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Abstract
Advances in multi-species monitoring have prompted an increase in the use of multi-
species occupancy analyses to assess patterns of co-occurrence among species, even 
when data were collected at scales likely violating the assumption that sites were 
closed to changes in the occupancy state for the target species. Violating the closure 
assumption may lead to erroneous conclusions related to patterns of co-occurrence 
among species. Occurrence for two hypothetical species was simulated under pat-
terns of avoidance, aggregation, or independence, when the closure assumption was 
either met or not. Simulated populations were sampled at two levels (N = 250 or 100 
sites) and two scales of temporal resolution for surveys. Sample data were analyzed 
with conditional two-species occupancy models, and performance was assessed 
based on the proportion of simulations recovering the true pattern of co-occurrence. 
Estimates of occupancy were unbiased when closure was met, but biased when clo-
sure violations occurred; bias increased when sample size was small and encounter 
histories were collapsed to a large-scale temporal resolution. When closure was met 
and patterns of avoidance and aggregation were simulated, conditional two-species 
models tended to correctly find support for non-independence, and estimated spe-
cies interaction factors (SIF) aligned with predicted values. By contrast, when clo-
sure was violated, models tended to incorrectly infer a pattern of independence and 
power to detect simulated patterns of avoidance or aggregation that decreased with 
smaller sample size. Results suggest that when the closure assumption is violated, 
co-occurrence models often fail to detect underlying patterns of avoidance or ag-
gregation, and incorrectly identify a pattern of independence among species, which 
could have negative consequences for our understanding of species interactions 
and conservation efforts. Thus, when closure is violated, inferred patterns of inde-
pendence from multi-species occupancy should be interpreted cautiously, and evi-
dence of avoidance or aggregation is likely a conservative estimate of true pattern or 
interaction.
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1  |  INTRODUC TION

Understanding the environmental factors and interspecific interac-
tions driving patterns of species occurrence underpins the field of 
community ecology (Morin, 2011) and can provide critical insights 
to improve the conservation of biological communities, and mitigate 
negative consequences of global change (e.g., urbanization, invasive 
species, and climate; Singer et al., 2013). Occupancy modeling uses 
species-specific detection/non-detection data collected over repeat 
surveys of sites to estimate a species' probability of occurrence (Ψ; 
hereafter, occupancy), while accounting for imperfect detection 
(MacKenzie et al.,  2002). Inclusion of site-specific covariates can 
allow identification of environmental factors associated with pat-
terns of occurrence, whereas survey-specific covariates can be used 
to address heterogeneity in detection. Extensions to occupancy 
modeling have facilitated inferences about the relative influences of 
environmental factors and interspecific interactions on species' pat-
terns of occurrence (MacKenzie et al., 2021; Richmond et al., 2010; 
Rota et al., 2016). Conditional two-species models assume that two 
species interact through an asymmetrical relationship and the oc-
currence of a dominant species may influence the occurrence of a 
subordinate species (but not vice versa; Richmond et al., 2010). By 
contrast, unconditional multi-species occupancy modeling does not 
make any a priori assumptions about the dominance of sympatric 
species, and can be used to investigate interactions among two or 
more species (MacKenzie et al., 2021; Rota et al., 2016).

Single-season, single-species occupancy models assume that 
sites are closed to changes in an occupancy state for the target spe-
cies over a sampling season (i.e., the period over which repeat sur-
veys are conducted across all sites; Mackenzie, 2005a, MacKenzie 
et al., 2018). This assumption is required in order to account for im-
perfect detection. When the closure assumption is violated, occu-
pancy estimates tend to be biased high, which could have negative 
consequences for species conservation (Devarajan et al., 2020; Rota 
et al., 2009). The ability to satisfy the closure assumption is influ-
enced (in part) by the correspondence between the spatial ecology 
of the target species and the study design, including the spatial and 
temporal scales used to define a site and season, respectively. For 
example, sites that are small relative to the movement capacity of 
the target species, or surveys spanning a season that is long relative 
to the target species’ seasonal movement patterns or survival, may 
lead to violations of the closure assumption. When the closure as-
sumption is violated and movements in and out of sites are random, 
estimates of occupancy may be interpreted as an unbiased estimate 
of ‘use’ (i.e., the probability that the species used a site during the 
sampling season; Gould et al., 2019; Mackenzie, 2005a, 2005b). If 
the proportion of sites occupied is a primary interest (e.g., as a state 
parameter or surrogate for abundance; MacKenzie & Nichols, 2004), 

estimates of ‘use’ may be uninformative or lead to erroneous conclu-
sions about the state of the population (Mackenzie & Royle, 2005). 
Still, estimates of ‘use’ can provide valuable information on wildlife-
habitat associations and relative habitat quality (Gould et al., 2019).

Extensions to occupancy modeling to investigate patterns of 
co-occurrence for >1 species—conditional two-species (Richmond 
et al.,  2010) and multi-species (Rota et al.,  2016) occupancy 
modeling—maintain the same assumptions as single-species occu-
pancy modeling (MacKenzie et al., 2002), including the assumption 
that sites are closed to changes in an occupancy state over a sam-
pling season (i.e., the closure assumption). As with single-species 
occupancy modeling, the assumption of closure is necessary to esti-
mate the probability of detection (p) for each species, but may also 
influence inferred patterns of co-occurrence. For example, consider 
a site surveyed four times during a single season for two species 
(Species A and Species B), where the encounter histories (h) for 
Species A and Species B are hA = 1000 and hB = 0001, respectively. 
If the closure assumption is met in this example, it is clear that both 
species co-occurred at this site. By contrast, if closure is not met, it 
is unclear if the two species co-occurred, or if each species used the 
site when the other was absent.

A common goal of modeling co-occurrence is to evaluate if the 
occurrence of one species influences the occurrence of another spe-
cies. Closure may be more difficult to meet in studies investigating 
patterns of co-occurrence for >1 species, particularly when species 
differ in their spatial ecology (e.g., home range size, movement ten-
dencies, and density), as the assumption of closure applies to each 
species considered in the analysis. While failing to meet the closure 
assumption in single-species analyses shifts the interpretation of 
Ψ to ‘use’, it is unclear how this influences the ability to infer true 
patterns of co-occurrence. Nevertheless, studies explicitly acknowl-
edging violations of the closure assumption have gone on to use 
multi-species detection histories to infer patterns of co-occurrence 
(e.g., Li et al., 2019; Staudenmaier et al., 2021).

Here, I simulated occurrence for two hypothetical species 
(Species A and Species B) under co-occurrence patterns of avoid-
ance, aggregation, or independence, when the closure assumption 
either was or was not met during sampling. I then evaluated if condi-
tional two-species occupancy models provided support for the true 
co-occurrence pattern, and if the inferences changed when sampling 
intensity was reduced or when the encounter history was discret-
ized to a larger temporal resolution (i.e., when multiple sequential 
surveys were collapsed into longer survey occasions). I hypothesized 
that when the closure assumption was met, (i) two-species occu-
pancy models would tend to provide support for the true pattern of 
co-occurrence, (ii) reductions in sampling intensity would lead to less 
consistency in support for the true pattern of co-occurrence, and (iii) 
a large-scale temporal resolution of the encounter history would not 
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impact model performance. By contrast, I hypothesized that when 
the closure assumption was violated, (i) two-species occupancy 
models would tend to find support for independence even when the 
true pattern of co-occurrence was avoidance or aggregation, and (ii) 
this tendency to find support for independence would be increased 
by reductions in sampling intensity and using large-scale temporal 
resolution encounter histories.

2  |  MATERIAL S AND METHODS

2.1  |  Simulation conditions

I simulated patterns of occurrence for two hypothetical species 
(Species A and Species B) across a simple continuous landscape 
comprised of 900 equal-sized grid cells without environmental vari-
ation. I assumed that Species A was dominant and Species B was 
subordinate (sensu Richmond et al., 2010). For simplicity, I assumed 
that occupancy of a site by either species was by a single individual 
and, therefore, there was no abundance-induced heterogeneity in p. 
I randomly distributed Species A across the landscape such that true 
occupancy of Species A (ΨA) was 0.4, 0.55, or 0.7 (Table 1). I  then 
distributed Species B in three scenarios in relation to Species A: (i) 
the occurrence of Species B was negatively associated with the oc-
currence of Species A (i.e., avoidance); (ii) the occurrence of Species 
B was positively associated with the occurrence of Species A (i.e., 
aggregation); or (iii) the occurrence of Species B was not influenced 
by the occurrence of Species A (i.e., independence). For simulations 
of avoidance, Species B was randomly distributed across the land-
scape such that true occupancy of Species B, given that Species 
A was present (ΨBA), and true occupancy of Species B, given that 
Species A was absent (ΨBa), was 0.25 and 0.65, 0.35 and 0.75, or 
0.45 and 0.85, respectively (Table 1). For simulations of aggregation, 

Species B was randomly distributed across the landscape such that 
ΨBA and ΨBa were 0.65 and 0.25, 0.75 and 0.35, or 0.85 and 0.45, 
respectively (Table 1). For simulations of independence, Species B 
was randomly distributed across the landscape such that ΨB (i.e., 
ΨBA = ΨBa) was 0.45, 0.55, or 0.65 (i.e., the average values of ΨBA 
and ΨBa combinations were used for simulations of avoidance or ag-
gregation; Table 1).

I evaluated the performance of conditional two-species occu-
pancy models when the closure assumption was either (i) met or (ii) 
not met. To evaluate model performance when closure was met, I 
generated 500 simulated patterns of co-occurrence for each combi-
nation of occupancy parameters, maintaining the initial distributions 
of Species A and Species B during sampling. To evaluate model per-
formance when closure was not met (i.e., species could move among 
sites between surveys), I again generated 500 simulated patterns 
of co-occurrence for each combination of occupancy parameters, 
which served as the initial distribution. For simplicity, I assumed (i) 
both species had the capacity to move among sites between surveys, 
(ii) the probability of movement (M) from an occupied site to another 
site between surveys was the same for both species (MA = MB = M), 
and (iii) M = 0.02, a level selected to represent a relatively low prob-
ability of closure violations. Between surveys, I assumed movements 
by the dominant species (Species A) were independent of the subor-
dinate species (Species B). For Species A, I randomized the order in 
which individuals were permitted to move between each survey and, 
when an individual moved from a site, I probabilistically selected the 
settlement site as a function of the site's availability (i.e., not cur-
rently occupied by the same species) and distance from the starting 
site, such that movements were more likely to nearby available sites. 
Although it was not possible for an individual to move to a site that 
was already occupied by the same species, a site that was occupied 
during the previous survey and vacated by an earlier departure could 
be selected as a settlement site. For simulations in which ΨBA = ΨBa, 
the same process was repeated to simulate movements for Species 
B. For simulations in which ΨBA ≠ ΨBa, I probabilistically selected the 
settlement site for Species B as a function of the site's availability, 
distance from the starting site, and ΨBA (when Species A was present 
at a site) or ΨBa (when Species A was not present at a site).

For all simulations, I set p for Species A (pA) and Species B (pB) to 
0.05 (i.e., pA = pB = 0.05) and assumed the probability of detection 
for each species was (i) independent of the presence or detection of 
the other species, and (ii) constant over time. I generated species-
specific encounter histories for N = 250 randomly sampled sites over 
J = 21 replicated surveys (hereafter, fine-scale temporal resolution). 
The temporal resolution at which encounter data is considered may 
influence the ability to infer patterns of co-occurrence that operate 
at temporal scales that are small relative to the survey length. To 
investigate how temporal resolution of surveys influenced the reli-
ability of conditional two-species modeling, I also collapsed surveys 
to J = 3 survey occasions, where each occasion contained 7 sequen-
tial surveys of the initial 21 surveys (hereafter, large-scale tempo-
ral resolution). Camera traps inherently detect multiple species and 
have become a leading source of data for multi-species occupancy 

TA B L E  1 True values of occupancy for Species A (ΨA) and 
Species B (ΨBA = occupancy when influenced by and in the 
presence of Species A; ΨBa = occupancy when influenced by and in 
the absence of Species A; ΨB = occupancy of when independent of 
Species A) used to simulate species occurrence under two patterns 
of influence (avoidance where ΨBA < ΨBa and aggregation where 
ΨBA > ΨBa) and a pattern of independence (where ΨB = ΨBA = ΨBa)

Avoidance Aggregation Independence

ΨA ΨBA ΨBa ΨBA ΨBa ΨB

0.4 0.25 0.65 0.65 0.25 0.45

0.4 0.35 0.75 0.75 0.35 0.55

0.4 0.45 0.85 0.85 0.45 0.65

0.55 0.25 0.65 0.65 0.25 0.45

0.55 0.35 0.75 0.75 0.35 0.55

0.55 0.45 0.85 0.85 0.45 0.65

0.7 0.25 0.65 0.65 0.25 0.45

0.7 0.35 0.75 0.75 0.35 0.55

0.7 0.45 0.85 0.85 0.45 0.65
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modeling. Consequently, values for p and J were intended to emu-
late camera-trap data collected over relatively short surveys (e.g., 
days) that could be discretized into longer survey occasions (e.g., 
weeks). The selected p was comparable to daily camera-based de-
tection probabilities reported for carnivores and ungulates (Shannon 
et al., 2014), and resulted in a cumulative probability of detection 
of 1–(1–0.05)7 = 0.30 across 7 surveys (i.e., a survey occasion) and 
1 – (1–0.05)21 = 0.66 across all surveys. Finally, field logistics often 
restrict practitioners to sampling a relatively small proportion of the 
landscape. Consequently, I repeated all the simulation procedures 
and evaluated performance of conditional two-species models 
when sample size was reduced from N = 250 to N = 100 randomly 
sampled sites. All simulations were performed in program R (R Core 
Team, 2021).

2.2  |  Modeling and assessing patterns of co-
occurrence

For each set of conditions, I analyzed the sample data using two com-
peting single-season, conditional two-species models (Richmond 
et al., 2010): (i) a model in which the occurrence of Species A in-
fluenced the occurrence of Species B (i.e., ΨA, ΨBA ≠ ΨBa; where ΨBA 
and ΨBa were estimated separately); and, (ii) a model for independ-
ence between Species A and Species B (i.e., ΨA, ΨBA = ΨBa; where 
ΨBA and ΨBa were not estimated separately and were presented 
together as ΨB). I held the detection submodels for each species 
constant (i.e., the null model), regardless of occupancy or detection 
state of the other species. I performed all occupancy analyses with 
an information-theoretic approach in program R with the ‘wiqid’ 
package (Meredith, 2020). For each model set, I evaluated relative 
support for competing models with Akaike's Information Criterion 
with sample size correction (AICc; Burnham & Anderson, 2002). I ex-
cluded models that failed to converge from subsequent summaries 
and comparisons. When the most-supported model suggested that 
Species A influenced Species B (i.e., support for a model of influ-
ence), I calculated the SIF as

following Richmond et al.  (2010). A SIF <1 suggested avoidance (i.e., 
Species B occurred less frequently with Species A than expected 
compared to a null hypothesis of independence), whereas a SIF >1 
suggested aggregation (i.e., Species B occurred more frequently with 
Species A than expected). A SIF = 1 suggested that the two species 
occurred independently of one another.

For each set of conditions, I summarized the reliability of the 
occupancy estimates from the most-supported models across sim-
ulations. Percent bias of occupancy estimates relative to the true 
parameter values were calculated for each simulation with the 
‘SimDesign’ package in R (Chalmers & Adkins,  2020). I summa-
rized percent bias as the mean bias for each parameter and set of 

conditions. To characterize overall performance under each set of 
conditions, I summarized the proportion of simulations that found 
support for the true pattern of co-occurrence. Additionally, I con-
sidered the model of independence as competitive when (i) the 
simulated pattern was independence, (ii) the model for a pattern of 
influence had the lowest AICc, and (iii) the model of independence 
(which had one fewer parameter than the model of influence) was 
within 2 ΔAICc units of the top model (Burnham & Anderson, 2002). 
Thus, for simulations of independence, I reported both the propor-
tion of simulations supporting the true pattern of co-occurrence 
and an adjusted proportion when considering competitive models 
finding support for independence. For each set of conditions, I cal-
culated the expected (or true) SIF and then compared the mean SIF 
(across simulations when a model of influence was most supported) 
to the expected SIF.

3  |  RESULTS

The simulated landscape contained 900 cells oriented in a 30 × 30 
grid. Reducing the sample size from N = 250 to N = 100 represented 
a reduction in sampling intensity from ~28% to ~11% of the simulated 
landscape. For each combination of simulated conditions, <0.4% of 
the 500 simulations failed to achieve numerical convergence.

Based on the most-supported model for each simulated dataset, 
estimates of ΨA were generally unbiased when the population was 
closed (mean bias <3.1%), and positively biased when the popula-
tion was not closed (mean bias 7.3%–13.3%), with bias being higher 
when the sample size was small (N = 100), and encounter histories 
were collapsed to a large-scale temporal resolution (Table 2). Across 
simulated conditions, a high proportion of ΨA estimates were not 
different from the true (simulated) value (i.e., the 95% confidence 
intervals (CIs) about the estimate included the true value; Figure 1a). 
Similarly, estimates of ΨBA and ΨBa were generally unbiased when 
the population was closed (mean bias <5%), and biased when the 
population was not closed, with bias being higher when the sam-
ple size was small (Table 3). Under simulated patterns of indepen-
dence, a high proportion of ΨB estimates were not different from 
the true value (Figure 1b). Precision of estimates tended to decrease 
when the sample size was small and when the closure assumption 
was violated. For example, when considering estimates of ΨA under 
simulated patterns of independence, reducing the number of sites 
sampled (while maintaining closure) or violating the closure assump-
tion (while maintaining N = 250 sites sampled) resulted in a ~37% or 
~17% increase in the width of 95% CIs about the estimate, respec-
tively, while reducing the number of sites sampled and violating the 
closure assumption resulted in a ~49% increase in the width of 95% 
CIs. Consequently, a greater proportion of simulations had estimates 
with 95% CIs containing the true value when sample size was small, 
closure was violated, or both (Figure 1a,b). Under simulated patterns 
of avoidance and aggregation, the proportion of models with esti-
mates for ΨBA and ΨBa for which the 95% CI contained the true value 
was generally higher when the closure assumption was met and 
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sample size was large (Figure 1c,d). By contrast, when closure was 
violated and the true value of ΨBA or ΨBa was low (<0.5), relatively 
few models tended to produce estimates with 95% CIs containing 
the true value (Figure 1c,d).

Of primary interest was whether conditional two-species models 
tended to recover the simulated pattern of co-occurrence. Similar 
patterns in model performance emerged for both patterns of co-
occurrence in which Species A influenced Species B. Conditional 
two-species models tended to correctly find support for an influence 
of Species A on Species B when the closure assumption was met 
and sample size was large, with the proportion of models identifying 
the correct pattern being slightly higher for patterns of avoidance 
(Figure 2a) than aggregation (Figure 2b). By contrast, models tended 
to incorrectly find support for independence between Species A 
and Species B when the closure assumption was violated and sam-
ple size was small (Figure 2a,b). Generally, models were less likely to 
correctly identify a simulated pattern of influence as the true value 
of ΨA increased (Figure 2a,b). When the simulated pattern of co-
occurrence between Species A and Species B was independence, 
conditional two-species models tended to correctly infer indepen-
dence. Moderate increases in performance (identification of a true 
pattern of independence) tended to occur with smaller sample size, 
violations of the closure assumption, and higher values of ΨA and 
ΨB (Figure 2c). Across simulated conditions, the proportion of model 
sets correctly identifying independence increased when consider-
ing those where the model of influence was most supported, but 
the model of independence was competitive (Figure  2c; Burnham 
& Anderson,  2002). Although Figure  2 presents results based on 

encounter histories at a fine-scale resolution, results based on large-
scale encounter histories were similar (results not plotted).

When the simulated pattern was avoidance or aggregation, and 
the conditional two-species model found support for an influence 
of Species A on Species B, the estimated SIF values aligned with 
the expected values based on the simulated patterns (Figure 3). The 
magnitude of the estimated SIF tended to suggest a weaker interac-
tion between Species A and Species B when the closure assumption 
was violated (Figure 3). When the simulated pattern was indepen-
dence and the conditional two-species model found support for an 
influence, the mean estimated SIF values aligned with independence 
(Figure  3). The SIF results presented here (and in Figure  3) were 
based on sampling N = 250 sites with fine-scale encounter histories. 
When sample size was reduced to N = 100, patterns were similar 
but there was greater variability in the mean estimated SIF, and the 
magnitude of the estimated SIF suggested a stronger interaction 
between Species A and Species B (results not plotted). Collapsing 
fine-scale encounter histories to a large-scale temporal resolution 
had negligible impacts on SIF results.

4  |  DISCUSSION

Understanding co-occurrence patterns among sympatric species 
is of broad ecological interest and has implications for the con-
servation of imperiled species and ecosystems. Multi-species oc-
cupancy models offer effective approaches for inferring patterns 
of co-occurrence (MacKenzie et al., 2018) and have been used to 

TA B L E  2 Mean percent bias (B) in estimates of occupancy for Species A across 500 simulations with three true levels of occupancy of 
Species A (ΨA) under three patterns of co-occurrence with Species B (i.e., independence, avoidance, and aggregation) when the population 
was either closed (Closed) or not closed (Open) to changes in the occupancy state with sampling at N = 100 or 250 random sites and 
repeated surveys at a fine-scale (FS) or large-scale (LS) temporal resolution (TR)

N TR ΨA

Independence Avoidance Aggregation

(ΨBA = ΨBa) (ΨBA < ΨBa) (ΨBA > ΨBa)

Closed BA Open BA Closed BA Open BA Closed BA Open BA

100 FS 0.40 2.17 8.95 1.32 8.72 1.45 9.29

0.55 1.20 10.73 1.39 10.18 1.14 10.80

0.70 1.26 10.35 0.07 10.04 0.88 10.53

100 LS 0.40 3.07 11.79 1.61 11.28 2.25 12.08

0.55 1.64 13.18 1.75 12.59 1.31 13.30

0.70 1.50 12.27 0.38 11.81 1.28 12.17

250 FS 0.40 0.68 7.41 0.78 7.33 0.72 7.64

0.55 0.51 9.33 0.34 9.11 0.77 9.36

0.70 0.49 10.24 0.26 9.52 0.43 9.88

250 LS 0.40 0.82 9.51 0.98 9.09 0.91 9.72

0.55 0.84 11.74 0.58 11.07 0.89 11.60

0.70 0.60 12.12 0.28 11.36 0.59 11.75

Notes: ΨBA = True occupancy of Species B in the presence of Species A; ΨBa = True occupancy of Species B in the absence of Species A; Fine-scale 
temporal resolution included 21 surveys; Large-scale temporal resolution collapsed fine-scale surveys into three surveys each containing seven 
sequential fine-scale surveys.
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investigate ecological patterns and theories (Lombardi et al., 2020; 
Robinson et al., 2014), interactions among native and invasive spe-
cies (Dugger et al., 2016; Hegel et al., 2019; Osorio et al., 2020), 
and community response to global change (Parsons et al., 2019; 
Sovie et al., 2020). The within-season closure assumption inher-
ent to occupancy modeling (MacKenzie et al.,  2002) extends to 
multi-species models as well (Devarajan et al.,  2020; Richmond 
et al., 2010; Rota et al., 2016), but the impact of violating the clo-
sure assumption on inferences about patterns of co-occurrence 
has not been evaluated. My results suggest that when the closure 
assumption is violated, occupancy-based models of co-occurrence 
often fail to detect underlying patterns of avoidance or aggrega-
tion and incorrectly identify a pattern of independence among 
species, which could have negative consequences for the conser-
vation of biodiversity.

Camera trapping has been one of the most used sampling tech-
niques for occupancy-based investigations of multiple species 
(Burton et al., 2015; O'Connell et al., 2011). Rapid advancements in 
camera technology (e.g., reliability and capabilities) and the increas-
ingly widespread use of cameras has facilitated a new era of multi-
species monitoring (Allan et al., 2018; Nazir et al., 2017; O'Connell 
et al.,  2011). Additionally, large-scale camera-based monitoring 
programs that offer open-source multi-species data streams have 

recently been established (e.g., SnapshotUSA; Cove et al.,  2021). 
Consequently, while the opportunity to apply multi-species occu-
pancy models will likely increase, data collection procedures may 
not be at the correct spatial and temporal scales necessary to meet 
the closure assumption for many species. The simulations presented 
here emulated camera trapping data and the simulated level for de-
tection was comparable to observed levels of daily detection for 
several carnivores (Shannon et al., 2014). Like the conditions under 
which the simulated data were collected and discretized, camera trap 
data is commonly characterized as many short surveys (e.g., daily 
encounter histories; Parsons et al., 2019) or fewer long surveys (e.g., 
weekly encounter histories; O'Connell et al., 2006). Still, results from 
the simulations here based on the large-scale temporal resolution 
in which surveys were collapsed into three survey occasions, would 
be more comparable to data from alternative sampling approaches 
(e.g., visual encounter or call-back surveys) where fewer surveys 
are typically completed and a cumulative ‘occasion-level’ detection 
probability of ~0.3 would not be unreasonable (e.g., Mackenzie & 
Royle, 2005).

Closure is influenced by the length of the season (i.e., the 
period over which surveys are performed), spatial scale of a site 
(i.e., the unit of analysis), and spatial ecology of the target spe-
cies (MacKenzie et al.,  2018). Even with careful consideration, it 

F I G U R E  1 Proportion of simulations 
for which the estimates of (a) occupancy 
for Species A (ΨA), (b) occupancy of 
Species B given Species A was present 
(ΨBA) and occupancy of Species B, given 
that Species A was absent (ΨBa) when 
the simulated pattern was independence 
(i.e., ΨBA = ΨBa), (c) ΨBA and ΨBa when the 
simulated pattern was avoidance (i.e., 
ΨBA < ΨBa), and (d) ΨBA and ΨBa when the 
simulated pattern was aggregation (i.e., 
ΨBA > ΨBa), was not different from the 
true simulated level of occupancy (based 
on 95% confidence intervals) when sites 
were closed or not closed (i.e., open) to 
changes in the occupancy state during 
sampling with sampling at N = 100 or 250 
random sites and repeated surveys at a 
fine-scale (FS) or large-scale (LS) temporal 
resolution. Results presented are based 
on the most-supported conditional two-
species occupancy model
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may be difficult to meet the closure assumption for some species 
(Mackenzie & Royle, 2005) due to logistical constraints (e.g., lim-
ited equipment or personnel) that require sampling to take longer 
than a period over which closure can be reasonably assumed (e.g., 
Johnson et al., 2020), or challenges identifying an appropriate spa-
tial scale (e.g., Jornburom et al., 2020). Consequently, the closure 
assumption is often relaxed with estimates of occupancy from 
single-species models interpreted as the probability of ‘use’ (Gould 
et al., 2019; Mackenzie, 2005a). For multi-species occupancy anal-
yses, the challenge of meeting the closure assumption is amplified, 
as the assumption applies to all target species, and species may 
operate at different spatial and temporal scales. When the closure 
assumption is violated, species-specific estimates of occupancy 
tend to be biased high (Devarajan et al., 2020; Rota et al., 2009, but 
see Kendall et al., 2013 and Otto et al., 2013 for conditions where 
lack of closure may lead to negative bias in occupancy estimates), 
and this would likely lead to greater perceived overlap in the dis-
tributions of sympatric species than actually occurred, potentially 
limiting the ability of co-occurrence models to detect patterns of 
non-independence (Steen et al., 2014). Indeed, my results demon-
strated that when closure was violated, conditional two-species 
models produced estimates of occupancy that were biased high 
for both species, and models were less likely to detect true pat-
terns of avoidance or aggregation. The ability to detect patterns of 

avoidance or aggregation requires variation in occurrence of both 
species. As demonstrated in Figure 3, the expected SIF tends to-
ward (and converges at) 1 as ΨA increases to 1, regardless of the 
ΨBA:ΨBa ratio. This suggests that when estimates of ΨA are high—
whether naturally or due to an upward bias resulting from a lack 
of closure—patterns of avoidance and aggregation will be more 
difficult to detect. My results support these predictions, with the 
power to detect patterns of avoidance and aggregation decreasing 
for higher values of ΨA and when closure was violated.

MacKenzie and Royle (2005) and Shannon et al. (2014) provided 
recommendations for the optimal number of sites for single-species 
occupancy modeling, but how sample size influences the ability to 
infer patterns of co-occurrence has not been investigated. I initially 
simulated data collection at 250 sites, a sampling intensity that ap-
proximated the optimal number of sites (Mackenzie & Royle, 2005) 
based on the simulated number of surveys, detection, and average 
occupancy, with a standard error of 0.06. In practice, sampling in-
tensity is often limited (e.g., Robinson et al., 2014 [83], Nagy-Reis 
et al., 2017 [45], Osorio et al., 2020 [50]). Consequently, I also con-
sidered data collection at only 100 sites to reflect a restricted sam-
pling intensity that more closely aligned with many empirical studies. 
As expected, conditional two-species models had greater power to 
detect patterns of avoidance and aggregation when sample size was 
larger.

F I G U R E  2 Proportion of simulations 
for which conditional two-species 
occupancy models supported the true 
simulated pattern of co-occurrence 
between Species A and Species B when 
sites were closed or not closed (i.e., open) 
to changes in occupancy state during 
sampling, and sampling occurred at 
more (N = 250) or fewer (N = 100) sites; 
simulations were performed under various 
levels of true occupancy for Species A 
(ΨA) and patterns of co-occurrence for 
Species B (ΨB) including (a) a pattern of 
influence (i.e., avoidance) in which the 
true occupancy of Species B, given that 
Species A was present (ΨBA) was lower 
than the true occupancy of Species B, 
given that Species A was absent (ΨBa), 
(b) a pattern of influence (i.e., aggregation) 
in which ΨBA > ΨBa, and (c) a pattern of 
independence (i.e., ΨBA = ΨBa). Results 
within the gray bar represent the adjusted 
proportion when considering competitive 
models within 2 ΔAICc finding support 
for independence. Results are presented 
based on encounter histories at a fine-
scale resolution
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Emmet et al. (2021) suggested that discretizing continuous-time 
species detections could lead to sparse data and underestimates 
of detection, inflating estimates of occupancy. Similarly, I expected 
that collapsing fine-scale temporal surveys into longer survey oc-
casions would inflate occupancy estimates, and thus decrease the 
power to detect patterns of avoidance or aggregation. I observed 
higher bias in estimates when using a longer survey occasion versus 
the fine-scale temporal resolution; this pattern occurred regardless 
of sample size or whether closure was met, though the magnitude 
of the effect was lower for the larger sample size and with closure. 
Still, in contrast to expectations, collapsing encounter histories from 
a fine-scale to a large-scale temporal resolution had no noticeable 
impact on the power to detect patterns of avoidance or aggregation 
or mean SIF estimates.

Collectively, these findings suggest that closure violations could 
lead to erroneous support for patterns of independence among 
species when the true pattern of co-occurrence is avoidance or ag-
gregation. Several studies have explicitly acknowledged violations 
of the closure assumption, used conditional two-species occupancy 
models to assess patterns of co-occurrence, and then concluded 
that the species occurred independently of one another (e.g., Li 
et al., 2019; Staudenmaier et al., 2021). In these scenarios, my re-
sults suggest that the inferred patterns of independence could be 
an artifact of a lack of closure and should be interpreted cautiously. 
By contrast, when closure violations likely occur and models find 
evidence of avoidance (e.g., Kafley et al., 2019) or aggregation, my 
results suggest the inferred pattern (and associated SIF) is likely a 
conservative estimate of the interaction (Steen et al., 2014). When 
closure violations may be obscuring patterns of co-occurrence (i.e., 
at the site level), careful interpretation of detection parameters or 
temporal activity (e.g., from survey methods such as cameras that 
provide information on activity) may provide evidence of within-site 
spatial or temporal patterns of interspecific interactions (e.g., Lewis 
et al., 2015; Lonsinger et al., 2017).

Minimizing closure violations may involve design-based solu-
tions or model-based solutions, or both. Ideally, sampling designs 
for multi-species occupancy modeling should consider the re-
search question(s) and ecological traits of target species (e.g., pat-
terns of phenology and movement), and employ appropriate spatial 
and temporal scales such that violations of the closure assumption 
are minimized (see Devarajan et al.,  2020 for an excellent dis-
cussion of best practices for multi-species occupancy modeling). 
Integrating knowledge on target species' ecologies to develop an a 
priori sampling design that minimizes closure violations will reduce 
the need to rely on complicated modeling procedures to address 
bias in estimates and inferences (Devarajan et al., 2020; Kendall 
et al., 2013; MacKenzie et al., 2018; Otto et al., 2013). Selecting 
sampling sites that approximate the home-range size of the tar-
get species may reduce closure violations, as can conducting sur-
veys as quickly as possible within and across sites (Mackenzie & 
Royle,  2005). However, differences in life-history traits among 
species can make it difficult to identify an appropriate joint sam-
pling design for all target species (Devarajan et al., 2020). System-
specific simulations considering the disparate life-history traits 
of target species and potential forms of closure violations (e.g., 
random movement, staggered entry and exit, or local extinction 
due to sampling disturbance) can help inform sampling design, 
reduce bias in parameter estimates, and improve inferences on 
species interactions (Devarajan et al., 2020; Kendall et al., 2013; 
Otto et al., 2013). When using open-source data streams (or other 
similar data sources) for which the original sampling design was 
not intended for multi-species occupancy modeling, the scale of 
data collection and appropriate scale for co-occurrence modeling 
may be misaligned (Altwegg & Nichols, 2019). When closure vio-
lations are expected (or known to occur) for one or more species 
under an implemented sampling design, evidence of closure viola-
tions should be tested for and, if detected, accounted for through 

F I G U R E  3 (a) Expected species interaction factor (SIF) for 
simulated combinations of occupancy for Species B, given that 
Species A was present (ΨBA) or absent (ΨBa) from a site under 
patterns of avoidance (red), aggregation (blue), or independence 
(black) as a function of the occupancy for Species A (ΨA); and, (b) 
mean estimated SIF (±1 standard error) for simulations where the 
most-supported model provided support for a lack of independence 
(i.e., avoidance or aggregation) when sites were closed (solid circles) 
or not closed (open circles) to changes in occupancy state and 
sampling occurred at N = 250 sites. For each simulated level of ΨA 
when sites were closed (or not), results for combinations of ΨBA and 
ΨBa are presented from left to right by increasing the value of ΨBA. 
Results are presented based on encounter histories at a fine-scale 
resolution
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model-based solutions to reduce bias and improve inferences on 
patterns of co-occurrence.

Assessing closure can be difficult. Nonetheless, evaluating if 
the closure assumption is met for each target species can provide 
guidance on the suitability of the data, offer greater insights into the 
strength of inferences related to patterns of co-occurrence, or both. 
Goodness-of-fit tests for occupancy models can detect evidence for 
violations of model assumptions (Broms et al., 2016; MacKenzie & 
Bailey, 2004; Warton et al., 2017), but (i) often fail to provide mean-
ingful results when sample size is small (i.e., fail to detect poor fit 
when it occurs; MacKenzie & Bailey, 2004), and (ii) can suggest ad-
equate model fit even when closure violations occur via random 
movements (Gould et al., 2019). If multiple surveys are conducted 
within each site visit (or sampling occasion) during a season, dynamic 
occupancy analyses (Kendall et al.,  2013; Otto et al.,  2013; Rota 
et al.,  2009), which apply Pollock's robust design (Pollock,  1982) 
and estimate colonization and extinction (i.e., dynamic parameters) 
between site visits, can be extended for multiple species (Farris 
et al.,  2017; Fidino et al., 2019; MacKenzie et al., 2021) and com-
pared to static (single-season) models to formally test for evidence 
of closure (e.g., via a likelihood ratio test). Although the application 
of dynamic models is more appropriate than goodness-of-fit tests 
for assessing closure, the approach requires a sampling design that 
is not commonly used for occupancy modeling (or anticipated to 
be used for many future studies) due to the extra effort required 
(Kendall et al., 2013). Alternatively, species-specific occurrence data 
may be temporally thinned (or partitioned) and analyzed as smaller 
temporal intervals to check if the signs (effects) of beta coefficients 
changed (Devarajan et al.,  2020). Time-dependent single-season 
models may not be adequate for reducing bias caused by closure 
violations (Otto et al., 2013).

The scenarios evaluated here were not exhaustive and simu-
lations performed were intentionally simplified to minimize the 
factors influencing inferences about patterns of co-occurrence. 
Nevertheless, these simulations highlight challenges to interpreta-
tion of results from co-occurrence models when closure violations 
occur, and similar challenges are expected under other scenarios 
unless closure violations are minimized. The extent of closure vio-
lation was directly related to the probability of movement, which 
was fixed at a low rate such that the probability that the species 
never moved from a site was >0.65. Consequently, the results of 
these simulations reflect expectations when closure violations are 
relatively low, and more severe violations of the closure assump-
tion would likely further decrease the power of co-occurrence 
models to detect patterns of avoidance or aggregation. Simulations 
not presented here indicated that for the average values of occu-
pancy used in this study, decreasing the probability of movement 
for both species from 0.02 to 0.005 increased the proportion of 
simulations for which the true pattern of avoidance (0.90) or ag-
gregation (0.87) was detected, whereas increasing the probability 
of movement to 0.05 decreased the proportion of simulations for 
which the true pattern of avoidance (0.31) or aggregation (0.25) 

was detected. I did not consider conditions where closure was 
violated for a single species. Although beyond the scope of the 
current work, simulations evaluating the influence of environmen-
tal covariates, closure violations by only a single species, and ad-
ditional sampling design considerations would help advance our 
understanding of factors impacting the reliability of inferred co-
occurrence patterns. Although I restricted the simulations to two 
species and analyzed the data with the widely used conditional 
two-species occupancy modeling framework, the application of 
unconditional multi-species occupancy models (Rota et al., 2016) 
has been increasing. I expect violations of the closure assumption 
would have similar impacts on results from unconditional multi-
species modeling (Rota et al., 2016), including underestimates of 
detection, overestimates of occupancy, and higher perceived over-
lap in the distribution of species than actually occurred, which 
would limit the power to detect patterns of non-independence. 
Still, simulations evaluating the impacts of closure on inferences 
from unconditional modeling procedures and considering >2 spe-
cies would advance our understanding of the reliability of infer-
ences related to species co-occurrence patterns.
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