296.67 147 60.47 63.19 1.02 0.53 0.99
ZL5 64,338 296.83 151 61.28 68.76 1.04 0.52 0.99
ZM1D 64,291 295.67 103 47.67 48.84 0.82 0.54 0.99
ZF1D 64,299 296.83 98 45.81 47.63 0.80 0.59 0.99
ZM6D 64,286 297.33 127 63.06 69.44 1.21 0.41 0.99
ZF6D 64,313 296.67 130 64.41 66.10 1.23 0.39 0.99
ZM9D 64,300 295.67 114 60.38 64.43 1.17 0.41 0.99
ZF9D 64,401 296.67 118 61.75 65.94 1.26 0.38 0.99

ZL1: 1st instar nymph; ZL2: 2st instar nymph; ZL3: 3st instar nymph; ZL4: 4st instar nymph; ZL5: 5st instar nymph; ZM1D: adult male eclosion for 1 day; ZF1D: adult female 
eclosion for 1 day; ZM6D: adult male eclosion for 6 days; ZF6D: adult female eclosion for 6 days; ZM9D: adult male eclosion for 9 days; and ZF9D: adult female eclosion for 9 days.
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FIGURE 1 | Bacterial community dynamics among different developmental stages in Adelphocoris suturalis. (A) Boxplot of α-diversity measured by the six indexs. 
(B) Relative abundance of bacteria communities at the phylum level in different groups. (C) Venn diagram showing operational taxonomic unit (OTU) classification in 
nymphal period. (D) Relative abundance of bacteria communities at the genus level in nymph stages. (Bacteria with relative abundance lower than 0.5% in all 
samples were all merged into others. Kruskal-Wallis test, *0.01 < p ≤ 0.05, **0.001 < p ≤ 0.01, and ***p ≤ 0.001).

phyla during the nymphal stage, and their relative abundances 
were 85.57% (average value across all of the samples at nymphal 
stage) and 11.34%, respectively (Figure  1B). We compared the 
changes of A. suturalis nymphs in different developmental stages 
at the genus level. As the nymphs grew, the microbial community 
changed significantly. There were 63 common OTUs classifications 
in the five developmental stages of nymphs, and each 
developmental stage had characteristic OTUs (Figure  1C). 
Erwinia (17.65%) (average value across all of the samples at 
the nymphal stage), Staphylococcus (9.83%), and Acinetobacter 
(9.83%) were the top three genera in relative abundance during 
the nymphal stages. Erwinia was the dominant genus of bacteria 
throughout the nymph period, and the microbial community 
was relatively stable without significant dynamic changes. 
However, the relative abundance of Staphylococcus, Acinetobacter, 
Pseudomonas, and Corynebacterium changed significantly 
(Figure 1D). The relative abundance of Staphylococcus increased 
significantly, the lowest in the ZL1 (4.98%) stage, and the 
highest in the ZL5 (13.98%) stage. The trends for Acinetobacter, 
Pseudomonas, and Corynebacterium were opposite to those of 

Staphylococcus. Acinetobacter had the highest abundance in the 
ZL1 (24.69%) stage, and then gradually decreased (Figure 1D).

Adult Microbiota
As in the nymph stage, the Proteobacteria (88.31%; average 
value across all of the samples at adult stage) and Firmicutes 
(7.84%) were the dominant phyla in the adult stage, and the 
species richness of each developmental stage was similar 
(Figure  1B). Similarly, we  analyzed the bacterial communities 
of A. suturalis adults at different developmental stages at the 
genus level. Erwinia (38.42%; average value across all of the 
samples at adult stage) and Lactococcus (5.53%) were the 
dominant genus in the entire adult stage and their relative 
abundance was relatively stable, without significant dynamic 
changes (Figure  2A). Interestingly, although the relative 
abundance of Corynebacterium was low, it was significantly 
increased, reaching the highest in ZF9D (5.41%) during the 
adult stage. Compared with females and males, only Staphylococcus 
had a significant difference on the 6th day of adult development. 
The relative abundance of Staphylococcus ZM6D (6.90%) was 
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significantly higher than that of ZF6D (1.55%), and there was 
no significant difference in other periods (Figure  2A).

Comparisons of Bacterial Communities 
From Different Life Stages
Species richness of ZL1 and ZL2 was the highest (Figure 1A), 
with 44 common OTU species in all samples, and the unique 
OTU species of ZL1 and ZL2 was also the highest (Figure 2B). 
PCA analysis demonstrated that the OTUs of A. suturalis in 
different development stages showed dispersion and aggregation. 
The degree of dispersioncan show whether the sample 
composition under the same conditions is similar (Figure 2C). 
Each point on the PCA graph represented a stage of 
development; the closer the distance, the more similar 
the composition.

At the phylum level, taxonomic analysis of all samples 
showed that Proteobacteria was the most prevalent phylum. 
Among all samples, the top three phyla with the highest 

relative abundance were Proteobacteria, Firmicutes, and 
Actinobacteria, accounting for 87.06, 9.43, and 2.8% (average 
value across all of the samples), respectively. Proteobacteria 
had the highest abundance in adult stage compared with 
nymph stage, with the highest relative abundance in ZM1D 
(93.77%) stage of adult stage (Figure  1B). Throughout the 
different development stages of A. suturalis, the relative 
abundance of Proteobacteria increased significantly in the 
nymph stage, and in ZL3 (91.15%) the relative abundance 
of the period was the highest. After the first day of adult 
emergence, the relative abundance of the Proteobacteria showed 
a decreasing trend (Figure 1B). Compared with Proteobacteria, 
the change trend of Actinobacteria was the opposite. The 
relative abundance of Actinobacteria decreased significantly 
in the nymph stage, and then increased significantly from 
the first day of adult emergence. The relative abundance of 
Proteobacteria and Actinobacteria at 6  days (Proteobacteria, 
ZF6D: 86.86%, ZM6D: 83.39%; Actinobacteria, ZF6D: 4.55%, 

A

B D

C

FIGURE 2 | Bacterial community dynamics among different developmental stages in A. suturalis. (A) Relative abundance of bacteria communities at the genus 
level in adult stages. (B) Core-Pan OTU presents the common and unique OTU of all samples in petal diagram. (C) Difference of OTU types in different 
developmental stages based on Principal Components Analysis (PCA). (D) Heat map analysis of the top 15 microbial populations with relative abundance at different 
developmental stages. The data represented by color in the figure is represented by log2(relative abundance). Bacteria with relative abundance lower than 0.5% in 
all samples were all merged into others (Kruskal-Wallis test, *0.01 < p ≤ 0.05 and ***p ≤ 0.001).
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FIGURE 3 | Prediction of functional pathway abundance at different developmental stages. (A) Function prediction based on Level 1. (B) Function prediction based 
on Level 2. In level 2, pathways ranked below 20 in total relative abundance were classified as “Others.”

and ZM6D: 3.01%) and 9 days (Proteobacteria, ZF9D: 84.92%, 
ZM9D: 87.17%; Actinobacteria, ZF9D: 6.57%, and ZM9D: 
4.67%) of adult stage was similar to that at nymph ZL1 
(Proteobacteria: 81.97%; Actinobacteria: 5.80%) stage. 
Firmicutes were also ubiquitous in each developmental stage, 
and their relative abundance was relatively stable without 
significant change.

We selected the bacterial genera with the top  15 abundance 
ratios and drew heat maps based on their relative 
abundance  at  different developmental stages (Figure  2D; 
Supplementary Table  1). From the overall distribution of the 
microbial community at different developmental stages of A. 
suturalis, Erwinia (28.98%; average value across all of the 
samples) was still the dominant genus (Figure  2D; 
Supplementary Table  1). Acinetobacter, Kushneria, and 
Staphylococcus were relatively abundant in the nymph stage, 
and the number was very small in the adult stage. The abundance 
ratio of Lactococcus during the adult stage was significantly 
higher than that of the nymph, and the relative abundance 
during the nymph stage was all below 0.3% (Figure  2D).

Function Prediction and Phylogenetic 
Relationship Analysis
Based on the predicted results of KEGG function, we showed 
the pathway abundance at two levels (level 1 and level 2). 
In level 1, metabolism accounted for about 41.61–47.01% 
at each developmental stage, followed by environmental 
information processing (16.46–21.61%) and genetic 
information processing (15.02–16.02%; Figure  3A). In level 
2, we  showed the richness of the top  20 pathways, and 
the other pathways are classified as Others (Figure  3B). 
The relative abundance of membrane transport (13.89–
18.64%) was the highest at different developmental stages. 
In addition, pathways related to metabolism account for 
the vast majority, and carbohydrate metabolism, amino acid 
metabolism, energy metabolism, metabolism of cofactors 
and vitamins, nucleotide metabolism, lipid metabolism were 
abundantly enriched. The phylogenetic tree indicated the 
developmental relationship between Erwinia and 
Acinetobacter, the two important genera in our study, and 
the more closely related genera (Figure  4).
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DISCUSSION

Most insects contain a large number of symbiotic bacteria 
(Bosch and McFall-Ngai, 2011; Herzner et  al., 2013; 
Ruffner et  al., 2013; Marchesi et  al., 2016). Although the 
microbial diversity of insects has been extensively studied, most 
of the research has focused on insect gut microbes (Roh et  al., 
2008; Hulcr et  al., 2012; Salem et  al., 2013), and there are 
few reports on the dynamic changes of microbial diversity 
and species richness in different developmental stages of insects. 
However, the vast majority of insect symbiotic bacteria are 
concentrated in the intestinal tract, which is rich in symbiotic 
bacterial communities (Gupta and Nair, 2020). Similarly, although 
our study detected the microbial community of the entire insect 
body, intestinal microbes accounted for almost all of them 
(Campbell et  al., 2018; Karimi et  al., 2019; Rossitto De Marchi 
and Smith, 2020). These bacteria and host insects have formed 
an interdependent relationship during the co-evolution process 
(Gao et al., 2019). However, we have not found any endosymbionts 
in A. suturalis, although endosymbionts have been widely 
reported in other Hemipterans (Campbell et  al., 2018; Karimi 
et  al., 2019; Rossitto De Marchi and Smith, 2020).

Interestingly, it can be observed from the aspect of microbial 
diversity that the first and second instar microbial community 
diversity of newly hatched nymphs is the highest, and its 
unique OTU species are also abundant. From the third instar 
nymph, the diversity of the microbial community began to 
decline. It is well known that bacterial diversities vary from 
field collected to lab-reared (Rani et  al., 2009) as well as 
across different geographical regions (Zouache et  al., 2011). 
In addition, the composition and diversity of bacteria are 
affected by the in vitro environment (Zouache et  al., 2011) 
and artificial feed (Priya et  al., 2012). It has been confirmed 
in Helicoverpa armigera and Lymantria dispar that food sources 
have a great influence on the microbial diversity of insects 
(Broderick et al., 2004; Priya et al., 2012). Adelphocoris suturalis 
began to prey on cotton aphid from the third instar nymph 
stage, which may be  one of the reasons for the changes in 
microbial diversity, or it may be  that the nymphal microbial 
community becomes highly simplified through the development 
of the host insect. Starting from the third instar nymph stage, 
the alpha diversity decreased significantly (Figure  1A), and 
diet is the best explanation for this effect. This is consistent 
with the results of recent studies on the influence of A. suturalis 

FIGURE 4 | Phylogenetic analysis of Erwinia and Acinetobacter. As Erwinia: A. suturalis Erwinia, As Acinetobacter: A. suturalis Acinetobacter. The phylogenetic tree 
was made by MEGA7.0 software and constructed by the Neighbor-joining method. The number in parentheses indicates the GeneBank accession number of the 
16S rRNA gene sequence.
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diet on microbial diversity (Luo et  al., 2021). An increase in 
nutrient richness (such as protein quality) may lead to a 
decrease in alpha diversity, although refined diets are also 
associated with increased species richness (Erkosar et al., 2018; 
Kešnerová et  al., 2020). PCA analysis also confirmed the 
difference of species diversity mentioned above. During the 
transition period from fifth instar nymph to adult, there was 
no significant change in alpha diversity, because A.suturalis 
is an incomplete metamorphosis insect. Nymphs and adults 
have small changes in their living environment, feeding habits, 
and food sources, which lead to changes in the intestinal 
bacterial community (Engel and Moran, 2013; Hammer et  al., 
2017; Luo et  al., 2021). Complete metamorphosis involves 
complex structural changes, which leads to significant changes 
in microbial diversity from egg to adult (Chen et  al., 2016; 
Hammer et  al., 2017; Zhao et  al., 2019).

We also found that Proteobacteria and Firmicutes dominated 
across the entire life cycle, which was similar to findings in 
other Hemipteran insects (Husseneder et  al., 2017; Lim and 
Ab Majid, 2020), each of which contained a different proportion 
of microbes depending on the species or sample (Figure  1B). 
Similar results have been found in other insects (Chandler 
et  al., 2011; Colman et  al., 2012; Engel et  al., 2012). These 
phyla are often listed as the most abundant bacterial communities 
associated with insect taxa (Colman et  al., 2012; 
Thomas et  al., 2013; Yun et  al., 2014; Kim et  al., 2017). 
Firmicutes and Proteobacteria are key to maintaining the growth 
and development of insects during the metabolism of secondary 
metabolites in host plants (Dillon and Charnley, 2002).

Erwinia in the phylum Proteobacteria is a genus of 
dominant bacteria in the nymphal and adult stages, a member 
of the Gram-negative Enterobacteriaceae family (Basset et al., 
2000), and is a type of intestinal bacteria. Throughout the 
development cycle of A. suturalis, the Erwinia population 
was stable and continuous, with high abundance, indicating 
that Erwinia plays a lasting symbiotic role in the growth, 
development, and survival of A. suturalis. Erwinia can 
metabolize most sources of nitrogen, sulfur, and phosphorus 
(Friedl et  al., 2008), and is thus an important microbial 
species in the intestinal tract of insects. Adelphocoris suturalis 
is a highly omnivorous insect (Luo et  al., 2017b). Erwinia 
can enhance the adaptability of insect hosts to their plant 
hosts by regulating the diet of insect hosts (De Vries et  al., 
2004), which is critical for omnivorous insects. Erwinia have 
strong metabolic ability, which plays an important role in 
the digestion of food and body development of A. suturalis. 
Interestingly, Erwinia can secrete a variety of cell wall 
degrading enzymes, causing potato black leg disease, soft 
rot, fusarium wilt, and other plant diseases (Whitehead et al., 
2002; Grenier et al., 2006). Drosophila melanogaster has been 
reported to be  an important media for Erwinia carotovora 
(Vieira et al., 2020). The Hemiptera insect Creontiades signatus 
is a vector for the transmission of bacterial pathogenic 
bacteria Serratia marcescens (Bizio; Enterobacteriales: 
Enterobacteriaceae) that rots cotton seeds and bolls (Glover 
et al., 2020). Further research is needed to determine whether 
A.suturalis is a vector for the bacteria. Acinetobacter has a 

very high abundance in the nymph stage, but extremely 
low abundance in the adult stage. The vast majority of 
Acinetobacter bacteria have strong drug resistance (Li et  al., 
2021). In China, due to the large-scale planting of Bt crops, 
A. suturalis has risen from secondary pests in cotton fields 
to primary pests. Among them, Cry1, Cry2, and Cry9 toxins 
have been reported to show high insecticidal activity against 
lepidopteran pests (Palma et  al., 2014; Silva et  al., 2015). 
Once ingested by the susceptible insect larvae, these cry 
proteins (present in the form of protoxin) are proteolytically 
processed by midgut proteases to the active toxin that 
subsequently binds to specific protein receptors of the midgut 
epithelium leading to cell disruption and eventual death of 
the insect larvae (Pardo-López et al., 2013). The introduction 
of the intestinal isolate Acinetobacter guillouiae into Plutella 
xylostella significantly enhances its sensitivity to Bt Cry1Ac 
protoxin, and Acinetobacter plays an important role in the 
immune response of insects (Li et  al., 2021). During the 
nymph period, its ability to resist the stimulation of external 
agents is relatively weak. It requires the support of symbiotic 
bacteria in the body to defend against unfavorable pesticide 
environments and Bt crops. We  analyzed the developmental 
relationship of Erwinia and Acinetobacter with the 
aforementioned E. carotovora and A. guillouiae through 
phylogenetic tree development. As Erwinia and Erwinia 
toletana strain NP8O2 are the most closely related in evolution. 
At the same time, As Erwinia and E. carotovora have 94.47% 
identity. Although As Acinetobacter and A. guillouiae are 
not on the same branch, they have 94.86% identity. 
Staphylococcus and Lactococcus are the two genera with the 
highest relative abundance in Firmicutes. The content of 
Staphylococcus increased significantly in the nymph stage, 
and the relative abundance was the highest in ZL5 (13.98%) 
stage, but it was scarce in adult stage. Lactococcus has a 
relatively high abundance in the adult stage and exists in 
large numbers in the intestines (De Jonge et  al., 2020). This 
type of bacteria is known for fermenting complex molecular 
carbohydrates to produce lactic acid. Lactococcus is a 
lactobacillus of firmicutes with high abundance in both male 
and female adults, which can decompose sugar to produce 
organic acids, reduce the pH value of its environment, and 
defend against some acid-sensitive pathogenic bacteria (Evans 
and Armstrong, 2006). This ensures that A. suturali can 
obtain the nutrients it needs in the complex environment. 
Our functional prediction also confirmed that in different 
stages of development, metabolic function is the main, 
whether amino acid metabolism or carbohydrate metabolism, 
is very important for the survival of insects.

Our results showed that the dominant bacteria genera 
(Erwinia, Acinetobacter, Staphylococcus, and Lactococcus) of 
Proteobacteria and Firmicutes were mostly concentrated in the 
intestinal tract of insects. These bacteria played an important 
role in nutrient uptake and adaptability to the environment, 
and were directly related to the growth, development, and 
reproduction of the insects. We  sequenced the A. suturalis 16S 
rRNA gene through Illumina HiSeq, which directly revealed 
the structure of the bacterial community in the life cycle of 
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A. suturali, predicted the biological functions of different bacterial 
communities, and provided a basis for further research on 
the role of bacteria in this and other insects. We  provide a 
crucial theoretical basis for future research on A. suturalis 
symbiotic bacteria. These foundations can help formulate 
environmentally friendly management strategies for pest control 
and provide ideas for new pest control strategies.
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