
biology

Article

An Automated In-Depth Feature Learning Algorithm for Breast
Abnormality Prognosis and Robust Characterization from
Mammography Images Using Deep Transfer Learning

Tariq Mahmood 1,2 , Jianqiang Li 1,3 , Yan Pei 4,* and Faheem Akhtar 5

����������
�������

Citation: Mahmood, T.; Li, J.; Pei, Y.;

Akhtar, F. An Automated In-Depth

Feature Learning Algorithm for

Breast Abnormality Prognosis and

Robust Characterization from

Mammography Images Using Deep

Transfer Learning. Biology 2021, 10,

859. https://doi.org/10.3390/

biology10090859

Academic Editor: Alper Kucukural

Received: 28 July 2021

Accepted: 27 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The School of Software Engineering, Beijing University of Technology, Beijing 100024, China;
tmsherazi@ue.edu.pk (T.M.); lijianqiang@bjut.edu.cn (J.L.)

2 Division of Science and Technology, University of Education, Lahore 54000, Pakistan
3 Beijing Engineering Research Center for IoT Software and Systems, Beijing 100124, China
4 Computer Science Division, University of Aizu, Aizuwakamatsu 965-8580, Japan
5 Department of Computer Science, Sukkur IBA University, Sukkur 65200, Pakistan;

fahim.akhtar@iba-suk.edu.pk
* Correspondence: peiyan@u-aizu.ac.jp

Simple Summary: Diagnosing breast cancer masses and calcification clusters is crucial in mammog-
raphy, which reduces disease consequences and initiates treatment at an early stage. A misinterpre-
tation of mammography may lead to an unneeded biopsy of the false-positive results, decreasing
the patient’s chances of survival. This study aims to increase the probability of early breast mass
identification to ensure better treatment and minimize mortality risk. However, this study proposes a
deep learning method based on convolutional neural networks to extract features of varying densities
and classify normal and suspicious mammography regions. Two different experiments were carried
out to validate the consistency of diagnoses and classification. The first experiment consisted of five
end-to-end pre-trained and fine-tuned deep convolution neural networks. Additionally, the deep
features extracted are used to train the support vector machine algorithm, resulting in an outstanding
performance in the second experiment. Furthermore, this study confirms an improvement in mass
recognition accuracy through data cleaning, preprocessing, and augmentation. Our deep learning
hybrid model obtained a classification accuracy of 97.8%, outperforming the current state-of-the-art
approaches. The proposed model’s improvements are appropriated in conventional pathological
practices that conceivably reduce the pathologist’s strain in predicting clinical outcomes by analyzing
patients’ mammography images.

Abstract: Background: Diagnosing breast cancer masses and calcification clusters have paramount
significance in mammography, which aids in mitigating the disease’s complexities and curing
it at early stages. However, a wrong mammogram interpretation may lead to an unnecessary
biopsy of the false-positive findings, which reduces the patient’s survival chances. Consequently,
approaches that learn to discern breast masses can reduce the number of misconceptions and incorrect
diagnoses. Conventionally used classification models focus on feature extraction techniques specific
to a particular problem based on domain information. Deep learning strategies are becoming
promising alternatives to solve the many challenges of feature-based approaches. Methods: This
study introduces a convolutional neural network (ConvNet)-based deep learning method to extract
features at varying densities and discern mammography’s normal and suspected regions. Two
different experiments were carried out to make an accurate diagnosis and classification. The first
experiment consisted of five end-to-end pre-trained and fine-tuned deep convolution neural networks
(DCNN). The in-depth features extracted from the ConvNet are also used to train the support vector
machine algorithm to achieve excellent performance in the second experiment. Additionally, DCNN
is the most frequently used image interpretation and classification method, including VGGNet,
GoogLeNet, MobileNet, ResNet, and DenseNet. Moreover, this study pertains to data cleaning,
preprocessing, and data augmentation, and improving mass recognition accuracy. The efficacy of
all models is evaluated by training and testing three mammography datasets and has exhibited
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remarkable results. Results: Our deep learning ConvNet+SVM model obtained a discriminative
training accuracy of 97.7% and validating accuracy of 97.8%, contrary to this, VGGNet16 method
yielded 90.2%, 93.5% for VGGNet19, 63.4% for GoogLeNet, 82.9% for MobileNetV2, 75.1% for
ResNet50, and 72.9% for DenseNet121. Conclusions: The proposed model’s improvement and
validation are appropriated in conventional pathological practices that conceivably reduce the
pathologist’s strain in predicting clinical outcomes by analyzing patients’ mammography images.

Keywords: breast cancer mass; deep learning; mammography classification; deep transfer learning;
augmentation; computer-aided diagnosis

1. Introduction

Breast cancer has an extremely high incidence in women and is leading cause of mor-
tality, and its occurrence is increasing throughout the globe compared to other cancers [1].
Early diagnosis of breast anomalies by imaging is critical for maximizing the survival
rate of breast cancer patients treated aggressively. Medical image interpretation for breast
cancer risk assessment, screening, prediction, and treatment is becoming more significant.
However, diagnosing malignant masses is time-consuming and challenging for radiol-
ogists to rule out the best treatment potential [2]. Medical imaging modalities such as
magnetic resonance imaging (MRI), ultrasound (ULS), and mammography are accessible.
The mammography images have become the first choice for breast masses screening, den-
sity measuring, and heterogeneity pattern recognition [3]. Daily increases in the number
of mammograms raises the radiologist’s burden causing an increase in the misdiagnosis
rate [4]. However, no matter the skills of doctors examining mammography, external
factors such as image noise, fatigue, abstractions, and human delusion needs to be over-
come, as the rate of misdiagnoses of breast masses during early mammography screenings
are higher than 30% [5]. Furthermore, the scarcity of radiologists and their inconsistent
allocation of resources are significant challenges that need to be overcome, particularly in
developing countries. Additionally, the mammogram datasets are highly unbalanced and
consist of a small number of images. Mammogram erroneous interpretations by doctors
lead to conclusively harmful decisions to patients because breast biopsies are often ad-
vised if the diagnosis is malignant. However, 40–60% of biopsies are diagnosed as benign,
distinctly revealing the need for accurate mammography examination to avoid needless
surgeries, stress, and anxiety for the patients [6]. Finally, the implementation of deep
learning schemes can help minimize incorrect interpretations and improve mammogram
screening accuracy.

However, several deep learning-based (DL) methods, particularly convolutional neu-
ral network (CNN), have recently made remarkable achievements in various domains,
including brain tumor prediction [7], skin tumor analysis [8], and breast cancer diagnosing
[9]. The most widely used deep learning technique is CNN, which enables automatic
mass recognition, feature learning and classification, applying smaller training datasets
without human intervention. CNNs are constructed as a layer hierarchy [10]. Each layer
converts input images to abstract images composed of edges, noise, and objects, and the
final layer performs predictions using the pooled features [11]. Although the CNN model
faces training issues due to the scarcity of labeled images, the manual categorization of
the mammography is complex and prone to bias. CNNs sustain the mammogram images’
spatial integrity, such as how pixels are linked together to generate a distinct feature. Many
CNN designs are available, including VGGNet, ResNet, GoogLeNet, MobileNet, and
DenseNet, each of which has a distinct design that is optimized for various classification
tasks. Deep convolutional neural networks (DCNNs) integrated with transfer learning
concepts are utilized to effectively diagnose the suspicious areas in the mammogram,
boosting radiologists’ screening performance. Transfer learning is an extensively used
deep learning technique for predicting and interpreting breast mass, in which pre-trained
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models are retrained for a particular classification task [12,13]. The transfer learning (TL)
methodology is initially trained on the ImageNet dataset, which can be used for generic
feature extraction without additional training by modifying the architecture and hyperpa-
rameters. Model fine-tuning using TL is significantly more accessible and efficient than
training from scratch with dynamically initialized weights. Recently, TL approaches have
garnered tremendous interest and have made significant contributions to resolving feature
extraction and classification concerns.

This study aims to increase the probability of early breast cancer identification to en-
sure better treatment and minimize the risk of mortality from breast cancer. However, this
study proposes a fully automated deep learning-based method for recognizing, localizing,
and classifying breast masses as benign or malignant under various imaging stipulations
without expert involvement. Consequently, a hybrid model based on a convolutional neu-
ral network coupled with the support vector machines (ConvNet+SVM) has been proposed
to learn and classify mammography features. Transfer learning is used to fine-tune the
deep learning models to learn their effectiveness in specific clinical circumstances. The
designed method’s results are compared with proposed end-to-end pre-trained deep learn-
ing algorithms. The proposed model’s whole architecture is described in Figure 1. In the
proposed work, pre-trained DCNN models are fine-tuned for realistic breast mass catego-
rization. Thus, we modified the pre-trained model’s architectures such as VGGNet16 [14],
VGGNet19, MobileNetV2 [15], GoogLeNet [16], ResNet50 [17], DenseNet121 [18], and
fine-tuned the final layers of every pre-trained model applying the TL approach to suit
the problem. Every pre-trained model is trained partially by training specific layers while
freezing the rest of the layers. In this situation, the network’s lower layers’ weights were
left intact while retraining the model’s higher layers. The presented research demonstrates
how TL can provide precise and consistent results when pre-trained models are used.
Configurations of different models are studies to review breast masses to determine which
proposed framework is best for breast masses diagnosis.

Figure 1. Step wise illustration of the transfer learning for deep CNN-based architectures, which contain blocks. (1) DCNN
models are pre-trained on real images from Image-Net and used as feature extractors. (2) The data are pre-processed with a
median filter to remove noise, then CLAHE enhances the images. (3) Data augmentation increases the number of the data
samples, and (4) fine-tuning to share the properties of the DCNN model by transfer learning. (5) The final prediction is
obtained by modifying the weights of the lower layer of pre-trained models to extract general features and fine-tuning the
higher layer using global average pooling to attain a particular classification.
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This study’s motivation is to help the radiologist enhance the fast and precise recogni-
tion rate of breast lesions using deep learning approaches and compare it with the manual
system, which is time-consuming. The suggested approach can be summarized as:

• Initially, we preprocessed the obtained raw datasets using several preprocessing
approaches and classified them into training and validation sets.

• We used pre-trained architecture including VGGNet16, VGGNet19, ResNet50, GoogLeNet,
MobileNetV2, and DenseNet121 by fine-tuning the network’s final layers.

• We replaced the last pooling layer in each model’s last block with the global average
pooling (GAP) and linked batch normalization layer (BN) with the GAP layer followed
by the FC1, FC2, and output layers.

• We developed a hybrid deep ConvNet+SVM hybrid network to aid in the successful
identification of breast cancer patients.

The rest of the work is structured into the followings sections: Section 2 is devoted to a
review of the existing literature on mammogram-detected breast cancers. The background
of deep learning techniques, transfer learning, and pre-trained neural network architecture
are briefly discussed in Section 3. The proposed methodology for classifying breast cancer
masses and image preprocessing methods are presented in Section 4. Section 5 describes
different feature evaluation parameters. The experimental finding of the proposed work
using various performance parameters is compared and shown in Section 6. Section 7
presents the discussion on the experimental findings. Finally, Section 8 summarizes the
study’s results and suggests further research.

2. Related Works

Various deep learning-based algorithms have been designed to classify breast can-
cer masses in mammography images, which is the scope of this research. To mitigate
the significant factors contributing to conventional machine learning (ML) approaches,
deep learning methodologies have been proposed to extract relevant information and
perform efficient classification tasks. The medical image modalities are integrated with
deep learning approaches, improving the diagnosing ability of benign and malignant breast
lesions. Features are extracted with the general-purpose learning method’s assistance in a
deep learning system instead of being adjusted manually. DCNN has shown exceptional
effectiveness in medical image processing, including lesion recognition, segmentation,
detection, and quantitative analysis of breast masses in screening mammography images.
Agarwal et al. [19] introduced a CNN-based automated system for mammography breast
mass detection that integrates transfer learning and pertained models such as inceptionV3,
VGG16, and ResNet50. The suggested CNN model learned feature using a CBIS-DDSM
(curated breast imaging subset of DDSM) dataset, validated on the INbreast dataset. The
InceptionV3 model performed admirably in classifying lesions, with a true-positive rate
of (0.98 ± 0.02) and a false-positive rate of 1.67 per image using the INbreast dataset.
Samala et al. [20] presented a deep learning method based on transfer learning for feature
extraction of breast anomalies, yielding excellent performance compared to the analytically
derived characteristics. Shen et al. [21] exhibited a deep learning algorithm for mam-
mographic images to detect breast masses. The proposed system used two pre-trained
DCNN architectures, VGG16 and Resnet50, to identify the lesions. The designed model
achieved an AUC of 88% on the CBIS-DDSM database and an average AUC of 95% using
the INbreast dataset. The authors fused the best four models into an ensemble model to
improve model reliability by applying the mean of their enhanced prediction values. The
ensemble approach achieved the area under the curve ROC value by 91% for the CIBS-
DDSM dataset and 98% for the INbreast dataset. Huynh et al. [22] used transfer learning
approaches to extricate the spatial information from breast tumors, yielding better results
than analytically extracted features. Al-antari et al. [23] proposed a deep learning-based
method to segment and classify mammography images. The suggested system detects
breast mass using the You-Only-Look-Once (YOLO) method and segments the identified
masses using a full-resolution convolutional network (FrCN). Finally, to characterize the
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segmented lesion, a DCNN pre-trained AlexNet model with Adam optimizer and learning
rate lr−3 was used. The designed method achieved 95.64% classification precision and an
AUC of 94.78%.

Almasni et al. [24] introduced a deep learning-based technique (YOLO) for identifying
and classifying breast cancer masses. The proposed system performed preprocessing
and feature extraction using a fully connected neural network (FC-NNS). The model’s
performance was measured using the initial 600 images and 2400 augmented DDSM dataset,
which yielded 97% accuracy and 96.45% AUC. Arora et al. [12] proposed a deep ensemble
transfer learning-based method for feature learning and classification of breast masses.
The CBIS-DDSM dataset was used to validate the model’s effectiveness and obtained
88% accuracy with an AUC of 88%. The author used adaptive histogram equalization to
denoise the image, extract the valuable attributes, and identify them using a neural network.
Shu et al. [25] developed a deep CNN classification model based on two pooling structures
rather than the conventional pooling methods. The proposed approach consists of three
steps: the feature extraction phase for feature learning and the pooling structures phase
used to divide mammograms into regions with a high probability of malignancy based on
the extracted features. The DenseNet169 model is used as the feature learner by modifying
its final layer according to the pooling structure to classify the extracted feature. The model
test on the INbreast database achieved 92.2% accuracy with an AUC of 92.4% and with CBIS-
DDSM database attained 76.7% accuracy with an AUC of 82.3%. Ribli et al. [26] suggested
an automated approach for identifying and diagnosing breast masses by utilizing the
transfer learning methodology to incorporate a quicker RCNN model. They assessed the
model’s performance using the INbreast database and obtained 95% AUC. Singh et al. [27]
developed a conditional generative adversarial network to classify breast masses into ROI
using mammogram images. The generative network determines how to build a binary
mask that characterizes it to detect the tumor region. Additionally, a CNN-based shape
descriptor is proposed for classifying the generated masks as irregular, lobular, oval, or
round shapes. The suggested shape descriptor was trained using the DDSM database,
achieving 80% accuracy. Dhungel et al. [28] proposed a computer-aided detection (CAD)
method to detect, segment, and classify breast cancer masses. A deep belief network (m-
DBN)-based approach is proposed for breast mass detection and a Gaussian mixture model
(GMM) for ROIs extraction. Bayesian optimization is used to optimize predictions. Deep
hierarchical output learning is used to segment and refine the detected ROIs. Finally, a pre-
trained deep learning classifier was used for breast mass categorization, which achieved
an average of 91% accuracy and 76% AUC on the INbreast dataset.

In the presented framework, transfer learning has been exploited to overcome existing
systems’ deficiencies in detecting and classifying breast cancer masses and calcification.
The dense breast’s clinical symptoms are not entirely clear; therefore, it is challenging to
discern dense lesion features and perform lesion classification accurately. Furthermore,
feature extraction is error-prone and time-consuming, increasing doctors’ responsibility;
hence the proposed study provides a robust deep learning framework for breast mass
diagnosis and classification. Currently, deep learning-based technologies are not designed
to replace skilled physicians in clinical diagnosis; instead, they are intended to assist doctors
in clinical decision-making. This study presents a model for automatically identifying
breast abnormalities based on deep learning and convolutional neural networks. The
presented approach applies a deep transfer learning model to extract features from the
mammography images that automatically categorize breast cancer and determine whether
it is malignant.

3. Background of Deep Learning Methods

Deep convolutional neural networks (DCNN) have been preferred in different research
realms due to their promising biomedical image analysis and classification performance.
Additionally, biomedical images include extraneous data, annotating information, and
various markings that negatively affect automated image analysis methods. Deep learning
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algorithms help ensure a fast and precise breast cancer diagnosis that meets a credible
radiologist’s preciseness. However, different low-level features are excerpted distinctly by
the well-known CNN architectures of VGGNet (Visual Geometry Group Network) [14],
MobileNet [15], GoogLeNet [16], ResNet (Residual Networks) [17], and DenseNet [18] in
the proposed framework.

3.1. Feature Learning Using Convolutional Neural Network

LeCun et al. [29] applied CNN for the first time to recognize handwritten zip codes. In
comparison to its progenitors, CNN’s key benefit is its ability to identify essential features
without human interaction. The CNN model consists primarily of convolutional layers, a
ReLU (nonlinear activation) layer, a pooling layer, a flattening layer, and a fully connected
(FC) layer. CNN architecture uses various detectors (filters) such as edge and corner
detectors to recognize the different objects by their shape, size and interpret images [30].
The convolutional layer aims to derive high-level features from the input image, such
as edges and corners, and map these features to the subsequent convolution layer. The
nonlinearity layer (activation) integrates a deep network into a nonlinear structure that
quickly ascertains this layer. The pooling layer is added after the activation layer. Its core
objective is to decrease the input image’s size (width × height) by retaining critical features
within the feature mappings. The flattening layer collects information for the FC layer by
reconstructing the convolution and pooling layer patterns to single-dimension information.
The FC layer performs recognition and classification using the Softmax activation function
to normalize the output. The 2D convolution process is elaborated in Equation (1).

P(a, b) = (I × K)× (a, b) = ∑
x

∑
y

I(a, b)× K(a− x, b− y) (1)

Here, I is the 2D image, P the output image, a and b the filtering location on the
image during convolution process, K the filer matrix shifted on the image, x and y the
filter position. The deep learning loss function (cost function) minimizes the variation
within predicted and empirical output by attaining the optimized value for weights. For
this purpose, various iterations with varying weights are processed. Gradient descent is
an iterative ML optimization method used to decrease the cost function, enabling neural
networks to obtain more precise judgments. During the training phase, the CNN employs
adaptive delta (Adadelta) [31] and Stochastic Gradient Descent (SGD) [32] optimizers to
update a prediction error as input and backpropagate the error to the network. Then, it is
subsequently used to enhance filters in the convolution layers and weights FC layer [33].
The SGD optimizer updates all training samples within the database by exerting the
learning and momentum coefficients consistently. The Adadelta learner does not update
the learning coefficient every step. Apart from Adadelta, the Adam optimizer updates
all training and momentum wights and network parameters. In order to prevent rapid
gradient descent, the Root Mean Square Propagation (RMSProp) optimizer adjusts the
learning coefficient to minimize the effect of exponential regression [34].

3.2. Transfer Learning

Transfer learning is a technique that uses a trained model for one task as the starting
point for solving other tasks [35]. Thus, pre-trained methods are preliminary for particular
tasks in transfer learning, rather than going through a lengthy training procedure with
randomly initialized weights. Pan and Yang [36] proposed a method for accurately under-
standing transfer learning by combining domain, task, and marginal probabilities. The
domain D was described as a tuple of pair elements composed of feature space, χ with
marginal possibility, and K(S) a sample data point. Thus, domain D stated mathematically
as in Equation (2).

D = {χ, K(S)} (2)
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where, S is a particular learning sample S = s1 . . . , sn.εχ, χ each term vectors space, si is
the ith term vector resembling any texts. Hence, it reduces the significant computational
resources required to build neural network models to resolve such difficulties.

T = {γ, K(R|S} = {γ, η} × {γ, η}, R = {r1 . . . , rn.}, ri × εγ (3)

Equation (3) illustrates task T for domain D, γ label space, η predictive function that
extracts features from (si, siεχ) and (ri, riεγ).

γ(si) = ri (4)

γ in Equation (4) is a predicting a label for all feature vectors. Training deep learning
models for medical diagnosis-related problems is becoming more difficult due to small
datasets with unsatisfactory performance. Consequently, a deep learning methodology is
trained on huge datasets. A model is taught from prior information and applied to one
issue before being reused for subsequent problems, allowing for the rapid development
of accurate models. Therefore, the presented architectures produced credible results since
the weights were trained on the ImageNet dataset and can learn generic features from
other datasets without requiring further training. Additionally, each of these pre-trained
methods has been fine-tuned to classify the breast masses or calcification. Each layer of
the architecture was more trainable. The transfer learning method requires selecting pre-
trained models based on associated target issues, issue size, and similarity. An overfitting
issue will increase if the target dataset is less than the source dataset (less than 1000 images).
If the target dataset is large, fine-tuning the model is necessary to prevent an overfitting
problem. A simplistic operation achieves higher performance by adding a new FC layer(s)
into pre-trained models. Features derived independently from the particular CNN design
are fused into the fully connected layer to classify breast masses into normal and abnormal
using average pooling classification.

3.3. Pre-Trained Neural Networks

Various transfer learning approaches have recently been used for screening and
interpreting biological images. Currently, six (VGGNet16, VGGNet19, MobileNetV2,
GoogLeNet, ResNet50, and DenseNet121) deep CNN architectures share their transfer
learning and tuning characteristics. All CNN architectures adopted in the proposed study
were trained on ImageNet by sample images, and transfer learning has been applied.
Fine-tuning allows the architecture to learn generic characteristics automatically from other
datasets without further training. The fine-tuned features are combined and fed into an
FC layer to classify the breast masses or calcification. Fused features may hold several
characteristics derived from shape descriptors (compactness, roundness, circularity, etc.).

3.3.1. VGGNet16

Simonyan and Zisserman [14] suggested the VGGNet16 model, commonly used in
different disciplines due to its remarkable adaptation abilities and comparatively simple
layout. The VGGNet16 model achieves the highest testing accuracy of 92.7% on ImageNet,
a database with over 14 million images, including 1000 classes. It contains 16 layers, so the
model is called VGGNet16. VGGNet16 is comprised of thirteen convolution layers, ReLU,
pooling, and three FC layers. The pre-trained VGGNet16 composes five blocks, and each
max-pooling layer has a variable degree of specificity in the in-depth information. The
lightweight layer preserves local patterns while the deep layer obtains global patterns. The
VGGNet16 architecture takes RGB images of dimensions of 224× 224 with a 3× 3 filter size
for the convolution network and 2× 2 filter size for the pooling network, both with a stride
of 1. There are three FC layers in the final section, each with 4096, 4096, and 1000 neurons.
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The final layer is the Softmax, which generates a statistical value of 0 or 1, representing the
node’s output class. The ReLU layer serves as an activation function in every hidden layer.

K(x) = max(0, x) (5)

In Equation (5), x is less than zero, K(x) is zero. If x is greater than or equal to zero,
then K(x) equals x. Local response normalization (LRN) is not used in the VGGNet16
network; this normalization method does not enhance performance in the ImageNet dataset
but increases resource usage and computation cost [37]. The VGGNet16 network contains
approximately 138 million trainable parameters. Fine-tuning of the final layers shown
in Figure 2 will improve the characterization learning of the input data and increase the
ability of the classification method. The particular strategy is to execute the GAP layer
on the pooling layer of the final block. Batch normalization will be connected to the GAP
layer, followed by the FC1 and FC2 layers, and finally, the output layer. Although the
convolutional layers’ weights are fixed throughout model training, the FC1, FC2, and
output layers’ weights are fine-tuned to collect domain-specific information.

Figure 2. Representation of the network structure of the VGGNet16 model composed of 16 layers. The global average
pooling layers (GAP) and batch normalization layer (BN) are added to obtained the global information and succeeded by
FC1, FC2, and output layers. The weight is optimized to learn for the specific tasks during model training.

3.3.2. VGGNet19

Simonyon and Zisserman [14] suggest a VGGNet19 network contains three additional
convolution layers than VGGNet16, in which sixteen are convolutional while the other
three are fully connected layers. Convolution layers of stride 1 use 3× 3 size filters. Max-
pooling activities are performed using a 2× 2 window scale and a stride of 2. Each of
the three FC layers contains 4096, 4096, and 1000 neurons. Softmax is the final layer, and
ReLU operated as the activation function for all hidden layers. VGGNet19 architecture
is devoid of LRN and contains approximately 143 million in learnable parameters [37].
The fine-tuning of the last layers of VGGNet19 shown in Figure 3 will improve the input
data’s characterization learning and increase the classification model’s capability. The GAP
and BN layers are added to the last block’s pooling layer. Following the GAP layer, the
batch normalization layer, the FC1, FC2, and output layers will be connected. The weight
is optimized to learn for the specific tasks during model training.

3.3.3. GoogLeNet

The GoogLeNet framework is a much deeper and broader framework trained on
over a million images and classifies them into 1000 classes. It has 22 layers with different
inception modules with differing filter sizes related to the inputs and integrating the results.
The multiscale processing enables the system to disengage characteristics in distinct levels
concurrently. GoogLeNet impersonates the thought of adopting a GAP layer rather than
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fully connector layers, limiting the number of model parameters. Using the network
of GoogLeNet, we suggested a model that fuses different convolution filters of distinct
sizes into a unique novel filter, decreasing the occurrence of perimeters and computing
complexity. The GoogLeNet has few convolution parameters in the network’s core and
employs the GAP layer at the model’s end rather than FC layers. The inception module
works in parallel with the convolutional and pooling layer, enabling several features to
capture simultaneously. Ultimately, a filter concatenation layer integrates the results of
every parallel layer. Our research used 09 inception modules architecture, where the final
layer is modified with fine-tuning with GAP and BN layer to satisfy the classification
problems. The last final layers are liable for specifying the accurate classes to the input
images. However, the FC layer is described by the number of classes correlated with the
network’s last migrated layer to different layers.

Figure 3. Representation of the network structure of the VGGNet19 model containing 19 layers. The global average pooling
layers (GAP) and batch normalization layer (BN) are added and succeeded by FC1, FC2, and output layers. The weight is
optimized to learn for the specific tasks during model training.

3.3.4. MobileNetV2

MobileNetV2 is a low-power model developed in collaboration with a Google com-
munity. It is an improvement over MobileNetV1 that employs depth-wise separable
convolutions as effective key components. The structure contains residual blocks with
a stride of one, and downsizing blocks have two. Aside from that, it has longitudinal
bottlenecks between the layers, which is important because it avoids non-linearity from
destroying an excessive amount of information. These bottlenecks facilitate the model’s
encoding of intermediary input and outcomes. The hidden layer aids in the transforma-
tion of lower-level meanings like pixels to higher-level identifiers. Additionally, there are
shortcut relations between the bottlenecks. This study enhances the model performance by
modifying the last layer of the final block with GAP and BN layers using transfer learning.
The last layers of the model (FC1, FC2, and output layers) are liable for specifying the
accurate classes to the input images.

3.3.5. ResNet50

The residual networks, called ResNet, have a different architecture than the typical
sequence CNN model. With the various connections used, ResNet seeks to overcome
the deterioration issue in CNN networks. The deterioration issue happens when deep
networks tend to converge [17]. ResNet50 combines multiple-sized convolution filters to
manage the degradation problem and conquer training time due to deep structures. The
architecture is redesigned by fine-tuning final block layers shown in Figure 4, substituting
the top layers with GAP layer, BN layer, FC1, FC2 layers, and the final layer with a Softmax,
which allows us to recognize two diagnostic classes. The input images’ sizes are all resized
to 224× 224 compatible with this model. During training, the Adam optimizer is used,
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which has a learning rate of Lr−3. It uses the identity function to map parameters with no
parameters and adds the last layer’s output to the preceding layer. The identity mapping
of a shortcut channel is multiplied by a linear projection to accommodate the residual.

Figure 4. The proposed framework of ResNet50 architecture containing 50 layers. The global average pooling layers (GAP)
and batch normalization layer (BN) are added, followed by FC1, FC2, and output layers.

3.3.6. DenseNet121

From the literature, the connections between layers near the input and output layers
contribute to the efficacy of convolutional networks. This concept has been applied in
ResNet, and dense convolutional networks [18]. DenseNet uses a basic connectivity
pattern to validate the flow of knowledge within layers in forwarding and backward
computation to learn the vanishing gradient problem. This study proposed a densely
connected DenseNet neural network model with a couple of characteristics. Each layer
is linked to the preceding layer to reuse features. The DenseNet structure consists of
the DenseBlock layer, containing 6, 12, 24, and 16 convolution blocks, and the Transition
layer. In the whole DenseBlock, each layer’s output with k-characteristic is mapping after
convolution. The convolution layers are responsible for feature extraction, avoiding the
manual feature extracting’s misdiagnosing. Each layer uses the previous layer’s feature
maps as its input, and each layer’s feature maps from the subsequent layers transfer all the
data by explicitly linking all the layers in the network. DenseNet concatenates the previous
layer’s output with the output of the succeeding layer. Traditional feedforward neural
networks combine the ith layer findings to the succeeding layer (i + 1)th by applying the
composite function. The corresponding elements are accumulated and then passed to a
ReLU function to achieve the feature mapping and extraction. These methods include
convolution, activation, pooling, and batch normalization. Equation (6) represents the
above operations:

ai = Fi.(ai−1) (6)

here Fi(.) denotes a nonlinear transformation function, a combination that includes a
series of BN, ReLU (nonlinear function), pooling, and convolution operations. The ResNet
architecture is extends Equation (6) by using shortcut connections as demonstrated in
Equation (7)

ai = Fi.(ai−1) + (ai−1) (7)

DenseNet concatenates the layer’s output feature maps with the incoming feature
maps rather than sum them. Thus for DenseNet Equations (6) and (7) vary as illustrated in
Equation (8). The transition layer attaches two nearby DenseBlock layers and limits the
features mapping dimension. The structure of the transition layer, including a convolution
layer (1× 1), the pooling layer (2× 2), and its architecture is BN+ReLU+Conv (1× 1) +
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pooling layer (2× 2) that function as a compression. Each layer in the transition layer is
attached to all previous layers as input.

ai = Fi.([a0, a1, . . . , ai−1]) (8)

The ultimate DenseBlock is followed by a GAP layer transferred to a Softmax classifier
for image identification and classification. The feature maps of every previous layer a0,
and ai−1, are received as input by ith layer. Since Densenet121 concatenates feature maps,
the dimension of the channel in all layers is increased. If Fl is applied to create S function
maps, then generalization in Equation (9) may be applied to the ith layer.

il = S0 + S× (i− 1)) (9)

il represents the input feature maps, S0 the input channels, and the S parameter growth rate.
The growth rate controls the amount of data appended to the system at every layer. Feature
maps are the network’s details, and each layer has connects to previously functioning maps
to integrate data. Figure 5 represents the DenseNet121 architecture connection mechanism.

Figure 5. Representation of the network structure of the DenseNet121 model.

3.4. Feature Classification Using Support Vector Machine (SVM)

SVM is a machine learning method based on the spatial risk mitigation concept that is
highly effective in pattern recognition, inferential analysis, time-series analysis, and other
realms [9]. However, it performs better in classifying mammography lesions as benign
or malignant based on their features with fewer computations. The objective of SVM
classifiers is to construct a hyperplane to create an efficient method for diagnosing and
classifying mammogram images. It is frequently used with insufficient training datasets to
achieve more significant generalization and overcome linear and non-linear to separate
data points of each class. It aims to mitigate the percentage of nonzero weights and the
overfitting problems. Recently, classification using the convolutional neural network with
the support vector machine (ConvNet+SVM) method has gained popularity.

The proposed study has heightened prediction accuracy with SVM as the top layer in
deep learning by modifying the Softmax layer. Using the obtained mammography image
dataset, we observed that the SVM model marginally outperforms the DCNN model for
mass breast identification. The rationale of this improvement is obscure; it may be solely
due to a better optimization method or may be associated with the dataset’s diversity and
non-linear nature. It may be because the SVM advances toward a global minimum and
tolerates more noise (variation in the patterns linking to the original images), making it
imperceptibly more robust to an extensive collection of features. Consequently, SVM may
have remarkable convergence and robustness benefits over DCNN models.

This study proposes end-to-end DCNN architectures including VGGNet16, VG-
GNet19, GoogLeNet, ResNet50, MobileNetV2, and DenseNet121 to identify breast cancer
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lesions. The experimental findings reveal that the SVM classifier is generally more success-
ful than Softmax. The highest training accuracy rates are obtained 97.8% for ConvNet+SVM
compared to 90.2% for VGGNet16+Softmax, 93.5% for VGGNet19+ Softmax, 63.4% for
GoogLeNet+Softmax, 82.9% for MobileNetV2+Softmax, 75.1% for ResNet50+Softmax, and
72.9% for DenseNet121+Softmax. The architecture of ConvNet+SVM is depicted in Figure 6.

Figure 6. Features extraction from fully connected layer to be input into SVM classifier.

4. Materials and Methods

Breast cancer is the most prevalent kind of cancer and is associated with the highest
cancer-related mortality in females. Screening mammograms for breast cancer is an effec-
tive way to detect the disease. Preprocessing of mammogram images included resizing,
scrambling, and normalizing the data [27]. Initially, the image acquisition method is carried
out where morphological opening and closing operations are used to eliminate annotation
labels from images. Moreover, mammography noises, such as Gaussian, Salts and Pepper,
Speckle, and Poisson noises are suppressed from the image using a Median, Gaussian, and
Bilateral filtering technique. Additionally, the image’s contrast is increased by applying
Contrast Limited Adaptive Histogram Equalization (CLAHE) method. The area around
the breast mass is then segregated using the OSTU threshold method. This study increased
the size of the datasets to almost eight times the core datasets volume using various data
augmentation methods, including flipping, rotation, scaling, and brightness. The prepro-
cessed database was separated into a training and testing set to train the ConvNet+SVM
and CNN-pre-trained architectures using the training data.

This section presents the proposed framework based on ConvNet+SVM, ConvNet,
and DCNN for detecting and classifying malignant breast tissues in mammographic images.
Different low-level features are excerpted distinctly by well-known CNN architectures
of VGGNet [14], MobileNet [15], GoogLeNet [16], ResNet [17], and DenseNet [18] in the
proposed framework. However, this study aims to process automatic feature engineering
and analyze transfer learning concepts on distinct deep learning architectures. The pro-
posed model’s performance is enhanced by iterating over various training models with
hyperparameter values. The suggested architecture is shown in Figure 1.

4.1. Preprocessing Mammography

The collected dataset comprises low-quality images containing many missing data,
noises, and sizes that create high false-positive and negative rates. However, each image
needs to be preprocessed (normalized and resized) in compliance with the deep neural
network parameters [38]. This work uses screening methods focused on matching distinct
areas using image filters and image enhancement methods. Image enhancement intensifies
the visual characteristics includes margins, boundaries, and contrasts, and eliminates
the artifacts. This study employed Median, Gaussian, and Bilateral filters to remove the
different mammography noises. However, later the CLAHE technique was utilized to
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enhance the quality of mammography images [39]. Using the OTSU threshold, we extract
the breast region from the context and exclude part of the breast region, including objects,
labeling, and patient information from mammogram images. Using the OTSU threshold,
we isolate the breast area from its environment and eliminate a part of the breast region
including objects, labeling, and patient information from mammography images. Finally,
the extraction of suspicious areas and feature matching are utilized to identify breast
cancer masses or calcification without expert involvement. It attains excellent breast mass
detection and classification performance with different shapes, edges, and anomalies. The
extracted ROIs comprising the mass area were used to train and evaluate the proposed
architectures to classify breast masses as benign or malignant.

4.1.1. Mammogram Resizing

Different DCNN models needed input images of varying dimensions according to
prescribed architecture. However, all collected images are resized into a fixed scale of
224× 224 using nearest-neighbor insertion. Although the collected images are grayscale,
the DCNN pre-trained models need RGB input images as colored images are used to train
the models. Consequently, these images are transformed to input image RGB by mimicking
the single channel to make a 3-channel RGB image. We used a 6346 data sample for model
training and 913 for model testing based on the data splitting. We propose an automatic
ROI segmentation technique that overcomes mass complexity, such as textures, regions,
and unclear edges while achieving a satisfactory efficiency.

4.1.2. Zero-Mean Normalization

The proposed study uses normalization based on the respective structures to address
mammography disturbance from irregular illumination, speckle noise, undesirable for-
matting, and morphological adjustments [40]. Image normalization provokes the image
to invent unusual invariants, intensifies robustness, and speeds up the training model’s
confluence. The processed data complies with the standard normal distribution with mean
0, and the standard deviation (SD) is 1. The conversion function is declared in Equation (10)

X∗ =
(x− µ)

σ
(10)

here, µ represents the mean, and σ represents all sample data’s SD.

4.1.3. Data Augmentation

The primary issue in the field of mammographic images is the lack of publicly avail-
able datasets. Although few datasets are available on the Internet, the number of images
specifically for our problem is significantly less. Adequate training of a deep neural archi-
tecture needs an extensive amount of data. With the scarcity of mammography availability,
model parameters are eroded, and trained systems perform inefficiently. Different data
augmentation techniques address the data scarcity issues by making efficient use of current
data. It increases the sample size of the current training data and prevents the model
from overfitting.

Thus, we propose distinct data augmentation techniques for enhancement training
samples comprising Gaussian scale-space (GST) theory and data amplification settings
(scaling, cropping, rotating, shifting, flipping, and cropping). We build batches of tensor
image data with real-time data augmentation using Keras’ ImageDataGenerator library [41].
It overcomes the overfitting problems and makes the system transformational and noise
invariant. However, every mammography image in the benign and malignant cases in the
dataset is expanded eight times. Consequently, the proposed dataset contains 2667 benign
and 4592 malignant mammography images after data enhancement. The techniques and
configurations applied for image data augmentation as described in Table 1.
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Table 1. Augmentation scheme applied in the proposed method.

1 Augmentation Approaches Setting Values

2 Rotation 45
3 Horizontal Shift 0.15
4 Vertical Shift 0.2
5 Crop and Pad 0.25
6 Zoom Range 0.2
7 Shear 16

4.2. Architecture Fine-Tuning

The preprocessed and normalized mammography images train the proposed architec-
tures to classify predetermined breast masses or calcification as normal or malignant. This
study improved the DCNN architectures by fine-tuning the pre-trained model (VGGNet16,
VGGNet19, ResNet50, MobileNetV2, GoogLeNet, and DenseNet121) to discriminate the
breast cancer masses or calcification. All layers of the networks were trainable that ex-
tricated the features from the mammography. However, this study fixed the weights of
the lower layer of pre-trained models to extract the generic features while fine-tuning
the higher layer with the GAP to perform the specific classification task. The suggested
approach is implemented by changing every model’s last block’s final pooling layer with
the global average pooling. The batch normalization layer will be linked by the GAP layer
followed by the FC1, FC2, and output layers. The weights of the convolutional layers are
configured using proposed pre-trained models, while the rest are initialized dynamically.
The weights of convolutional layers are fixed during model testing, whereas FC1, FC2, and
output layers are fine-tuned to extract field-relevant knowledge. The information flowing
across the various channels will be strongly correlated. The convolution layer will merge
cross-channel information, resulting in improved dimension reduction and efficient param-
eter reduction. Each model is trained for about 90 epochs applying an adaptive optimizer
(Adam). The learning, momentum, and weight decay rates are all adjusted to 0.001, 0.9,
and 0.0001, accordingly, as explained in Table 2. These configurations ensure the network
fine-tuning by freezing the weights of particular layers to suit our classification task.

Table 2. Configuration of model hyper-parameters.

Configuration Value

Image size 224× 224
Epochs 90
Optimization function Adam
Learning rate 0.001
Batch size 32
Weight decay 0.0001
Activation function Softmax
Dropout 0.5
Momentum 0.9

4.3. Class Activation Maps

This article identifies how the global average grouping is used to build a CNN activa-
tion map. Class activation mapping refers to the weighted activation mapping created for
every image that demystifies the consequences of DL models. Traditionally, deep learning
methods are often considered black-boxing. We use the pre-defined architectures consisting
of convolutional layers and the final output layer (Softmax). A fully connected network is
retained after the GAP layer, followed by the Softmax layer, which gives a class prediction.
We implement GAP on the convolutional feature mapping and use these characteristics to
produce the most performant, fully connected layer. The system needs to be trained using
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the GAP layer to obtain the class activation map. It assists in identifying the suspect region
in mammography on which the model should concentrate before generating the final
prediction, providing insight into how the algorithm works. It is critical to comprehend
the results of the deep learning-based clinical decision-making model. Additionally, this
research helps in hyperparameter tuning and identifying the underlying reason for the
model’s failure. We compute the Ac, the class activation mapping for class c, in which each
spatial variable is represented by

Ac(a, b) = ∑
x,y

wc
k × fk × (a, b) (11)

In Equation (11), Ac(a, b) represents the activation mapping for unit k with in final con-
volutional layer at a given spatial position (a, b). For unit k, GAP finding fk is ∑x,y fk(x, y).
However, class score for a given class c is ∑x,y wc

k, here wc
k represents the weight for unit k

as per class c.

5. Feature Evaluation

The effectiveness of the proposed frameworks in obtaining mammography datasets
is evaluated by modifying pre-trained models using transfer learning. Our proposed
models’ classification performance was evaluated using Python’s sci-kit-learn module,
which comprises accuracy, precision, recall, and F1-score. Various performance metrics
may be computed as follow:

• TrP (True positive): is a positive instance accurately diagnosed as positive (malignant).
• FaN (False positive): a a positive instance is mistakenly interpreted as a negative

(benign).
• TrN (True negative): is a negative instance diagnose as a negative (benign).
• FaP (False positive): is a negative instance mistakenly detected a positive (malignant).

Accuracy is the probability of perception that is diagnosed exactly correct from the
whole observation. Equation (12) is used to determine the accuracy.

Accuracy(ACC) =
TrP + TrN

TrP + FaN + TrN + FaP
× 100% (12)

Precision is computed as the ratio of successfully diagnosed positive cases to the
predicted cumulative number of positive cases. The term “higher precision” refers to the
fact that mammography labeled as positive is indeed positive. Equation (13) is used to
assess precision.

Precision =
TrP

TrP + FaP
× 100% (13)

Recall is defined as the probability of a positive diagnostic instance from the whole
observation. It is the true-positive estimation of all true-positive and false-negative. High
recall and low precision indicate that most positive cases are correctly identified, some are
false-positive. Low recall and a high precision suggest that certain positive instances were
missing, but only a few are correctly identified. Equation (14) is used to determine the
recall.

Recall =
TrP

TrP + FaN
× 100% (14)

F1-Score provides an optimal combination between accuracy and recall. F-measure is
computed applying Equation (15).

F1 =
precision× recall
precision + recall

× 2 (15)
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We used the receiver operating characteristic curve (true-positive and false-positive
rate) and its area under the curve (AUC) to determine the overall efficiency of our devel-
oped models.

6. Experimental Work Setup

This section depicts the examinations and evaluation criteria to validate the feasibility
of the proposed models. The proposed architecture is fully automatic and capable of
diagnosing and interpreting various mammography images without human intervention.
Keras [42], an open-source deep learning library, is used in association with TensorFlow [43]
as the backend for loading and fine-tuning the pre-trained architectures on the ImageNet
database. Both experiments were conducted using a system equipped with an Intel Core i7
CPU, 8GB RAM, and an NVIDIA GTX 1060Ti graphics card, as well as the Keras-TensorFlow
and MATLAB2017a environments.

6.1. Mammogram Dataset

The dataset consisted of 7259 mammography images and was divided into a training
and test set. There were 6346 mammography images (87.4% of the dataset) in the training
set and 913 (12.5% of the dataset) in the test set to validate the trained model’s accuracy.
To train and evaluate the proposed techniques, 7259 mammography images from three
databases were used. These images include benign and malignant masses or calcification
of varied sizes, densities, forms, and margin patterns, as explained in Table 3. The dataset
used in this analysis contained no instances of normal mammogram images. To assess
the efficacy of the DCNN models used in this study, we obtained all mammography
images from the standard benchmark Mammographic Image Analysis Society [44] (MIAS),
INbreast [45], and a private hospital in Pakistan.

MIAS and INbreast datasets are publicly accessible and widely used for research. The
private dataset was acquired with the approval of the Institutional Review Board (IRB) of
Continental Medical College and Hayat Memorial Teaching Hospital, Lahore, Pakistan [46].
The new dataset consisting of digital mammography images is accessible upon request for
research objectives. The proposed study was approved by the IRB, Continental Medical
College, and Hayat Memorial Teaching Hospital, and consent has been obtained from the
hospital for experimentation purposes without disclosing patients’ personal information
due to privacy and ethical concerns. The radiologist team is comprised of two senior
radiologists, both with experience of eighteen years in this field. Professional radiologists
manually annotated/labeled the new mammogram images to classify the breast masses as
benign or malignant.

The symmetry of the images distributed for learning and testing was highly imbal-
anced. Consequently, the databases were shunted and segregated into training and testing
datasets only. The data augmentation approach is applied to obtained datasets by scal-
ing, rotation, translation, and color modeling to generate 7259 mammographic images.
However, the performance of the MIAS dataset is very vulnerable because of the minor
variation in intensity between the microcalcification and its surrounding regions within
mammography images.

Table 3. The experimental dataset’s description.

Databases Benign Images Malignant Images Total Images

MIAS 441 357 798
INbreast 1540 861 2401
Private 686 3374 4060

All Datasets 2667 4592 7259

Training Set 2167 4179 6346
Test Set 500 413 913

Total 2667 4592 7259
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6.2. Results Analysis in Term of Accuracy and Loss

Each experiment was conducted to assess the efficacy and performance of different
configurations of pre-trained networks based on transfer learning for mammography
classification. The model’s parameters and activation functions are fine-tuned through
training to develop a practical framework for each model. To achieve accurate predictions,
hyperparameter values are manually iterated to fine-tune and refine the conceptual DCNN
architecture. Hyperparameters restrain the training algorithm’s behavior by manually
setting the values of variable training parameters before starting training. The evaluation
process has been carried out under similar training and validation settings for each DCNN
model. The proposed ConvNet+SVM model’s findings are correlated to a fused feature set
and other developed techniques. The experiments aim to obtain the best architecture for
all pre-trained model that performs excellently in learning and testing databases.

Consequently, designing a DCNN model aims to diagnose breast masses accurately
when being tasted on new databases. The data augmentation techniques are used to
enhance the number of mammogram images used for model training. As represented
in Table 3, a dataset including 2667 benign and 4592 malignant images is applied to
training and validating the models. However, 6346 images, both benign and malignant,
are included in the training phase. The training accuracy and loss curves were computed
after 90 epochs of training models, each epoch corresponding to a complete route of the
training algorithm within the training set. Initially, every model is trained by applying the
Adam optimizer with hyperparameter values such as learning rater Ie−4, batch size 32, and
L2-Regularization. The experimental results are compared by targeting the high accuracy
and low loss value, as illustrated in Table 4. The Adam optimizer using a learning rate of
1e−4 during training achieves high accuracy and fewer loss values and does not experience
overfitting problems. The discrepancy between training and validation accuracy is 0.1%
when the Adam optimizer is used. The model’s design has the lowest generalization
difference between testing and validation losses at 0.0324. The linear kernel SVM classifier
built with the deep function achieved the highest classification accuracy of 97.8%. Each
model outperformed in terms of training accuracy, and training loss was less than 0.03.
The suggested technique extracts layer by layer yielding local and global features during
training, which are increasingly abstract as the network convolution layer improves.

The proposed architecture’s training time validation accuracies and loss have been
presented in Figure 7a–d. Table 4 reveals that, despite having a high overall accuracy
rate (ACC), the comparative models have a poor recall rate for the benign and malignant
classes. However, a high degree of recall is essential for the classification of medical
images. We learned that several deep learning models have a high recall rate. GoogLeNet,
MobileNetV2, ResNet50, and DenseNet121 had issues with both classes’ recall, precision,
and overall consistency. Four proposed models, the VGGNet16, VGG19, ConvNet, and
ConvNet+SVM performed well so we will describe the experimental findings of our
projected deep ConvNet+SVM models is depicted in Figure 8a–c. Parameters and time are
decreased by using high strides computations in deep convolutional layers. ConvNet+SVM
is effectively achieving the highest testing accuracy and the lowest testing loss. The
generalization gap (accuracy and losses) between training and validation should be as
narrow as possible to avoid overfitting the model.

6.3. Performance Measures

We analyzed the precision rate, recall, F1-scoring, AUC, accuracy, and loss value of
each proposed classification technique to determine its efficiency and robustness. Figure 9a–f
depicts the training and validation precision, recall, sensitivity, AUC, accuracy and cross-
entropy loss of all the proposed pre-trained models. Figure 8a–c demonstrates a more
logical comparison of experimental outcomes. The AUC calculated the model’s effective-
ness by determining true positives, false positives, true negatives, and false negatives. The
ROC and AUC values were obtained for all models, showing that the proposed model
performs admirably well in terms of reducing false (positive and negative) rates.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. The figures represent the evaluation measures of breast mass detection and classification framework based on
the ConvNet architecture. (a) Training and validation accuracy; (b) training and validation cross-entropy loss; (e) AUC,
and evaluation measures of breast mass detection and classification framework based on ConvNet+SVM architecture;
(c) training and validation accuracy; (d) training and validation cross-entropy loss; (f) AUC.
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(a) (b) (c)

Figure 8. The graphical representation of the results for all comparative experiments: (a) Performance analysis for Benign
class, (b) performance analysis for Malignant class, (c) the cumulative performance of both classes.

The proposed classifier has obtained the highest AUC value of 91.4%. The AUC/ROC
curves of the ConvNet+SVM and ConvNet classifiers obtained the maximum training and
validation accuracy using the feature set are shown in Figure 7e,f, respectively. In addition,
the precision and sensitivity of the ConvNet and ConvNet+SVM classifiers built with the
deep feature sets are seen in Figure 10a,b. The findings of all algorithms are summarized
in Table 4. After reviewing the results, it was determined that the suggested classifier
performed adequately, with precision 97.8%, AUC 91.4%, F1-score 97.06%, and accuracy of
97.8%. The deep learning models’ acquisition of generic image features from ImageNet
performed outstanding initialization for the masses or calcification. Misdiagnosis errors
for benign images as malignant images are significantly higher than misdiagnosis errors
for malignant images as benign images. Thus, the suggested classifier may optimally
integrate the predictions from each of the individual architectures. Deep models lead
to weak accuracy, poor convergence, and overfitting due to increased layers, increased
non-linearities, and a small testing dataset. Learning curves are used in these experiments
to assess the behavior of various models during the training and validation phases. These
analyses help boost the model’s efficiency by suggesting improvements to the model’s
configuration to create a suitable model for breast masses or calcification grading. In
general, these experiments aim to create a DCNN model that is highly robust, effective,
and reliable in clinical settings. As a result, the model’s precision has to be as inspiring as it
is practicable, and the error value as minimal as conceivable.

Table 4. Performance analysis of all proposed models in terms of accuracy, precision, recall, F1-score, and area under the
curve (AUC) score.

Classifier Name
Precision

(%)
Recall

(%)
F1_Score

(%)
Sensitivity

(%)
Training

ACC (%)
Training

Loss (%)
Validation

ACC (%)
Validation

Loss (%)
AUC

(%)

VGGNet16 90.2 90.2 96.5 93.8 77.1 45.1 90.2 22.3 86.4
VGGNet19 93.5 93.5 97.0 97.0 78.3 43.3 93.5 17.4 87.6
GoogLeNet 63.4 63.4 48.8 53.6 63.4 64.5 63.4 62.6 79.4
MobileNetV2 71.3 71.3 61.6 87.7 71.3 54.0 82.9 37.9 66.8
ResNet50 75.1 75.1 67.3 71.3 67.5 57.7 75.1 52.6 75.8
DenseNet121 78.6 78.0 76.6 86.6 75.1 51.4 72.9 45.2 81.7
Proposed ConvNet 78.3 78.4 76.6 90.0 78.3 45.5 77.1 37.9 87.7
Proposed ConvNet+SVM 97.8 97.7 97.6 97.9 97.7 4.4 97.8 8.2 91.4
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(a) (b)

(c) (d)

(e) (f)

Figure 9. The figures elaborates the performance evaluation of presented models ConvNet+SVM, ConvNet, VGGNet16,
VGGNet19, ResNet50, GoogLeNet, DenseNet121, MobileNetV2 in term of the training and validation precision (a), recall
(b), sensitivity (c), AUC (d), accuracy (e), and cross-entropy loss (f) against the 90 epochs.
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(a) (b)

Figure 10. The figures represent the training and validation precision, recall, sensitivity, AUC, accuracy, and cross-entropy
loss of (a) proposed ConvNet and (b) proposed ConvNet+SVM.

6.4. Comparative Analysis with Conventional Approaches

A comparison of the performance obtained using the implemented architectures and
well-known methods are carried out to demonstrate the proposed framework’s strength
is given in Table 5. Al-antari et al. [23], introduced a deep learning algorithm to detect,
segment, and classify breast mass in mammography. Deepak et al. [47] used pre-trained
GoogLeNet architecture for feature learning from MRI images. The author integrated
the extracted features using CNN, SVM, and KNN classifiers, achieving 98% accuracy in
classification. Khan et al. [48] combined the extracted features by applying DCNNs models
VGGNet16, VGGNet19, GoogLeNet, and ResNet50, obtaining an accuracy of 96.6% and an
AUC of 93.4%. Rakhlin et al. [49] applied the fusion methods of different DCNN algorithms
to determine the sensitivity, AUC for two classes of breast cancer. Ragab et al. [50] presented
a novel CAD system based on feature extraction and classification leveraging DL methods
to aid radiologists in classifying breast cancer anomalies in mammography. DCNNs were
used to extract deep features, which were used to train and evaluate a support vector
machine classifier using various kernel functions in the second experiment. The tests were
conducted using mammography images from the MIAS dataset and achieved an accuracy
of 97.4%. The experiment findings show that the proposed framework attained an accuracy
of 97.8% is higher than all the methods.
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Table 5. Performance comparison with existing studies.

Author Methods Dataset (Nature of Images) ACC (%)

Khan et al. [48] Deep features fusion VGG16, ResNet50, GoogLeNet MIAS, CBIS-DDSM (mammogram) 96.6
Al.antari et al. [23] YOLO, DCNN, FrCN INbreast (mammogram) 95.64
Arora et al. [12] DCNN, AlexNet, VGG16, GoogleNet, ResNet18 DDSM (mammogram) 88.0
Tan et al. [51] CNN MIAS (mammogram) 85.5
Vedalankar et al. [52] DCNN+SVM MIAS, DDSM (mammogram) 92.0
Albalawi et al. [53] CNN MIAS (mammogram) 96.0
Shu et al. [25] Deep CNN, DenseNet169 INbreast, DDSM (mammogram) 92.4
Agnes et al. [54] MACNN, Deep CNN MIAS (mammogram) 96.7
Sha et al. [55] CNN+SVM MIAS, DDSM (mammogram) 92.0
Ragab et al. [50] CNN+SVM MIAS, (mammogram) 97.4
Proposed model ConvNet+SVM MIAS, INbreast, Private 97.8

7. Experimental Discussions

The proposed model exhibits high reliability in detecting complex breast masses or
calcification, including breast density diversification. In the presented framework, transfer
learning has been exploited to overcome the existing systems’ deficiencies in detecting and
classifying breast cancer masses. Specific breast masses, such as spiculated and ill-defined
lesions, are challenging to detect and label accurately. These breast masses comprising
varying types, edges, and dimensions have been appropriately classified in the proposed
models. The dense breast’s clinical symptoms are not entirely clear. As a result, it is
challenging to distinguish dense lesion characteristics and perform lesion classification cor-
rectly. The proposed technique reduces the need for manual mass segmentation by feeding
recognized masses or calcification into the classifier directly, decreasing complexities and
computing time. The proposed method’s highest test accuracy of 97.8% and AUC score of
91.4% revealed that it should be utilized to aid the clinical decision-making process.

However, the proposed method obtained high performance with limited parameters
and significantly enhanced processing time and computation resources. Commonly, thou-
sands of images are used to train deep learning models. One of the current approach’s
limitations was the scarcity in the availability of medical imaging data. Training of DCNN
models with sparse datasets may overfit and limit the models’ ability to generalize. Differ-
ent innovative classification models use only one mammogram database for training and
validation. The proposed ConvNet+SVM model is capable of identifying mass-affected
regions in mammography. The presented models were trained and evaluated on obtained
databases, yielding consistent findings demonstrating the robustness in grading under
distinct imaging conditions. Parameter optimizing is another contribution to achieve the
optimal configuration for the proposed model. For this purpose, various hyperparameters
have been manually optimized up to the best classification model. The proposed model has
low computational complexity and a fast processing speed, requiring an average testing
time of 0.23 to 0.44 s to identify and classify breast masses or calcification, indicating that
the model outperforms other conventional DL models. On the other hand, the proposed
architecture is known to be reliable and practical for clinical purposes.

8. Conclusions and Future Work

Breast cancer is a leading source of morbidity and mortality in worldwide women.
It causes patient hospitalizations and ultimately kills a substantial number of patients.
According to the WHO, breast cancer is preventable with prompt intervention, timely
detection, and treatment. However, access to radiological diagnoses is lacking for the
majority of the global population. Additionally, when imaging equipment is available,
there is a scarcity of experts who can study mammogram images. This paper proposes the
automatic recognition of mammography breast masses or calcification through transfer
learning. Deep networks in our approach have more complicated architectures but fewer
constraints needing less computational resources but greater consistency. Overfitting
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problems in mammogram image processing were solved using transfer learning and data
augmentation methods which arise when data is inadequate. We modified the architectures
of each pre-trained model then fine-tuned each model’s output layers with transfer learning
to suit our challenge. We validated our model using 7259 augmented mammography
images from MIAS, INbreast, and private databases comprising benign and malignant
breast masses or calcification of various sizes, dimensions, and edges.

The various experiments were conducted to determine the model’s robustness and
effectiveness. The suggested model has attained 97.8% accuracy, high precision of 97.8%,
and AUC of 91.4%, substantiating its efficacy. Despite several methods intended to work
with these complex datasets, the proposed methodology yielded excellent results. In the
future, we will amend and fine-tune other pre-trained models in the detection stage to
increase the system’s performance in the classification stage. Furthermore, using both
hand-crafted and CNN features will be enhanced the classification accuracy.
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