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Abstract

Proton radiotherapy is becoming more common since protons induce more precise DNA damage 

at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term 

biological effects of proton irradiation in cancer initiation compared to conventional photon 

irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis 

syndrome susceptible mouse model, we show that whole body irradiation with protons are more 

effective in inducing senescence-associated inflammatory responses (SIR) which are involved in 

colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, 

Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), 

along with the senescence associated gene (P19Arf) are markedly increased. Following these 

changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 

mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number 

of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal 

anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. 

Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and 

progression that can be mitigated using CDDO-EA.
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 Introduction

Charged particles, such as protons and heavy ions, lose energy by continuous interactions 

with electrons, and through occasional nuclear events within the absorbing materials (1). 

Thus, unlike photons, such as x-ray and γ-ray, which are absorbed by exponential 

attenuation, charged particles have a finite range and deposit energy in an inverse 

relationship with their velocity (1). Proton radiation produces a rapid fall-off of absorbed 

dose at the distal stopping edge, and a low level of lateral scatter, which results in sharp 

lateral beam edges (Bragg peak) (1–4). Proton therapy generally uses an energy range 

between 60 to 250 MeV/n so that tumors seated at 3 cm to 30 cm depth can be treated (5). 

For this reason, cancer radiotherapy treatments using protons has become much more 

common worldwide. However, the long-term risk and biological effects of protons in normal 

tissues remain to be more fully characterized.

Risk assessment is usually determined by the relative biologic effectiveness of various 

parameters for proton particles compared to photon (e.g. x-rays or γ-rays) exposures. Photon 

radiation risk estimates have been used to extrapolate to proton radiation but the reliability 

of the models for relative biologic effectiveness determination has uncertainties (6–7). High 

energy (250 MeV/n) protons have been found to have a similar biologic effectiveness to γ-

rays for incidence of both simple chromosome damage and complex chromosome exchanges 

in human lymphocytes when irradiated with a high dose-rate (70 cGy/min) (8). However, 

protons increase chromosome damages in human lymphocytes when they are delivered at a 

lower dose-rate (0.125 cGy/min) compared to low dose-rate of γ-rays exposure (8). While a 

low dose-rate of protons increases chromosomal damage in vitro, cytogenetic effects of 

mouse bone marrow cells exposed to protons or γ-rays (both delivered at 1 cGy/min) are 

similar in vivo (9). While the application of scaling factors is generally accepted to be the 

only practical approach to human cancer risk estimation for protons, a testable hypothesis is 

that qualitative and quantitative differences between proton and photon effects are 

maintained across species, such as from mouse to human. Understanding how to scale such 

risks in model systems will provide the best possible framework for undertaking the same 

scaling of risks in humans. In order to use this approach, collection of relevant quantitative 

data for oncogenic and pre-oncogenic endpoints in “relevant” animal model systems are 

needed. In addition, little is known about the comparative molecular mechanisms involved in 

charged particle-induced carcinogenic pathways (10–12).

The gastrointestinal track is one of the highly sensitive tissues to radiation-induced damage, 

and colorectal cancer is a leading cause of cancer-related death in much of the industrialized 

world (13). Apc mutations play a critical initiating role in adenoma development in the 

inherited setting of familial adenomatous polyposis (FAP) syndrome and in sporadic tumor 

development (13). Mice carrying the ApcMin (Multiple intestinal neoplasia) mutation which have a 
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nonsense mutation at codon 850 of the Apc gene appears to be responsible for predisposition 

to the development of multiple intestinal tumors in a mouse genetic model (14). The ApcMin 

mouse develops ~50 adenomas and infrequent carcinomas in the small intestine and usually 

die by 140 days of age. Because the vast majority of gastrointestinal tumors in human FAP 

patients are developed in the distal colon and rectum instead of small intestine, the ApcMin 

mouse has notable limitations as a model for human colorectal carcinogenesis. Thus, 

conditional transgenic mice in which Apc has been targeted for somatic inactivation by Cre 

recombinase under the control of CDX2 homeobox gene promoter (CPC;Apc mouse) has 

been developed (15). CPC;Apc mice developed adenomas and carcinomas mainly in the 

distal colon and rectum. In addition, morphologic and molecular studies of the mouse 

tumors reveal a striking similarity to human colorectal tumors (15).

Exposure to ionizing radiation induces intrinsic DNA damage and cellular senescence 

responses in human normal epithelial cells and normal fibroblasts (16). Intrinsic DNA 

damage and cellular senescence have recently been implicated as a major barrier against 

tumor initiation and progression (17–18). While senescence may initially impede tumor 

progression, opposing functions of senescence in tumorigenesis have also been studied. 

Accordingly, senescent cells secret cytokines, chemokines, and growth factors, which can 

facilitate tumor cell growth (19). Casein kinase I alpha (CKIα) plays a role in the Wnt 

signaling pathway. Ablation of CKIα triggers extensive Wnt hyper-induction and low-grade 

senescence-associated inflammatory responses (SIR) in the mouse intestine but homeostasis 

is still maintained along with wild-type p53 activity (17, 20). However, with additional 

alterations, such as mutations in p53, SIR loses its growth control capacity and leads to 

accelerated tumorigenesis and invasiveness in colorectal cancer along with overexpression of 

a set of invasiveness genes (termed the p53-suppressed invasiveness signature, PSIS) (17, 

20). In this study, we characterized the biological effects of low dose-rate proton exposures 

(e.g. similar to solar particle event (SPE) simulations, sSPE) using the CPC;Apc mouse as 

compared to higher dose-rate protons and photon exposure. To elucidate the mechanism of 

low dose rate proton-induced increases in the tumor initiation and progression, the para-

inflammation driving gastrointestinal track homeostasis/tumorigenesis model (17) was 

examined. Since protons with an energy range between 60 to 250 MeV/n (human therapeutic 

range) completely penetrate through a much smaller mouse body, in the present studies we 

used 50 MeV/n proton (which has ~2 cm of Bragg peak region). This energy would be 

predicted to deposit most of the energy inside a mouse, simulating what might be occurring 

in human patients treated with slightly higher dose rates of proton therapy.

 Results

 Low Dose-Rate Simulated Solar Particle Event (sSPE) Exposure Reduces Lifespan and 
Crypt Number in Wild Type Mice

While exposure to 2 Gy acute protons (50 MeV/n) with high dose-rate (20 cGy/min) did not 

change the lifespan of wild type C57BL6/J mice compared to unirradiated control mice, 2 

Gy protons (SPE simulation, sSPE) with low dose-rate (1.67 cGy/min) caused markedly 

decreased lifespan relative to acute proton radiation. The median survival of the unirradiated 

control and acute proton groups were 763 day (n=30) and 769 day (n=12), respectively. In 
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contrast, the sSPE irradiated mice showed significantly shortened median survival of 602 

day (n=20) (Figure 1A). When colon histology was examined at the time of death in wild 

type mice, neither hyperplasias nor polyps were detected in both acute proton and sSPE 

irradiated mice (data not shown). However, a significant decrease in the crypt number in 

sSPE irradiated wild type mice compared to unirradiated or acute proton irradiated groups 

was observed (Figure 1B). The mean difference of crypt number per field (10× 

magnification) between unirradiated control and sSPE was 3.9±1.1 SD (standard deviation) 

(p=0.002, n=12), and the difference between acute proton and sSPE was 5.0±1.2 SD 

(p=0.0004, n=12) (Figure 1C).

 Low dose-rate sSPE Exposure Induces Higher Colonic Tumorigenesis Compared to 
Acute Proton or X-ray in Colon Cancer Susceptible CPC;Apc Mice

To determine the effects of proton exposure in a colon cancer susceptible mouse model, 

CPC;Apc mice were exposed to 2 Gy of x-ray (photon irradiation), acute high dose-rate 

protons, or low dose-rate protons (sSPE) radiation. While median survival of unirradiated 

wild type mice was calculated as 763 day, the median survival of unirradiated and sSPE 

exposed to colon cancer susceptible CPC;Apc mice was 351 day (n=76) and 327 day (n=71) 

respectively. Exposure to sSPE caused a slight decrease in median lifespan (p=0.032 in 

Gehan-Breslow-Wilcoxon test) in CPC;Apc mice but similar maximum lifespan was 

observed compared to the unirradiated control group (Figure 2A). Compared to sSPE-

irradiated mice, similar survival curves were observed with acute protons (n=30) and x-ray 

(n=25) exposure (Figure 2B). To investigate the effects of acute proton or sSPE proton 

irradiation in colonic tumorigenesis, CPC;Apc mice (n=6 per study group) were observed 50 

days post irradiation. However, no significant difference was observed in tumor initiation or 

progression at this time point post-irradiation (Figure 2D). However, 100 days after 

irradiation, the average number of polyps in the unirradiated control group was 3.2±1.3 SD 

(standard deviation), the number of polyps in 2 Gy x-ray, acute proton and sSPE-irradiated 

mice was 4.4±3.1 SD, 4.6±1.3 SD, and 7.2±1.1 SD respectively (Figure 2C–D). To 

determine if mice could be protected from sSPE-induced damage with the radioprotector, 

CDDO-EA (a synthetic triterpenoid) (21–25), groups of mice were fed a diet containing 

CDDO-EA (400 mg/kg diet) for 3 days continuously prior to sSPE exposure. Tumorigenesis 

of CDDO-EA treatment mice was significantly reduced to unirradiated control levels 

(3.0±1.0 SD) 100 days after sSPE exposure (Figure 2C–D).

In the segmental distribution of tumors 100 days after irradiation, unirradiated control mice 

showed colon tumors mostly in the distal region (68.9%) compared to the middle region 

(31.1%) with no tumors in the proximal region. While a significant difference was not 

detected in the segmental distribution of colon tumors in the x-ray and acute proton exposed 

group compared to the unexposed control, exposure to sSPE radiation showed higher 

tumorigenesis in the middle colon (38.9%) with 2.8% tumors in the proximal region (Figure 

2E). When colonic tumors in each group were categorized into two groups depending on 

their size, there were higher numbers of larger tumors (> 2 mm) in irradiated mice relative to 

unirradiated control mice but there were no significant differences tumor sizes between 

acute proton and sSPE exposure (Figure 2F).
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Histopathological analysis of the colon tumors was performed at the biological end-point 

and showed that 25.8% (n=62) of mice exposed to 2 Gy sSPE showed invasive 

adenocarcinoma. In contrast, only 6.3% (n=48) of unirradiated mice developed invasive 

adenocarcinoma. 2 Gy x-ray and acute proton exposed mice showed 8.0% (n=25) and 11.1% 

(n=27) of invasive adenocarcinoma incidence respectively. Pretreatment of CDDO-EA prior 

to sSPE exposure markedly decreased the incidence of invasive adenocarcinoma from 25.8% 

to 15.2% (n=33) (Table 1). Representative images of the invasive foci penetrating through 

the muscularis mucosa are shown in Figure 2G.

 Exposure to sSPE Results in an Increased Incidence of Higher-grade Colorectal 
Adenocarcinomas

Human colorectal cancer can be classified by pit’s morphology through histopathological 

analysis (26). While round shape pits are observed in most normal colon tissues, tubular, 

roundish or branch-like pits are mainly found in adenomas. High grade adenocarcinomas 

show non-structured pit shapes (26). In addition, to better classify adenocarcinomas, 

immunohistochemistry of cyclin D1 was performed since others have reported a significant 

correlation between cyclin D1 expression and poor prognosis in colorectal cancer patients 

(27). Strong expression of cyclin D1 is observed in large and invasive carcinomas, and 

correlate with poor survival (27). In this study, we observed strong positive staining of cyclin 

D1 in highly progressed adenocarcinomas which had non-structured pits (Figure 3A). When 

colon sections collected 100 days after irradiation were scored by pit shape, exposure to 

sSPE radiation showed a markedly higher incidence of non-structured pit tumors (39.5%, 

p<0.05) relative to unirradiated (26.3%), x-ray (27.6%), or acute proton (25.8%) irradiated 

control groups (60–200 tumors from 30–40 mice/group were observed; Figure 3B). CDDO-

EA pretreatment prior to sSPE exposure showed a decreased number of non-structured pits. 

Colon tissues were also categorized by immunohistochemistry of cyclin D1. In contrast to 

unirradiated or acute proton-irradiated control, sSPE-exposed mice had more cyclin D1-

positive tumors (58%, p<0.05 compared to unirradiated control). Mice were also protected 

from sSPE radiation with pretreatment of CDDO-EA and showed reduced cyclin D1-

positive tumors (7–12 tumors from 3 mice/group were examined) (Figure 3C).

 Simulated SPE Induces Prolonged Activation of β-catenin

Immunohistochemistry analysis for active-β-catenin showed markedly increased staining in 

both tumors and tumor-adjacent normal areas of colonic tissue in the CPC;Apc mice 100 

days after sSPE irradiation (Figure 4A). Quantification showed significantly higher staining 

in the tumor-free normal area in sSPE-irradiated mice relative to tumor-free areas in 

unirradiated control and acute proton-irradiated groups (p<0.0005) (Figure 4B). Along with 

normal tissues, tumors in sSPE-irradiated mice also showed higher active-β-catenin staining 

(p<0.0005) compared with unirradiated control and acute proton radiation groups (Figure 

4C). Tumors in acute proton-irradiated mice also showed an increased staining of active-β-

catenin (p<0.05) relative to unirradiated control. Quantification analysis was performed in 

six fields of vision from the tumor-free and the tumor-bearing areas captured in each section. 

Average data from 4 mice are graphically presented (Figure 4B–C).
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 Irradiation with sSPE Increases Expression of Senescence-associated Inflammatory 
Response (SIR) Genes in Tumor-free Colon

To elucidate the mechanism of sSPE-induced increases in tumor initiation and progression in 

CPC;Apc mice, the para-inflammation driving gut homeostasis/tumorigenesis model (17) 

was examined 100 days after irradiation. Loss of Casein Kinase I alpha (CKIα) and/or 

persistent DNA damage responses trigger Senescence-associated Inflammatory Responses 

(SIR), a form of para-inflammation, an intermediate between basal homeostasis and chronic 

inflammation in epithelial cells. SIR results in a breach of homeostasis, hyperproliferation, 

tumorigenesis and invasive carcinogenesis with additional mutations in the tumor suppressor 

TP53 (17). CPC;Apc mice exposed to sSPE showed increased DNA damage responses 

(Figure 5A) and a significantly higher number of 53BP1-positive cells in normal colonic 

crypts (p<0.0001) relative to acute proton irradiated tissue 4 hours after exposure (Figure 

5B). Persistent DNA damage observed up to 4 days after sSPE irradiation (Figure S1) may 

be due to increase of chronic oxidative stress. To test this we observed higher and persistent 

oxidative damage in sSPE irradiated tumor-free colon tissues compared to unirradiated or 

acute proton exposed tissues 100 days after irradiation (Figure S2). Casein kinase I alpha 

(CKIα), a component of the β-catenin-destruction complex, is involved in a number of 

cellular processes including DNA repair, cell division, and the Wnt signaling pathway (20). 

Along with low expression of CKIα in colon tumors, lower expression of CKIα in the sSPE-

exposed tumor-free normal tissues was observed relative to unirradiated control (Figure 5C).

We further examined the expression of senescence-associated inflammatory genes that 

changed after exposure to sSPE radiation. Tumor-adjacent normal colon tissues were 

analyzed with qRT-PCR analysis 100 days after radiation exposure. Expression of a small 

subset of genes was higher in mice irradiated with 2 Gy sSPE exposure relative to 

unirradiated control. However, these same genes were not expressed at higher levels in 2 Gy 

x-ray or acute proton irradiated groups (Figure 6A). A subset of SIR genes (Troy, Sox17, 

Opg, Faim2, Lpo, Tlr2 and Ptges) and one PSIS gene (Plat), along with the senescence 

associated gene (P19Arf) were markedly increased 100 days after 2 Gy sSPE irradiation 

(Figure 6A–B). However, higher expression of these genes was not observed in 50 days post 

2 Gy sSPE exposure group nor 100 days post 1 Gy sSPE exposure group (Figure S3). 

Importantly, induction of these para-inflammatory genes was dramatically suppressed by 

pretreatment of CDDO-EA (Figure 6).

Because the combined alteration of CKIα and p53 triggers high-grade adenocarcinomas 

with series of gene activations (the p53-suppressed invasiveness signature, PSIS) (20), p53 

expression level were assessed in tumors or tumor-free normal tissues. Compared to 

unirradiated control, both acute proton and sSPE irradiated groups showed lower expression 

of p53 in tumor-free and also tumor tissues 100 days after irradiation (Figure 5D). To 

address the long-term effects of sSPE irradiation on TP53 mutagenesis, we examined a 

specific mouse TP53 mutation using droplet digital PCR (ddPCR) (28), which can detect as 

little as 0.01% of a TP53 single nucleotide mutation in the wild-type background (Figure 

S4). Because the mouse TP53 A156V mutation (corresponding to human codon A159) has 

been reported at the deeply invasive colon adenocarcinoma in this CPC;Apc mouse model 

(15), TP53 A156V mutation was examined to determine the effects of sSPE irradiation on 
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colorectal cancer progression. We designed a common primer pair and allele-specific 

TaqMan probes conjugated with different fluorophores that distinguish between the wild-

type and A156V mutant TP53 sequences to screen for the mutagenesis events (Figure 7A 

and Figure S4). We analyzed 5 tumors per group and found that the frequency of the mutant 

allele differed in each group (Figure 7B). Calculated frequency of the TP53 mutant allele 

after sSPE exposure showed a significant (P= 0.02) 2.8-fold higher TP53 mutant frequency 

compared to unirradiated or acute proton irradiated control (Figure 7C).

 Discussion

Protons are the most common particle type in space and considered as a potential serious 

damaging factor for increased risks of cancer and other diseases in astronauts. However, due 

to unique dosimetric characteristics which can permit a finite range in tissues without an exit 

dose (3), protons have become widely used for external beam radiation therapy in the 

treatment of lung cancers, head and neck cancers, prostate cancers, sarcomas, brain tumors, 

and gastrointestinal cancers (29–33). While clinic-based proton therapy is widely being 

utilized, the biological long-term side effects/risks of protons have not been as carefully 

examined. We show, for the first time, the pro-tumorigenic effects of low dose-rate proton 

radiation in human FAP syndrome susceptible mouse model (CPC;Apc mice). We used 2 Gy 

dose of proton because radiation therapy of human cancer commonly employs 2 Gy daily 

fractions of ionizing radiation to achieve the planned total dose (34). In addition, crew 

members on the International Space Station could receive doses of 2 Gy of proton radiation 

or more during a solar flare event, even though shielding may partially but not completely 

reduce these doses (35–36). In this study, SPE simulation (sSPE) was delivered at a low 

dose-rate (at an average dose rate of 1.67 cGy/min) and acute protons and x-rays were 

delivered at a higher dose-rate (20 cGy/min). It has been reported that ionizing radiation at 

low dose-rate exposure can lead to higher DNA damage and cellular toxicity compared to 

high dose-rate exposure in vitro (37). Here, we observed that sSPE exposure decreased both 

the number of colonic crypts and overall maximum survival compared to acute proton 

exposure in wild-type mice (Figure 1). In colon tissues of the CPC;Apc mice, low dose-rate 

sSPE exposure showed higher acute DNA damage (Figure 5A–B) as well as chronic (100 

days post irradiation) oxidative stress (Figure S2) compared to high dose-rate proton or 

photon exposure. When considering the typical daily dose-rate for proton therapy is about 

200 cGy/min (38), we propose that lower daily dose-rate of proton may provide better tumor 

toxicity during proton therapy.

In addition to acute risk, mid-term (100 days post exposure) or long-term (time of death) 

risks of low dose-rate proton exposure were determined in the CPC;Apc mice. Exposure to 

sSPE radiation showed the development of a higher number of polyps compared to 

unirradiated or acute proton irradiated groups 100 days after exposure. While unirradiated 

and irradiated mice showed similar numbers of polyps at 50 days post-irradiation, sSPE 

irradiated mice at 100 days increased the number of polyps more than 2-fold relative to 

unirradiated control (Figure 2D). sSPE exposure may increase damage in normal non 

cancerous colonic tissues in addition to increasing the damage to pre-existing hyperplastic 

foci, but such damage was undetectable at 50 days post-irradiation. However, sSPE exposed 

mice show an increased cancer burden by 100 days post-irradiation. Besides an increase in 
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the number of tumors (i.e. tumor initiation), tumor size and segmental distribution (i.e. 

tumor promotion) were changed by sSPE radiation. Exposure to sSPE radiation showed 

higher tumorigenesis in the middle and proximal colon region, and showed higher numbers 

of large tumors relative to unirradiated or acute proton/x-ray irradiated groups 100 days after 

exposure (Figure 2E–F). Cancer progression was accessed by histopathology at different 

time points, including 100 days after irradiation and at time of death. Higher numbers of 

adenocarcinomas were observed by both histopathological pit structure and 

immunohistochemistry analysis in sSPE irradiated mice. Exposure to x-ray and acute proton 

radiation did not show increased tumor progression 100 days after irradiation (Figure 3B–

C). However, at the time of death, a slight increase incidence of invasive adenocarcinoma 

was observed with x-ray and acute proton exposure, along with significant increase of 

invasive adenocarcinoma with sSPE exposure (Table 1).

To elucidate the mechanism of sSPE-induced increases in tumor initiation and progression in 

CPC;Apc mice, para-inflammation driving tumorigenesis (17) was examined. The reduction 

or absence of CKIα and/or chronic stress triggers low-grade senescence-associated 

inflammatory responses (SIR) in the mouse intestine (17, 20). With further mutations in 

TP53, senescent cells bypass growth inhibition checkpoints leading to accelerated colon 

cancer tumorigenesis and invasiveness in combination with activation of the p53-suppressed 

invasiveness signature (PSIS) (17, 20). In this study, we demonstrated that exposure to low 

dose-rate proton (sSPE) resulted in more prolonged DNA damage (Figure 5A–B and Figure 

S1) and oxidative stress (Figure S2) in the colon tissues relative to acute high dose-rate 

proton radiation. We also observed that exposure to sSPE decreased expression of CKIα 

(Figure 5C) and increased the frequency of TP53 mutations in the colon tumors (Figure 7C) 

(A156V, which has been found in invasive colon carcinomas in this specific genetically 

engineered mouse model, CPC;Apc (15)). Therefore, a set of SIR genes (Troy, Sox17, Opg, 

Faim2, Lpo, Tlr2 and Ptges) and one PSIS gene (Plat), along with the senescence associated 

gene (P19Arf) were observed to be increased in colon tissues exposed to sSPE 100 days 

post-irradiation (Figure 6). Overexpression of these genes were also observed in colon 

tumors (data not shown). These results imply that sSPE increases tumorigenesis by inducing 

SIR and PSIS in the mouse intestine. In contrast to 2 Gy sSPE, acute 2 Gy proton, 2 Gy x-

ray and 1 Gy sSPE did not activate these genes (Figure S3), suggesting that these genes 

might be a novel biomarker of dose- and dose-rate-dependent proton irradiation.

Charged particles are also considered to be one of the major risk factors for humans in 

space, and have emerged as a critical issue to be resolved for safe long-term missions both 

orbital and interplanetary. During Solar Particle Events (SPE), significant spikes in the 

energy and fluence of proton particles from a solar flare increase the risk of astronaut 

exposure to higher doses of protons. Typically SPEs develop rapidly and may last a few 

hours to several days emitting low dose-rate irradiation. Moreover, the occurrence, duration 

and size of individual events are currently unpredictable (39). In the interplanetary space 

environment, the radiation field consists of 2% electrons, 85.3% protons, 11.8% alpha 

particles (helium nuclei), and less than 1% of high charge (Z) and energy (E) (HZE) 

particles. Although HZE particles only account for a small amount of the GCR particle 

fluxes, they significantly contribute to the biological effects of space radiation (40). While 

protons may have less biological effects compared to HZE particles, their abundance in the 
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space radiation field needs to be examined much more closely. In addition, HZE particles 

may also have important implications for carcinogenesis. To address this possibility, we 

compared the carcinogenic effects of Silicon (28Si) particle with sSPE exposure. Exposure to 

acute 2 Gy 28Si (600 MeV/n) with a dose-rate of 20 cGy/min showed similar tumor 

initiation, invasiveness and decreased lifespan as with 2 Gy sSPE irradiated CPC;Apc mice 

(manuscript in preparation). Though exposure to 2 Gy 28Si showed similar tumorigenic/

invasive activity as 2 Gy sSPE, SIR/PSIS gene expression which were induced by sSPE 

exposure were not activated with 2 Gy 28Si exposure in tumor-free colon tissues, indicating 

that different types of radiation exposure activate different mechanisms to induce 

tumorigenesis/invasiveness in vivo (manuscript in preparation). Previously fractionated 

exposure of 56Fe-particle was reported to enhance lung cancer progression compared to 

acute 56Fe irradiation (41). In this study, however, fractionated 28Si irradiation reduced 

cancer progression in the colon. Colonic epithelial cells grow faster compared to bronchial 

epithelial cells and their turn over time is about 3–4 days. Therefore, our data can be 

interpreted to indicate that different type of tissues have different mechanisms to suppress or 

activate tumorigenesis in response to single- or multiple-fractionated radiation exposures.

In this study, we demonstrated tumorigenic effects of proton radiation in a colorectal cancer 

susceptible mouse model with dose- and dose-rate-dependent effects. Exposure to low dose-

rate proton (SPE simulation) increased the initiation as well as progression of colorectal 

cancer by inducing a set of SIR/PSIS genes expression (Figure 8). The SIR genes induced 

by the low dose-rate proton was different when compared with high dose-rate proton or 28Si-

induced tumorigenesis indicating that there is a radiation quality dependency in radiation-

induced tumorigenesis mechanisms. While proton therapy in patients is delivered in a highly 

localized manner, our studies used whole-body irradiation to determine tumorigenic effects. 

Thus, it is important to note that these present results cannot be extrapolated to the side 

effects of localized proton therapy in patients. Previously, we have reported that CDDO-EA 

reduces inflammation and DNA damage against photon irradiation by Nrf2 activation (22). 

Here, we also demonstrated that pretreatment with CDDO-EA protects mice and reduces 

tumor initiation and progression against sSPE exposure. CDDO-EA enhanced DNA repair 

and inhibited induction of SIR/PSIS gene expression after low dose-rate proton exposure. A 

new synthetic triterpenoid derivative (known as RTA408, Reata Pharmaceuticals) also has 

been studied as a radioprotector (42) and is currently in clinical trial for preventing 

radiation-induced dermatitis in patients receiving radiotherapy (NCT02142959). 

Collectively, these studies imply that exposure to low dose-rate protons activate SIR/PSIS 

gene expression by prolonged DNA damage and cellular senescence, which induces tumor 

initiation/progression. A synthetic triterpenoid (CDDO-EA) is a potent radioprotector 

against proton cancer therapy as well as a potential radioprotector and perhaps mitigator of 

space radiation.

 Materials and Methods

 Animal husbandry and handling

CDX2P APCflox/+ (CPC;Apc)(15) and C57BL6/J mice were used for the present studies. 

The colon cancer genetically engineered mouse model was kindly provided by Dr. Eric 
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Fearon (U. of Michigan School of Medicine, Ann Arbor, MI), and a breeding colony was 

maintained in-house at UT Southwestern Medical Center (UTSW, TX) facility. All animal 

handling procedure was approved by the Institutional Animal Care and Use Committees 

(IACUC) of UTSW and Brookhaven National Laboratory (BNL, NY). The mice were 

housed 1–5 mice per cage and provided with Teklad Global 18% Protein Rodent Diet 

(#2018). All male and female animals, 5 to 8 weeks of age, were shipped from UTSW to 

BNL and were acclimated for up to 1 week before irradiation. A subset of control WT and 

CPC;Apc mice were shipped to BNL to account for stress in shipping and handling. All 

animals were transported via World Courier’s (New Hyde Park, NY) overnight delivery and 

returned to UTSW within 1 week after irradiation.

 Synthetic triterpenoid

The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) 

along with chemically modified derivatives, CDDO-Me (methyl ester, also known as 

bardoxolone methyl, BARD) and CDDO-EA (ethyl amide) are non-cytotoxic, highly 

multifunctional and orally available drugs that have been studied as anti-inflammatory and 

anti-oxidation agents in vivo and in vitro (43–45). Because ethyl amide derivative of a 

synthetic triterpenoid, CDDO-EA, has been reported to have enhanced pharmacodynamic 

activity in mouse assays compared to CDDO-Me (46), CDDO-EA (400 mg/kg diet) 

(provided from Reata Pharmaceuticals, Irving Texas, and Dr. Michael Sporn, Dartmouth 

Medical School, NH, USA) was first dissolved in an oily vehicle and prepared into chow 

pellets (Lab Diet #5002) by Purina (Purina-Mills, Richmond, IN, USA) (47). Group of mice 

were continuously fed a CDDO-EA diet or Control diet (Lab Diet #5002) for 3 days prior to 

radiation exposure.

 Radiation exposure

Mice were irradiated at the NASA Space Radiation Laboratory (NSRL) at BNL and proton 

dosimetry was calculated by the NSRL physics team. Mice were housed individually in 

rectangular plastic cuboids boxes (#530C, AMAC Plastic Products, Petaluma, CA) and then 

whole-body irradiated with 2 Gy of simulated SPE (low dose-rate) or acute 50 MeV/n (high 

dose-rate) protons. The assembly of 25 animal cubicles was collectively arranged in an array 

(5 × 5) within the 20 cm × 20 cm beam area. The energy spectrum for the SPE simulation 

was adapted to mouse dose levels and consisted of 91.67% of the proton dose at energy of 

50 MeV/n to 0.14% of the proton dose at 150 MeV/n as described previously (21) (Table 

S1). The 2 Gy of simulated SPE (low dose-rate proton) was delivered over 2 hours (average 

dose rate was about 1.67 cGy/min) and acute high dose-rate proton (50 MeV/n) was 

delivered with a dose-rate of 20 cGy/min. To assure uniform beam penetration through the 

mice, the sample assembly was rotated 180° in the vertical axis after completion of 25% of 

the desired dose. Groups of mice were irradiated using the X-RAD 320 irradiator (Precision 

X-ray, Inc) at UTSW. Mice were held in ventilated 50 ml conical Falcon tubes and placed 50 

cm from the radiation source (SSD). A 5 cm diameter brass collimator was placed in the 

collimator holder. Mice were irradiated with a dose rate of 20 cGy/min.
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 Polyp counts and sampling

Irradiated mice and age matched sham-irradiated control mice were euthanized 50 or 100 

days after radiation exposure. The colon was surgically removed and was flushed gently 

with phosphate-buffered saline (PBS) at room temperature. The colon was placed on a plate 

and cut open longitudinally. Polyps were counted by two independent observers. Data from 

multiple experiments were pooled to achieve statistical significance. Scale was used to 

measure the polyp size. Polyps were then carefully dissected, flash frozen in liquid nitrogen, 

and stored at −80°C for further DNA, RNA or protein assays. Adjacent tumor-free normal 

colon tissues were also dissected. A subset of colonic tissue was fixed overnight in 10% 

buffered formalin. Fixed tissues were embedded in paraffin and 5-μm thick longitudinal 

sections were prepared and used for hematoxylin and eosin (H&E) and 

immunohistochemistry staining.

 Invasive adenocarcinoma counts

Irradiated mice and age matched sham-irradiated control mice were sacrificed at the 

experimental end points. The colon was surgically removed and was flushed gently with 

phosphate-buffered saline (PBS) at room temperature. The colon was fixed overnight in 10% 

buffered formalin. Fixed tissues were embedded in paraffin and two longitudinal sections 

were prepared with a 100 μm interval. H&E staining was performed using standard 

protocols. A board certified pathologist accessed all sections in each study group for 

invasive adenocarcinoma classified by penetrating neoplasia through the muscularis mucosa 

(48).

 Immunohistochemistry

Unstained and deparaffinized colon sections were used for immunohistochemistry. Briefly, 

immunostaining was performed after antigen retrieval using sodium citrate buffer (pH 6.0) in 

a microwave for 20 min. After quenching endogenous peroxidase activity using 3% 

hydrogen peroxide for 5 min, the sections were blocked and exposed to the respective 

primary antibodies. Vectastain Universal ABC kit (Vector Laboratories, Burlingame, CA) 

and ImmPACT™ DAB kit (Vector Laboratories) were used for signal detection and color 

development. To determine specificity of the staining, appropriate controls were run in 

parallel with the experimental sections. Images were captured using bright field microscopy 

(Axioskop2 Plus, Carl Zeiss, Gottingen, Germany) at a magnification of 20× with 7–12 

tumors from 3 mice and were analyzed using ImmumoRation plug-in of ImageJ v1.47 

software (National Institutes of Health, Bethedsa, MD). Mean data of average arbitrary pixel 

unit of DAB color intensity per 20× field were normalized with arbitrary pixel unit of 

hematoxylin intensity. The following antibodies were used: Active-β-catenin (Cat#05-665, 

dilution 1:1000, Millipore); Cyclin D1 (Cat# 2978s, dilution 1:100, Cell Signaling); 53BP1 

(Cat# ab36823, dilution 1:100, Abcam).

 Quantitative RT-PCR

Frozen colon tumors or tumor-free normal colon tissues were homogenized using a liquid 

nitrogen-cooled mortar (Bel-Art™ Scienceware™, Fisher Scientific) and total RNA was 

extracted using the RNeasy Mini kit (Qiagen, MD). RNA (1 μg) was subjected to reverse 
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transcription using the First strand cDNA synthesis kit (Roche Molecular Biochemicals, IN) 

and mRNA expression levels were measured by qRT-PCR using SsoFast™ EvaGrenn® 

Supermix (Bio-Rad, CA) in a LightCycler 480 II (Roche, IN). Primers for senescence-

associated inflammatory response genes are used as described previously (17). Sequences of 

RT-PCR primers are listed in Table S2. Relative quantities of gene transcripts were 

calculated and normalized to geometric mean of UBC, TBP, GUSB, and GAPDH 

transcripts.

 Western Blot Analysis

Frozen colon tumors or tumor-free normal colon tissues were homogenized using liquid 

nitrogen-cooled mortar (Bel-Art™ Scienceware™, Fisher Scientific) and were lysed in ice-

cold lysis buffer (50mM Tris pH7.5, 120mM NaCl, 0.5% NP-40, and 1mM EDTA) 

containing protease and phosphatase inhibitor cocktails (Roche). Lysates were centrifuged 

and supernatants used for protein assays. Equal amounts of protein was further mixed with 

5× SDS-Laemmli buffer and boiled at 95°C for 10 min, followed by a brief centrifugation. 

Proteins were separated by 4–15% Mini-PROTEAN TGX™ Precast Gel (Bio-Rad, CA), and 

transferred to a PVDF membrane using the Trans-Blot® Turbo™ Transfer System (Bio-Rad, 

CA). The following antibodies were used: p53 (Cat# ab26, dilution 1:1,000, Abcam); β-actin 

(Cat# A1978, dilution 1:20,000, Sigma Aldrich). HRP-conjugated goat anti-mouse or anti-

rabbit (Jackson ImmunoResearch) were used as secondary antibodies at 1:5000 dilution and 

detected with the SuperSignalWest Femto Chemiluminescent Substrate Kit (dilution 1:5, 

Thermo Scientific) and the gel documentation system, G:BOX (Syngene, Frederick, MD).

 Detection of point mutations by droplet digital PCR (ddPCR)

We manually designed the primers and probe using Primer3 (http://bioinfo.ut.ee/

primer3-0.4.0/). The melting temperature (Tm) of both primers are equal and TaqMan 

probes Tm is designed 10°C higher than the primer Tm. Optimal primer pair and custom 

TaqMan probes were purchased from Sigma-Aldrich (Table S3). For optimization of the 

PCR annealing temperature, we mixed the following reagents: 10 μl 2× ddPCR Supermix for 

Probes (Bio-Rad), 50 nM FAM probe, 50 nM HEX probe, 500 nM forward primer, 500 nM 

reverse primer and 10 nM template of a wild-type allele or a mutant allele (20 μl total 

volume). Droplet generation using a QX100 Droplet Generator (Bio-Rad) was performed as 

described previously (49). The reaction was transferred into a 96-well PCR plate for gradient 

PCR on a C1000 Thermal Cycler (Bio-Rad). The thermal cycling program was: step 1, 95°C 

10 min; step 2, 95°C 30 s; step 3, 50°C–65°C gradient 30 s; step 4, 72°C 30 s; repeat steps 

2–4 39 times; step 5, 98°C 10 min. After the PCR was complete, the droplets were analyzed 

using a QX200 Droplet Reader (Bio-Rad). We chose the optimal annealing temperature that 

gave the best separation between negative, FAM-positive and HEX-positive populations. The 

optimal annealing temperature for the TP53 mutation was 60°C.

To detect point mutagenesis in TP53, we mixed the following reagents in 8-tube PCR strips: 

10 μl 2× ddPCR Supermix for Probes (Bio-Rad), 50 nM FAM probe, 50 nM HEX probe, 

500 nM forward primer, 500 nM reverse primer and 10 ng genomic DNAs (20 μl total 

volume). Droplets were generated, which was followed by PCR at the optimal temperature 
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using T100 Thermal Cycler (Bio-Rad); the droplets were analyzed to calculate mutagenesis 

frequencies. Mutagenesis frequency (%) was calculated as follows:

Cross-hybridization was excluded from quantitative analysis in ddPCR by setting the 

threshold of detection high enough to discriminate true-positive droplets from false-positive 

droplets. Our pilot experiment to measure sensitivity of ddPCR to detect single nucleotide 

mutagenesis using template mixtures showed that we could detect as little as 0.01% of the 

TP53 mutant allele in the wild-type background (Figure S4).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect of low dose-rate protons (SPE simulation) on lifespan and crypt number in wild 
type mice
(A) Kaplan-Meier survival plot of unirradiated or irradiated wild type mice demonstrating 

that irradiation with only 2 Gy sSPE significantly decreases survival compared with acute 2 

Gy proton or unirradiated controls. *, P<0.05 in the log-rank test. (B) Representative images 

of H&E-stained colon crypts in unirradiated and sSPE-irradiated wild type mice 

demonstrating less crypt numbers with sSPE irradiation. (C) Quantification of crypt numbers 

on the 3 fields of vision with a magnification of 10X from 4 mice per group. Significant 

difference was evaluated by two-way ANOVA with Multiple comparisons.
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Figure 2. Tumorigenic effect of simulated SPE in CPC;Apc mice
(A–B) Kaplna-Meier survival plot of unirradiated or irradiated CPC;Apc mice. Unirradiated 

wild type mice (brown); unirradiated CPC;Apc mice (black); sSPE-irradiated CPC;Apc mice 

(red); x-ray irradiated CPC;Apc mice (blue); acute proton-irradiated CPC;Apc mice (green). 

*, P=0.0322 in Gehan-Breslow-Wilcoxon test compared to unirradiated CPC;Apc mice 

survival. (C) Representative images of polyps 100 days after irradiated or age-matched 

CPC;Apc mice colon. Scale bar, 1 cm. Quantification of polyp number (D), segmental 

distribution (E), and size (F) difference of the CPC;Apc mice 100 days after irradiation or 

age-matched unirradiated control. (n=6 mice per group). *, P<0.05 in the Student’s t-test 

compared with unirradiated control. (G) Representative image for invasion foci (black 

arrows) in sSPE-irradiated CPC;Apc mice. Scale bar, 200 μm.
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Figure 3. Tumor grade in irradiated CPC;Apc colons comparable with unirradiated controls 100 
days after irradiation
(A) Modified classification of colorectal cancer based on pit pattern and Cyclin D1 

expression (26–27, 50). (B) Quantification of overall incidences proportion for non-

structural adenocarcinoma in colons of unirradiated or irradiated CPC;Apc mice 

demonstrates increased incidence of adenocarcinoma with sSPE exposure. (C) 

Quantification of overall incidence proportion for cyclin D1-positive tumors in colons 

demonstrating that irradiation with only 2 Gy sSPE significantly increase incidence of cyclin 

D1-positive carcinomas compared with unirradiated controls. *, P<0.05 compared with 

unirradiated control.
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Figure 4. Prolonged activation of β-catenin in normal colons 100 days after sSPE radiation
(A) Representative images of β-catenin (brown) stained tumor free (normal) or tumor areas 

of colon sections from unirradiated control, acute proton, and sSPE irradiated CPC;Apc 

mice. Hematoxylin (blue) was used for counterstaining. (B) Quantification of total β-catenin 

staining in tumor free (normal) areas of control, acute proton, and sSPE irradiated sections. 

(C) Quantification of total β-catenin staining in tumor areas of control, acute proton, and 

sSPE irradiated sections. Intensity of β-catenin staining was normalized with intensity of 

hematoxylin staining. At least six fields of vision from the normal and tumor areas were 

captured in each section and were analyzed. Average data from 4 mice are presented 

graphically. *, P<0.05 and ****, P<0.001 in two-way ANOVA with Multiple comparisons.
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Figure 5. sSPE radiation triggers DNA damage, oxidation, and loss of CKIα and p53 expression
(A) Representative images of 53BP1 immunostaining in normal colonic crypts 4 hours after 

irradiation. anti-53BP1 (red); DAPI (blue). (B) Quantification of 53BP1-positive cells per 

crypt demonstrating exposure to sSPE showed higher 53BP1-positive cells 4 hours after 

irradiation relative to acute proton irradiated groups. n=50 crypts were counted from 3 mice 

per group. (C) Quantitative RT-PCR shows lower expression of CKIα in normal tissue as 

well as tumor 100 days after sSPE irradiation relative to unirradiated control. (n=3 mice) (D) 

Tumor-free normal tissues irradiated with proton radiation show lower expression of p53 

relative to unirradiated control.
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Figure 6. Quantitative RT-PCR analysis of tumor-free distal colons reveals activation of a set of 
senescence-associated inflammatory response (SIR) genes after sSPE irradiation
(A) Hierarchical clustering and associated heatmap demonstrating capacity of 33 SIR genes 

to segregate experimental cohorts. Color bar indicates relative fold change. (B) 9 SIR genes 

showing significant increase in expression 100 days after sSPE irradiation. (*, P<0.05, 

ANOVA).
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Figure 7. ddPCR-base detection of a single-base mutation of TP53 in colon tumors
(A) Strategy for detection of mouse TP53 mutation (p.A156V/c.467C>T) showing a 

common primer pair and allele-specific probes conjugated with different fluorophores (FAM 

and HEX) are indicated. (B) ddPCR for the TP53 mutant and wild-type allelic 

discrimination was performed with colon tumors from unirradiated (Unir), acute proton 

irradiated (Acute), and sSPE irradiated (SPE) groups. Green and blue dots represent droplets 

containing the mutant and the wild-type alleles, respectively. Note that while the probes 

weakly cross-detected the wild-type and mutant alleles, this cross-hybridization can be 

excluded from quantitative analysis in ddPCR by setting the threshold (pink line) of 

detection high enough to discriminate true-positive droplets from false-positive droplets, as 

shown here. N, negative control (no template); P, positive control (mutant template only). 

(C) Quantificatioin of ddPCR shows the average frequency of the TP53 mutant allele. P 
values calculated by Student’s t- test (n=5) are shown on the plot.
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Figure 8. A schematic model of low dose-rate proton-induced tumorigenesis through para-
inflammation
Exposure to low dose-rate proton induces persistent DNA damage responses and oxidative 

stress, which triggers senescence-inflammatory response (SIR). In p53-mutated tissues, SIR 

results in a breach of homeostasis, hyperproliferation, invasion, and carcinogenesis. 

Nonsteroidal anti-inflammatory drug, CDDO-EA, treatment moderates DNA damage, 

oxidative stress, and para-inflammation, thus helping to regain homeostasis.
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