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Abstract
Advances	in	multi-	species	monitoring	have	prompted	an	increase	in	the	use	of	multi-	
species	occupancy	analyses	to	assess	patterns	of	co-	occurrence	among	species,	even	
when	data	were	 collected	 at	 scales	 likely	 violating	 the	 assumption	 that	 sites	were	
closed	to	changes	in	the	occupancy	state	for	the	target	species.	Violating	the	closure	
assumption	may	lead	to	erroneous	conclusions	related	to	patterns	of	co-	occurrence	
among	species.	Occurrence	 for	 two	hypothetical	 species	was	simulated	under	pat-
terns	of	avoidance,	aggregation,	or	independence,	when	the	closure	assumption	was	
either	met	or	not.	Simulated	populations	were	sampled	at	two	levels	(N = 250 or 100 
sites)	and	two	scales	of	temporal	resolution	for	surveys.	Sample	data	were	analyzed	
with	 conditional	 two-	species	 occupancy	 models,	 and	 performance	 was	 assessed	
based	on	the	proportion	of	simulations	recovering	the	true	pattern	of	co-	occurrence.	
Estimates	of	occupancy	were	unbiased	when	closure	was	met,	but	biased	when	clo-
sure	violations	occurred;	bias	 increased	when	sample	size	was	small	and	encounter	
histories	were	collapsed	to	a	large-	scale	temporal	resolution.	When	closure	was	met	
and	patterns	of	avoidance	and	aggregation	were	simulated,	conditional	two-	species	
models	tended	to	correctly	find	support	for	non-	independence,	and	estimated	spe-
cies	 interaction	 factors	 (SIF)	 aligned	with	predicted	values.	By	 contrast,	when	 clo-
sure	was	violated,	models	tended	to	incorrectly	infer	a	pattern	of	independence	and	
power	to	detect	simulated	patterns	of	avoidance	or	aggregation	that	decreased	with	
smaller	 sample	 size.	 Results	 suggest	 that	when	 the	 closure	 assumption	 is	 violated,	
co-	occurrence	models	 often	 fail	 to	 detect	 underlying	 patterns	 of	 avoidance	or	 ag-
gregation,	and	incorrectly	identify	a	pattern	of	independence	among	species,	which	
could	 have	 negative	 consequences	 for	 our	 understanding	 of	 species	 interactions	
and	conservation	efforts.	Thus,	when	closure	 is	violated,	 inferred	patterns	of	 inde-
pendence	 from	multi-	species	occupancy	 should	be	 interpreted	cautiously,	 and	evi-
dence	of	avoidance	or	aggregation	is	likely	a	conservative	estimate	of	true	pattern	or	
interaction.
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1  |  INTRODUC TION

Understanding	the	environmental	factors	and	interspecific	interac-
tions	driving	patterns	of	species	occurrence	underpins	the	field	of	
community	ecology	 (Morin,	2011)	and	can	provide	critical	 insights	
to	improve	the	conservation	of	biological	communities,	and	mitigate	
negative	consequences	of	global	change	(e.g.,	urbanization,	invasive	
species,	and	climate;	Singer	et	al.,	2013).	Occupancy	modeling	uses	
species-	specific	detection/non-	detection	data	collected	over	repeat	
surveys	of	sites	to	estimate	a	species'	probability	of	occurrence	(Ψ; 
hereafter,	 occupancy),	 while	 accounting	 for	 imperfect	 detection	
(MacKenzie	 et	 al.,	 2002).	 Inclusion	 of	 site-	specific	 covariates	 can	
allow	 identification	 of	 environmental	 factors	 associated	with	 pat-
terns	of	occurrence,	whereas	survey-	specific	covariates	can	be	used	
to	 address	 heterogeneity	 in	 detection.	 Extensions	 to	 occupancy	
modeling	have	facilitated	inferences	about	the	relative	influences	of	
environmental	factors	and	interspecific	interactions	on	species'	pat-
terns	of	occurrence	(MacKenzie	et	al.,	2021;	Richmond	et	al.,	2010; 
Rota	et	al.,	2016).	Conditional	two-	species	models	assume	that	two	
species	 interact	 through	 an	 asymmetrical	 relationship	 and	 the	oc-
currence	of	a	dominant	species	may	 influence	the	occurrence	of	a	
subordinate	species	(but	not	vice	versa;	Richmond	et	al.,	2010).	By	
contrast,	unconditional	multi-	species	occupancy	modeling	does	not	
make	 any	 a	 priori	 assumptions	 about	 the	 dominance	of	 sympatric	
species,	and	can	be	used	to	 investigate	 interactions	among	two	or	
more	species	(MacKenzie	et	al.,	2021;	Rota	et	al.,	2016).

Single-	season,	 single-	species	 occupancy	 models	 assume	 that	
sites	are	closed	to	changes	in	an	occupancy	state	for	the	target	spe-
cies	over	a	sampling	season	(i.e.,	the	period	over	which	repeat	sur-
veys	are	conducted	across	all	 sites;	Mackenzie,	2005a,	MacKenzie	
et	al.,	2018).	This	assumption	is	required	in	order	to	account	for	im-
perfect	detection.	When	the	closure	assumption	 is	violated,	occu-
pancy	estimates	tend	to	be	biased	high,	which	could	have	negative	
consequences	for	species	conservation	(Devarajan	et	al.,	2020; Rota 
et	al.,	2009).	The	ability	 to	satisfy	 the	closure	assumption	 is	 influ-
enced	(in	part)	by	the	correspondence	between	the	spatial	ecology	
of	the	target	species	and	the	study	design,	including	the	spatial	and	
temporal	scales	used	to	define	a	site	and	season,	respectively.	For	
example,	sites	that	are	small	 relative	to	the	movement	capacity	of	
the	target	species,	or	surveys	spanning	a	season	that	is	long	relative	
to	the	target	species’	seasonal	movement	patterns	or	survival,	may	
lead	to	violations	of	the	closure	assumption.	When	the	closure	as-
sumption	is	violated	and	movements	in	and	out	of	sites	are	random,	
estimates	of	occupancy	may	be	interpreted	as	an	unbiased	estimate	
of	 ‘use’	 (i.e.,	 the	probability	that	the	species	used	a	site	during	the	
sampling	season;	Gould	et	al.,	2019;	Mackenzie,	2005a,	2005b).	 If	
the	proportion	of	sites	occupied	is	a	primary	interest	(e.g.,	as	a	state	
parameter	or	surrogate	for	abundance;	MacKenzie	&	Nichols,	2004),	

estimates	of	‘use’	may	be	uninformative	or	lead	to	erroneous	conclu-
sions	about	the	state	of	the	population	(Mackenzie	&	Royle,	2005). 
Still,	estimates	of	‘use’	can	provide	valuable	information	on	wildlife-	
habitat	associations	and	relative	habitat	quality	(Gould	et	al.,	2019).

Extensions	 to	 occupancy	 modeling	 to	 investigate	 patterns	 of	
co-	occurrence	 for	>1	 species—	conditional	 two-	species	 (Richmond	
et	 al.,	 2010)	 and	 multi-	species	 (Rota	 et	 al.,	 2016)	 occupancy	
modeling—	maintain	 the	 same	 assumptions	 as	 single-	species	 occu-
pancy	modeling	(MacKenzie	et	al.,	2002),	including	the	assumption	
that	sites	are	closed	to	changes	in	an	occupancy	state	over	a	sam-
pling	 season	 (i.e.,	 the	 closure	 assumption).	 As	 with	 single-	species	
occupancy	modeling,	the	assumption	of	closure	is	necessary	to	esti-
mate	the	probability	of	detection	(p)	for	each	species,	but	may	also	
influence	inferred	patterns	of	co-	occurrence.	For	example,	consider	
a	 site	 surveyed	 four	 times	 during	 a	 single	 season	 for	 two	 species	
(Species	 A	 and	 Species	 B),	 where	 the	 encounter	 histories	 (h)	 for	
Species	A	and	Species	B	are	hA =	1000	and	hB =	0001,	respectively.	
If	the	closure	assumption	is	met	in	this	example,	it	is	clear	that	both	
species	co-	occurred	at	this	site.	By	contrast,	if	closure	is	not	met,	it	
is	unclear	if	the	two	species	co-	occurred,	or	if	each	species	used	the	
site	when	the	other	was	absent.

A	common	goal	of	modeling	co-	occurrence	is	to	evaluate	if	the	
occurrence	of	one	species	influences	the	occurrence	of	another	spe-
cies.	Closure	may	be	more	difficult	to	meet	in	studies	investigating	
patterns	of	co-	occurrence	for	>1	species,	particularly	when	species	
differ	in	their	spatial	ecology	(e.g.,	home	range	size,	movement	ten-
dencies,	and	density),	as	the	assumption	of	closure	applies	to	each	
species	considered	in	the	analysis.	While	failing	to	meet	the	closure	
assumption	 in	 single-	species	 analyses	 shifts	 the	 interpretation	 of	
Ψ	 to	 ‘use’,	 it	 is	unclear	how	this	 influences	the	ability	to	 infer	true	
patterns	of	co-	occurrence.	Nevertheless,	studies	explicitly	acknowl-
edging	 violations	 of	 the	 closure	 assumption	 have	 gone	 on	 to	 use	
multi-	species	detection	histories	to	infer	patterns	of	co-	occurrence	
(e.g.,	Li	et	al.,	2019;	Staudenmaier	et	al.,	2021).

Here,	 I	 simulated	 occurrence	 for	 two	 hypothetical	 species	
(Species	A	and	Species	B)	under	 co-	occurrence	patterns	of	 avoid-
ance,	aggregation,	or	 independence,	when	the	closure	assumption	
either	was	or	was	not	met	during	sampling.	I	then	evaluated	if	condi-
tional	two-	species	occupancy	models	provided	support	for	the	true	
co-	occurrence	pattern,	and	if	the	inferences	changed	when	sampling	
intensity	was	 reduced	or	when	the	encounter	history	was	discret-
ized	 to	a	 larger	 temporal	 resolution	 (i.e.,	when	multiple	 sequential	
surveys	were	collapsed	into	longer	survey	occasions).	I	hypothesized	
that	when	 the	 closure	 assumption	was	met,	 (i)	 two-	species	 occu-
pancy	models	would	tend	to	provide	support	for	the	true	pattern	of	
co-	occurrence,	(ii)	reductions	in	sampling	intensity	would	lead	to	less	
consistency	in	support	for	the	true	pattern	of	co-	occurrence,	and	(iii)	
a	large-	scale	temporal	resolution	of	the	encounter	history	would	not	
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impact	model	performance.	By	contrast,	 I	hypothesized	that	when	
the	 closure	 assumption	 was	 violated,	 (i)	 two-	species	 occupancy	
models	would	tend	to	find	support	for	independence	even	when	the	
true	pattern	of	co-	occurrence	was	avoidance	or	aggregation,	and	(ii)	
this	tendency	to	find	support	for	independence	would	be	increased	
by	reductions	 in	sampling	 intensity	and	using	 large-	scale	 temporal	
resolution	encounter	histories.

2  |  MATERIAL S AND METHODS

2.1  |  Simulation conditions

I	 simulated	 patterns	 of	 occurrence	 for	 two	 hypothetical	 species	
(Species	 A	 and	 Species	 B)	 across	 a	 simple	 continuous	 landscape	
comprised	of	900	equal-	sized	grid	cells	without	environmental	vari-
ation.	 I	 assumed	 that	 Species	A	was	dominant	 and	Species	B	was	
subordinate	(sensu	Richmond	et	al.,	2010).	For	simplicity,	I	assumed	
that	occupancy	of	a	site	by	either	species	was	by	a	single	individual	
and,	therefore,	there	was	no	abundance-	induced	heterogeneity	in	p. 
I	randomly	distributed	Species	A	across	the	landscape	such	that	true	
occupancy	of	Species	A	 (ΨA)	was	0.4,	0.55,	or	0.7	 (Table 1).	 I	 then	
distributed	Species	B	in	three	scenarios	in	relation	to	Species	A:	(i)	
the	occurrence	of	Species	B	was	negatively	associated	with	the	oc-
currence	of	Species	A	(i.e.,	avoidance);	(ii)	the	occurrence	of	Species	
B	was	positively	associated	with	 the	occurrence	of	Species	A	 (i.e.,	
aggregation);	or	(iii)	the	occurrence	of	Species	B	was	not	influenced	
by	the	occurrence	of	Species	A	(i.e.,	independence).	For	simulations	
of	avoidance,	Species	B	was	randomly	distributed	across	the	 land-
scape	 such	 that	 true	 occupancy	 of	 Species	 B,	 given	 that	 Species	
A	was	present	 (ΨBA),	 and	 true	occupancy	of	 Species	B,	 given	 that	
Species	A	was	 absent	 (ΨBa),	was	0.25	 and	0.65,	 0.35	 and	0.75,	 or	
0.45	and	0.85,	respectively	(Table 1).	For	simulations	of	aggregation,	

Species	B	was	randomly	distributed	across	the	landscape	such	that	
ΨBA	and	ΨBa	were	0.65	and	0.25,	0.75	and	0.35,	or	0.85	and	0.45,	
respectively	 (Table 1).	For	simulations	of	 independence,	Species	B	
was	 randomly	 distributed	 across	 the	 landscape	 such	 that	ΨB	 (i.e.,	
ΨBA = ΨBa)	was	0.45,	0.55,	or	0.65	 (i.e.,	 the	average	values	of	ΨBA 
and	ΨBa	combinations	were	used	for	simulations	of	avoidance	or	ag-
gregation;	Table 1).

I	 evaluated	 the	 performance	 of	 conditional	 two-	species	 occu-
pancy	models	when	the	closure	assumption	was	either	(i)	met	or	(ii)	
not	met.	To	evaluate	model	performance	when	closure	was	met,	 I	
generated	500	simulated	patterns	of	co-	occurrence	for	each	combi-
nation	of	occupancy	parameters,	maintaining	the	initial	distributions	
of	Species	A	and	Species	B	during	sampling.	To	evaluate	model	per-
formance	when	closure	was	not	met	(i.e.,	species	could	move	among	
sites	 between	 surveys),	 I	 again	 generated	 500	 simulated	 patterns	
of	 co-	occurrence	 for	 each	 combination	 of	 occupancy	 parameters,	
which	served	as	the	initial	distribution.	For	simplicity,	I	assumed	(i)	
both	species	had	the	capacity	to	move	among	sites	between	surveys,	
(ii)	the	probability	of	movement	(M)	from	an	occupied	site	to	another	
site	between	surveys	was	the	same	for	both	species	(MA = MB = M),	
and	(iii)	M =	0.02,	a	level	selected	to	represent	a	relatively	low	prob-
ability	of	closure	violations.	Between	surveys,	I	assumed	movements	
by	the	dominant	species	(Species	A)	were	independent	of	the	subor-
dinate	species	(Species	B).	For	Species	A,	I	randomized	the	order	in	
which	individuals	were	permitted	to	move	between	each	survey	and,	
when	an	individual	moved	from	a	site,	I	probabilistically	selected	the	
settlement	 site	 as	 a	 function	of	 the	 site's	 availability	 (i.e.,	 not	 cur-
rently	occupied	by	the	same	species)	and	distance	from	the	starting	
site,	such	that	movements	were	more	likely	to	nearby	available	sites.	
Although	it	was	not	possible	for	an	individual	to	move	to	a	site	that	
was	already	occupied	by	the	same	species,	a	site	that	was	occupied	
during	the	previous	survey	and	vacated	by	an	earlier	departure	could	
be	selected	as	a	settlement	site.	For	simulations	in	which	ΨBA = ΨBa,	
the	same	process	was	repeated	to	simulate	movements	for	Species	
B.	For	simulations	in	which	ΨBA ≠ ΨBa,	I	probabilistically	selected	the	
settlement	site	for	Species	B	as	a	function	of	the	site's	availability,	
distance	from	the	starting	site,	and	ΨBA	(when	Species	A	was	present	
at a site) or ΨBa	(when	Species	A	was	not	present	at	a	site).

For	all	simulations,	I	set	p	for	Species	A	(pA)	and	Species	B	(pB) to 
0.05	(i.e.,	pA = pB =	0.05)	and	assumed	the	probability	of	detection	
for	each	species	was	(i)	independent	of	the	presence	or	detection	of	
the	other	species,	and	 (ii)	constant	over	time.	 I	generated	species-	
specific	encounter	histories	for	N =	250	randomly	sampled	sites	over	
J =	21	replicated	surveys	(hereafter,	fine-	scale	temporal	resolution).	
The	temporal	resolution	at	which	encounter	data	is	considered	may	
influence	the	ability	to	infer	patterns	of	co-	occurrence	that	operate	
at	 temporal	 scales	 that	 are	 small	 relative	 to	 the	 survey	 length.	To	
investigate	how	temporal	resolution	of	surveys	influenced	the	reli-
ability	of	conditional	two-	species	modeling,	I	also	collapsed	surveys	
to J =	3	survey	occasions,	where	each	occasion	contained	7	sequen-
tial	 surveys	of	 the	 initial	21	surveys	 (hereafter,	 large-	scale	 tempo-
ral	resolution).	Camera	traps	inherently	detect	multiple	species	and	
have	become	a	leading	source	of	data	for	multi-	species	occupancy	

TA B L E  1 True	values	of	occupancy	for	Species	A	(ΨA)	and	
Species	B	(ΨBA =	occupancy	when	influenced	by	and	in	the	
presence	of	Species	A;	ΨBa =	occupancy	when	influenced	by	and	in	
the	absence	of	Species	A;	ΨB =	occupancy	of	when	independent	of	
Species	A)	used	to	simulate	species	occurrence	under	two	patterns	
of	influence	(avoidance	where	ΨBA < ΨBa	and	aggregation	where	
ΨBA > ΨBa)	and	a	pattern	of	independence	(where	ΨB = ΨBA = ΨBa)

Avoidance Aggregation Independence

ΨA ΨBA ΨBa ΨBA ΨBa ΨB

0.4 0.25 0.65 0.65 0.25 0.45

0.4 0.35 0.75 0.75 0.35 0.55

0.4 0.45 0.85 0.85 0.45 0.65

0.55 0.25 0.65 0.65 0.25 0.45

0.55 0.35 0.75 0.75 0.35 0.55

0.55 0.45 0.85 0.85 0.45 0.65

0.7 0.25 0.65 0.65 0.25 0.45

0.7 0.35 0.75 0.75 0.35 0.55

0.7 0.45 0.85 0.85 0.45 0.65
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modeling.	Consequently,	values	for	p	and	J	were	intended	to	emu-
late	 camera-	trap	 data	 collected	over	 relatively	 short	 surveys	 (e.g.,	
days)	 that	 could	 be	 discretized	 into	 longer	 survey	 occasions	 (e.g.,	
weeks).	The	selected	p	was	comparable	to	daily	camera-	based	de-
tection	probabilities	reported	for	carnivores	and	ungulates	(Shannon	
et	 al.,	2014),	 and	 resulted	 in	 a	 cumulative	probability	of	detection	
of	1–	(1–	0.05)7 =	0.30	across	7	surveys	(i.e.,	a	survey	occasion)	and	
1	–		(1–	0.05)21 =	0.66	across	all	surveys.	Finally,	field	logistics	often	
restrict	practitioners	to	sampling	a	relatively	small	proportion	of	the	
landscape.	Consequently,	 I	 repeated	 all	 the	 simulation	procedures	
and	 evaluated	 performance	 of	 conditional	 two-	species	 models	
when	sample	size	was	reduced	from	N = 250 to N =	100	randomly	
sampled	sites.	All	simulations	were	performed	in	program	R	(R	Core	
Team,	2021).

2.2  |  Modeling and assessing patterns of co- 
occurrence

For	each	set	of	conditions,	I	analyzed	the	sample	data	using	two	com-
peting	 single-	season,	 conditional	 two-	species	 models	 (Richmond	
et	 al.,	2010):	 (i)	 a	model	 in	which	 the	occurrence	of	 Species	A	 in-
fluenced	the	occurrence	of	Species	B	(i.e.,	ΨA,	ΨBA ≠ ΨBa; where ΨBA 
and	ΨBa	were	estimated	separately);	and,	(ii)	a	model	for	independ-
ence	between	Species	A	and	Species	B	 (i.e.,	ΨA,	ΨBA = ΨBa; where 
ΨBA	 and	ΨBa	 were	 not	 estimated	 separately	 and	 were	 presented	
together as ΨB).	 I	 held	 the	 detection	 submodels	 for	 each	 species	
constant	(i.e.,	the	null	model),	regardless	of	occupancy	or	detection	
state	of	the	other	species.	I	performed	all	occupancy	analyses	with	
an	 information-	theoretic	 approach	 in	 program	 R	 with	 the	 ‘wiqid’	
package	(Meredith,	2020).	For	each	model	set,	 I	evaluated	relative	
support	 for	competing	models	with	Akaike's	 Information	Criterion	
with	sample	size	correction	(AICc;	Burnham	&	Anderson,	2002).	I	ex-
cluded	models	that	failed	to	converge	from	subsequent	summaries	
and	comparisons.	When	the	most-	supported	model	suggested	that	
Species	A	 influenced	Species	B	 (i.e.,	 support	 for	 a	model	 of	 influ-
ence),	I	calculated	the	SIF	as

following	Richmond	et	al.	 (2010).	A	SIF <1	suggested	avoidance	 (i.e.,	
Species	 B	 occurred	 less	 frequently	 with	 Species	 A	 than	 expected	
compared	 to	 a	 null	 hypothesis	 of	 independence),	 whereas	 a	 SIF >1 
suggested	aggregation	(i.e.,	Species	B	occurred	more	frequently	with	
Species	A	than	expected).	A	SIF	=	1	suggested	that	the	two	species	
occurred	independently	of	one	another.

For	 each	 set	 of	 conditions,	 I	 summarized	 the	 reliability	 of	 the	
occupancy	estimates	from	the	most-	supported	models	across	sim-
ulations.	 Percent	 bias	 of	 occupancy	 estimates	 relative	 to	 the	 true	
parameter	 values	 were	 calculated	 for	 each	 simulation	 with	 the	
‘SimDesign’	 package	 in	 R	 (Chalmers	 &	 Adkins,	 2020).	 I	 summa-
rized	percent	bias	as	 the	mean	bias	 for	each	parameter	and	set	of	

conditions.	To	characterize	overall	performance	under	each	set	of	
conditions,	 I	 summarized	 the	proportion	of	 simulations	 that	 found	
support	 for	 the	 true	pattern	of	co-	occurrence.	Additionally,	 I	 con-
sidered	 the	 model	 of	 independence	 as	 competitive	 when	 (i)	 the	
simulated	pattern	was	independence,	(ii)	the	model	for	a	pattern	of	
influence	had	the	lowest	AICc,	and	(iii)	the	model	of	independence	
(which	had	one	fewer	parameter	than	the	model	of	 influence)	was	
within	2	ΔAICc	units	of	the	top	model	(Burnham	&	Anderson,	2002). 
Thus,	for	simulations	of	independence,	I	reported	both	the	propor-
tion	 of	 simulations	 supporting	 the	 true	 pattern	 of	 co-	occurrence	
and	 an	 adjusted	proportion	when	 considering	 competitive	models	
finding	support	for	independence.	For	each	set	of	conditions,	I	cal-
culated	the	expected	(or	true)	SIF	and	then	compared	the	mean	SIF	
(across	simulations	when	a	model	of	influence	was	most	supported)	
to	the	expected	SIF.

3  |  RESULTS

The	simulated	 landscape	contained	900	cells	oriented	 in	a	30 × 30	
grid.	Reducing	the	sample	size	from	N = 250 to N =	100	represented	
a	reduction	in	sampling	intensity	from	~28%	to	~11%	of	the	simulated	
landscape.	For	each	combination	of	simulated	conditions,	<0.4%	of	
the	500	simulations	failed	to	achieve	numerical	convergence.

Based	on	the	most-	supported	model	for	each	simulated	dataset,	
estimates	of	ΨA	were	generally	unbiased	when	the	population	was	
closed	 (mean	bias	<3.1%),	 and	positively	biased	when	 the	popula-
tion	was	not	closed	(mean	bias	7.3%–	13.3%),	with	bias	being	higher	
when	the	sample	size	was	small	 (N =	100),	and	encounter	histories	
were	collapsed	to	a	large-	scale	temporal	resolution	(Table 2). Across 
simulated	 conditions,	 a	 high	 proportion	 of	ΨA	 estimates	were	 not	
different	 from	 the	 true	 (simulated)	 value	 (i.e.,	 the	95%	confidence	
intervals	(CIs)	about	the	estimate	included	the	true	value;	Figure 1a). 
Similarly,	 estimates	of	ΨBA	and	ΨBa	were	generally	unbiased	when	
the	population	was	 closed	 (mean	bias	<5%),	 and	biased	when	 the	
population	was	 not	 closed,	with	 bias	 being	 higher	when	 the	 sam-
ple	size	was	small	 (Table 3).	Under	simulated	patterns	of	 indepen-
dence,	 a	high	proportion	of	ΨB	estimates	were	not	different	 from	
the	true	value	(Figure 1b).	Precision	of	estimates	tended	to	decrease	
when	the	sample	size	was	small	and	when	the	closure	assumption	
was	violated.	For	example,	when	considering	estimates	of	ΨA	under	
simulated	patterns	of	 independence,	 reducing	 the	number	of	sites	
sampled	(while	maintaining	closure)	or	violating	the	closure	assump-
tion	(while	maintaining	N =	250	sites	sampled)	resulted	in	a	~37%	or	
~17%	increase	in	the	width	of	95%	CIs	about	the	estimate,	respec-
tively,	while	reducing	the	number	of	sites	sampled	and	violating	the	
closure	assumption	resulted	in	a	~49%	increase	in	the	width	of	95%	
CIs.	Consequently,	a	greater	proportion	of	simulations	had	estimates	
with	95%	CIs	containing	the	true	value	when	sample	size	was	small,	
closure	was	violated,	or	both	(Figure 1a,b).	Under	simulated	patterns	
of	avoidance	and	aggregation,	 the	proportion	of	models	with	esti-
mates	for	ΨBA	and	ΨBa	for	which	the	95%	CI	contained	the	true	value	
was	 generally	 higher	 when	 the	 closure	 assumption	 was	 met	 and	

SIF =
Ψ

A
Ψ

BA

Ψ
A
(

Ψ
A
Ψ

BA
+
[

1 − Ψ
A
]

Ψ
Ba
)
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sample	size	was	 large	(Figure 1c,d).	By	contrast,	when	closure	was	
violated	and	the	true	value	of	ΨBA or ΨBa	was	low	(<0.5),	relatively	
few	models	 tended	to	produce	estimates	with	95%	CIs	containing	
the	true	value	(Figure 1c,d).

Of	primary	interest	was	whether	conditional	two-	species	models	
tended	 to	 recover	 the	 simulated	pattern	of	 co-	occurrence.	 Similar	
patterns	 in	model	 performance	 emerged	 for	 both	 patterns	 of	 co-	
occurrence	 in	 which	 Species	 A	 influenced	 Species	 B.	 Conditional	
two-	species	models	tended	to	correctly	find	support	for	an	influence	
of	 Species	A	on	Species	B	when	 the	 closure	 assumption	was	met	
and	sample	size	was	large,	with	the	proportion	of	models	identifying	
the	correct	pattern	being	slightly	higher	 for	patterns	of	avoidance	
(Figure 2a)	than	aggregation	(Figure 2b).	By	contrast,	models	tended	
to	 incorrectly	 find	 support	 for	 independence	 between	 Species	 A	
and	Species	B	when	the	closure	assumption	was	violated	and	sam-
ple	size	was	small	(Figure 2a,b).	Generally,	models	were	less	likely	to	
correctly	identify	a	simulated	pattern	of	influence	as	the	true	value	
of	ΨA	 increased	 (Figure 2a,b).	When	 the	 simulated	 pattern	 of	 co-	
occurrence	 between	 Species	A	 and	 Species	 B	was	 independence,	
conditional	two-	species	models	tended	to	correctly	 infer	 indepen-
dence.	Moderate	increases	in	performance	(identification	of	a	true	
pattern	of	independence)	tended	to	occur	with	smaller	sample	size,	
violations	of	 the	 closure	 assumption,	 and	higher	 values	of	ΨA	 and	
ΨB	(Figure 2c).	Across	simulated	conditions,	the	proportion	of	model	
sets	 correctly	 identifying	 independence	 increased	when	 consider-
ing	 those	where	 the	model	 of	 influence	was	most	 supported,	 but	
the	model	 of	 independence	was	 competitive	 (Figure 2c;	 Burnham	
&	 Anderson,	 2002).	 Although	 Figure 2	 presents	 results	 based	 on	

encounter	histories	at	a	fine-	scale	resolution,	results	based	on	large-	
scale	encounter	histories	were	similar	(results	not	plotted).

When	the	simulated	pattern	was	avoidance	or	aggregation,	and	
the	conditional	 two-	species	model	 found	support	 for	an	 influence	
of	 Species	 A	 on	 Species	 B,	 the	 estimated	 SIF	 values	 aligned	with	
the	expected	values	based	on	the	simulated	patterns	(Figure 3). The 
magnitude	of	the	estimated	SIF	tended	to	suggest	a	weaker	interac-
tion	between	Species	A	and	Species	B	when	the	closure	assumption	
was	violated	 (Figure 3).	When	the	simulated	pattern	was	 indepen-
dence	and	the	conditional	two-	species	model	found	support	for	an	
influence,	the	mean	estimated	SIF	values	aligned	with	independence	
(Figure 3).	 The	 SIF	 results	 presented	 here	 (and	 in	 Figure 3) were 
based	on	sampling	N =	250	sites	with	fine-	scale	encounter	histories.	
When	sample	 size	was	 reduced	 to	N =	100,	patterns	were	 similar	
but	there	was	greater	variability	in	the	mean	estimated	SIF,	and	the	
magnitude	 of	 the	 estimated	 SIF	 suggested	 a	 stronger	 interaction	
between	Species	A	and	Species	B	 (results	not	plotted).	Collapsing	
fine-	scale	 encounter	histories	 to	 a	 large-	scale	 temporal	 resolution	
had	negligible	impacts	on	SIF	results.

4  |  DISCUSSION

Understanding	 co-	occurrence	 patterns	 among	 sympatric	 species	
is	 of	 broad	 ecological	 interest	 and	 has	 implications	 for	 the	 con-
servation	of	 imperiled	species	and	ecosystems.	Multi-	species	oc-
cupancy	models	offer	effective	approaches	for	inferring	patterns	
of	co-	occurrence	(MacKenzie	et	al.,	2018)	and	have	been	used	to	

TA B L E  2 Mean	percent	bias	(B)	in	estimates	of	occupancy	for	Species	A	across	500	simulations	with	three	true	levels	of	occupancy	of	
Species	A	(ΨA)	under	three	patterns	of	co-	occurrence	with	Species	B	(i.e.,	independence,	avoidance,	and	aggregation)	when	the	population	
was	either	closed	(Closed)	or	not	closed	(Open)	to	changes	in	the	occupancy	state	with	sampling	at	N =	100	or	250	random	sites	and	
repeated	surveys	at	a	fine-	scale	(FS)	or	large-	scale	(LS)	temporal	resolution	(TR)

N TR ΨA

Independence Avoidance Aggregation

(ΨBA = ΨBa) (ΨBA < ΨBa) (ΨBA > ΨBa)

Closed BA Open BA Closed BA Open BA Closed BA Open BA

100 FS 0.40 2.17 8.95 1.32 8.72 1.45 9.29

0.55 1.20 10.73 1.39 10.18 1.14 10.80

0.70 1.26 10.35 0.07 10.04 0.88 10.53

100 LS 0.40 3.07 11.79 1.61 11.28 2.25 12.08

0.55 1.64 13.18 1.75 12.59 1.31 13.30

0.70 1.50 12.27 0.38 11.81 1.28 12.17

250 FS 0.40 0.68 7.41 0.78 7.33 0.72 7.64

0.55 0.51 9.33 0.34 9.11 0.77 9.36

0.70 0.49 10.24 0.26 9.52 0.43 9.88

250 LS 0.40 0.82 9.51 0.98 9.09 0.91 9.72

0.55 0.84 11.74 0.58 11.07 0.89 11.60

0.70 0.60 12.12 0.28 11.36 0.59 11.75

Notes: ΨBA =	True	occupancy	of	Species	B	in	the	presence	of	Species	A;	ΨBa =	True	occupancy	of	Species	B	in	the	absence	of	Species	A;	Fine-	scale	
temporal	resolution	included	21	surveys;	Large-	scale	temporal	resolution	collapsed	fine-	scale	surveys	into	three	surveys	each	containing	seven	
sequential	fine-	scale	surveys.



6 of 12  |     LONSINGER

investigate	ecological	patterns	and	theories	(Lombardi	et	al.,	2020; 
Robinson	et	al.,	2014),	interactions	among	native	and	invasive	spe-
cies	 (Dugger	et	al.,	2016;	Hegel	et	al.,	2019;	Osorio	et	al.,	2020),	
and	 community	 response	 to	 global	 change	 (Parsons	 et	 al.,	2019; 
Sovie	 et	 al.,	2020).	 The	within-	season	 closure	 assumption	 inher-
ent	 to	 occupancy	modeling	 (MacKenzie	 et	 al.,	 2002)	 extends	 to	
multi-	species	 models	 as	 well	 (Devarajan	 et	 al.,	 2020;	 Richmond	
et	al.,	2010;	Rota	et	al.,	2016),	but	the	impact	of	violating	the	clo-
sure	 assumption	 on	 inferences	 about	 patterns	 of	 co-	occurrence	
has	not	been	evaluated.	My	results	suggest	that	when	the	closure	
assumption	is	violated,	occupancy-	based	models	of	co-	occurrence	
often	fail	 to	detect	underlying	patterns	of	avoidance	or	aggrega-
tion	 and	 incorrectly	 identify	 a	 pattern	 of	 independence	 among	
species,	which	could	have	negative	consequences	for	the	conser-
vation	of	biodiversity.

Camera	trapping	has	been	one	of	the	most	used	sampling	tech-
niques	 for	 occupancy-	based	 investigations	 of	 multiple	 species	
(Burton	et	al.,	2015;	O'Connell	et	al.,	2011).	Rapid	advancements	in	
camera	technology	(e.g.,	reliability	and	capabilities)	and	the	increas-
ingly	widespread	use	of	cameras	has	facilitated	a	new	era	of	multi-	
species	monitoring	(Allan	et	al.,	2018;	Nazir	et	al.,	2017;	O'Connell	
et	 al.,	 2011).	 Additionally,	 large-	scale	 camera-	based	 monitoring	
programs	 that	 offer	 open-	source	multi-	species	 data	 streams	 have	

recently	 been	 established	 (e.g.,	 SnapshotUSA;	 Cove	 et	 al.,	 2021). 
Consequently,	while	 the	 opportunity	 to	 apply	multi-	species	 occu-
pancy	models	will	 likely	 increase,	 data	 collection	 procedures	may	
not	be	at	the	correct	spatial	and	temporal	scales	necessary	to	meet	
the	closure	assumption	for	many	species.	The	simulations	presented	
here	emulated	camera	trapping	data	and	the	simulated	level	for	de-
tection	 was	 comparable	 to	 observed	 levels	 of	 daily	 detection	 for	
several	carnivores	(Shannon	et	al.,	2014).	Like	the	conditions	under	
which	the	simulated	data	were	collected	and	discretized,	camera	trap	
data	 is	 commonly	 characterized	 as	many	 short	 surveys	 (e.g.,	 daily	
encounter	histories;	Parsons	et	al.,	2019)	or	fewer	long	surveys	(e.g.,	
weekly	encounter	histories;	O'Connell	et	al.,	2006).	Still,	results	from	
the	 simulations	here	based	on	 the	 large-	scale	 temporal	 resolution	
in	which	surveys	were	collapsed	into	three	survey	occasions,	would	
be	more	comparable	to	data	from	alternative	sampling	approaches	
(e.g.,	 visual	 encounter	 or	 call-	back	 surveys)	 where	 fewer	 surveys	
are	typically	completed	and	a	cumulative	‘occasion-	level’	detection	
probability	 of	~0.3	would	 not	 be	 unreasonable	 (e.g.,	Mackenzie	&	
Royle,	2005).

Closure	 is	 influenced	 by	 the	 length	 of	 the	 season	 (i.e.,	 the	
period	 over	which	 surveys	 are	 performed),	 spatial	 scale	 of	 a	 site	
(i.e.,	 the	 unit	 of	 analysis),	 and	 spatial	 ecology	 of	 the	 target	 spe-
cies	 (MacKenzie	 et	 al.,	 2018).	 Even	with	 careful	 consideration,	 it	

F I G U R E  1 Proportion	of	simulations	
for	which	the	estimates	of	(a)	occupancy	
for	Species	A	(ΨA),	(b)	occupancy	of	
Species	B	given	Species	A	was	present	
(ΨBA)	and	occupancy	of	Species	B,	given	
that	Species	A	was	absent	(ΨBa)	when	
the	simulated	pattern	was	independence	
(i.e.,	ΨBA = ΨBa),	(c)	ΨBA	and	ΨBa	when	the	
simulated	pattern	was	avoidance	(i.e.,	
ΨBA < ΨBa),	and	(d)	ΨBA	and	ΨBa	when	the	
simulated	pattern	was	aggregation	(i.e.,	
ΨBA > ΨBa),	was	not	different	from	the	
true	simulated	level	of	occupancy	(based	
on	95%	confidence	intervals)	when	sites	
were	closed	or	not	closed	(i.e.,	open)	to	
changes	in	the	occupancy	state	during	
sampling	with	sampling	at	N = 100 or 250 
random	sites	and	repeated	surveys	at	a	
fine-	scale	(FS)	or	large-	scale	(LS)	temporal	
resolution.	Results	presented	are	based	
on	the	most-	supported	conditional	two-	
species	occupancy	model
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may	be	difficult	to	meet	the	closure	assumption	for	some	species	
(Mackenzie	&	Royle,	2005)	 due	 to	 logistical	 constraints	 (e.g.,	 lim-
ited	equipment	or	personnel)	that	require	sampling	to	take	longer	
than	a	period	over	which	closure	can	be	reasonably	assumed	(e.g.,	
Johnson	et	al.,	2020),	or	challenges	identifying	an	appropriate	spa-
tial	scale	 (e.g.,	 Jornburom	et	al.,	2020).	Consequently,	 the	closure	
assumption	 is	 often	 relaxed	 with	 estimates	 of	 occupancy	 from	
single-	species	models	interpreted	as	the	probability	of	‘use’	(Gould	
et	al.,	2019;	Mackenzie,	2005a).	For	multi-	species	occupancy	anal-
yses,	the	challenge	of	meeting	the	closure	assumption	is	amplified,	
as	 the	 assumption	 applies	 to	 all	 target	 species,	 and	 species	 may	
operate	at	different	spatial	and	temporal	scales.	When	the	closure	
assumption	 is	 violated,	 species-	specific	 estimates	 of	 occupancy	
tend	to	be	biased	high	(Devarajan	et	al.,	2020;	Rota	et	al.,	2009,	but	
see	Kendall	et	al.,	2013	and	Otto	et	al.,	2013	for	conditions	where	
lack	of	closure	may	lead	to	negative	bias	 in	occupancy	estimates),	
and	this	would	 likely	 lead	to	greater	perceived	overlap	 in	 the	dis-
tributions	of	sympatric	species	than	actually	occurred,	potentially	
limiting	 the	ability	of	co-	occurrence	models	 to	detect	patterns	of	
non-	independence	(Steen	et	al.,	2014).	Indeed,	my	results	demon-
strated	 that	 when	 closure	 was	 violated,	 conditional	 two-	species	
models	 produced	 estimates	 of	 occupancy	 that	 were	 biased	 high	
for	 both	 species,	 and	models	were	 less	 likely	 to	 detect	 true	 pat-
terns	of	avoidance	or	aggregation.	The	ability	to	detect	patterns	of	

avoidance	or	aggregation	requires	variation	 in	occurrence	of	both	
species.	As	demonstrated	 in	Figure 3,	 the	expected	SIF	 tends	 to-
ward	 (and	converges	at)	1	as	ΨA	 increases	 to	1,	 regardless	of	 the	
ΨBA:ΨBa	 ratio.	This	suggests	 that	when	estimates	of	ΨA are high— 
whether	naturally	or	due	 to	 an	upward	bias	 resulting	 from	a	 lack	
of	 closure—	patterns	 of	 avoidance	 and	 aggregation	 will	 be	 more	
difficult	to	detect.	My	results	support	these	predictions,	with	the	
power	to	detect	patterns	of	avoidance	and	aggregation	decreasing	
for	higher	values	of	ΨA	and	when	closure	was	violated.

MacKenzie	and	Royle	(2005)	and	Shannon	et	al.	(2014) provided 
recommendations	for	the	optimal	number	of	sites	for	single-	species	
occupancy	modeling,	but	how	sample	size	 influences	the	ability	to	
infer	patterns	of	co-	occurrence	has	not	been	investigated.	I	initially	
simulated	data	collection	at	250	sites,	a	sampling	intensity	that	ap-
proximated	the	optimal	number	of	sites	(Mackenzie	&	Royle,	2005) 
based	on	the	simulated	number	of	surveys,	detection,	and	average	
occupancy,	with	a	standard	error	of	0.06.	 In	practice,	sampling	 in-
tensity	 is	often	 limited	 (e.g.,	Robinson	et	 al.,	2014	 [83],	Nagy-	Reis	
et	al.,	2017	[45],	Osorio	et	al.,	2020	[50]).	Consequently,	I	also	con-
sidered	data	collection	at	only	100	sites	to	reflect	a	restricted	sam-
pling	intensity	that	more	closely	aligned	with	many	empirical	studies.	
As	expected,	conditional	two-	species	models	had	greater	power	to	
detect	patterns	of	avoidance	and	aggregation	when	sample	size	was	
larger.

F I G U R E  2 Proportion	of	simulations	
for	which	conditional	two-	species	
occupancy	models	supported	the	true	
simulated	pattern	of	co-	occurrence	
between	Species	A	and	Species	B	when	
sites	were	closed	or	not	closed	(i.e.,	open)	
to	changes	in	occupancy	state	during	
sampling,	and	sampling	occurred	at	
more	(N =	250)	or	fewer	(N = 100) sites; 
simulations	were	performed	under	various	
levels	of	true	occupancy	for	Species	A	
(ΨA)	and	patterns	of	co-	occurrence	for	
Species	B	(ΨB)	including	(a)	a	pattern	of	
influence	(i.e.,	avoidance)	in	which	the	
true	occupancy	of	Species	B,	given	that	
Species	A	was	present	(ΨBA) was lower 
than	the	true	occupancy	of	Species	B,	
given	that	Species	A	was	absent	(ΨBa),	
(b)	a	pattern	of	influence	(i.e.,	aggregation)	
in	which	ΨBA > ΨBa,	and	(c)	a	pattern	of	
independence	(i.e.,	ΨBA = ΨBa).	Results	
within	the	gray	bar	represent	the	adjusted	
proportion	when	considering	competitive	
models	within	2	ΔAICc	finding	support	
for	independence.	Results	are	presented	
based	on	encounter	histories	at	a	fine-	
scale	resolution
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Emmet	et	al.	(2021)	suggested	that	discretizing	continuous-	time	
species	 detections	 could	 lead	 to	 sparse	 data	 and	 underestimates	
of	detection,	inflating	estimates	of	occupancy.	Similarly,	I	expected	
that	 collapsing	 fine-	scale	 temporal	 surveys	 into	 longer	 survey	 oc-
casions	would	 inflate	occupancy	estimates,	 and	 thus	decrease	 the	
power	 to	detect	patterns	of	 avoidance	or	 aggregation.	 I	 observed	
higher	bias	in	estimates	when	using	a	longer	survey	occasion	versus	
the	fine-	scale	temporal	resolution;	this	pattern	occurred	regardless	
of	sample	size	or	whether	closure	was	met,	though	the	magnitude	
of	the	effect	was	lower	for	the	larger	sample	size	and	with	closure.	
Still,	in	contrast	to	expectations,	collapsing	encounter	histories	from	
a	fine-	scale	to	a	 large-	scale	temporal	resolution	had	no	noticeable	
impact	on	the	power	to	detect	patterns	of	avoidance	or	aggregation	
or	mean	SIF	estimates.

Collectively,	these	findings	suggest	that	closure	violations	could	
lead	 to	 erroneous	 support	 for	 patterns	 of	 independence	 among	
species	when	the	true	pattern	of	co-	occurrence	is	avoidance	or	ag-
gregation.	 Several	 studies	 have	 explicitly	 acknowledged	 violations	
of	the	closure	assumption,	used	conditional	two-	species	occupancy	
models	 to	 assess	 patterns	 of	 co-	occurrence,	 and	 then	 concluded	
that	 the	 species	 occurred	 independently	 of	 one	 another	 (e.g.,	 Li	
et	al.,	2019;	Staudenmaier	et	al.,	2021).	 In	 these	scenarios,	my	 re-
sults	 suggest	 that	 the	 inferred	patterns	of	 independence	could	be	
an	artifact	of	a	lack	of	closure	and	should	be	interpreted	cautiously.	
By	 contrast,	when	 closure	 violations	 likely	 occur	 and	models	 find	
evidence	of	avoidance	(e.g.,	Kafley	et	al.,	2019)	or	aggregation,	my	
results	suggest	 the	 inferred	pattern	 (and	associated	SIF)	 is	 likely	a	
conservative	estimate	of	the	interaction	(Steen	et	al.,	2014).	When	
closure	violations	may	be	obscuring	patterns	of	co-	occurrence	(i.e.,	
at	 the	site	 level),	careful	 interpretation	of	detection	parameters	or	
temporal	activity	 (e.g.,	 from	survey	methods	such	as	cameras	 that	
provide	information	on	activity)	may	provide	evidence	of	within-	site	
spatial	or	temporal	patterns	of	interspecific	interactions	(e.g.,	Lewis	
et	al.,	2015;	Lonsinger	et	al.,	2017).

Minimizing	closure	violations	may	 involve	design-	based	 solu-
tions	or	model-	based	solutions,	or	both.	Ideally,	sampling	designs	
for	 multi-	species	 occupancy	 modeling	 should	 consider	 the	 re-
search	question(s)	and	ecological	traits	of	target	species	(e.g.,	pat-
terns	of	phenology	and	movement),	and	employ	appropriate	spatial	
and	temporal	scales	such	that	violations	of	the	closure	assumption	
are	 minimized	 (see	 Devarajan	 et	 al.,	 2020	 for	 an	 excellent	 dis-
cussion	of	best	practices	for	multi-	species	occupancy	modeling).	
Integrating	knowledge	on	target	species'	ecologies	to	develop	an	a	
priori	sampling	design	that	minimizes	closure	violations	will	reduce	
the	need	to	rely	on	complicated	modeling	procedures	to	address	
bias	 in	estimates	and	 inferences	 (Devarajan	et	al.,	2020;	Kendall	
et	al.,	2013;	MacKenzie	et	al.,	2018;	Otto	et	al.,	2013).	Selecting	
sampling	 sites	 that	 approximate	 the	 home-	range	 size	 of	 the	 tar-
get	species	may	reduce	closure	violations,	as	can	conducting	sur-
veys	as	quickly	as	possible	within	and	across	sites	 (Mackenzie	&	
Royle,	 2005).	 However,	 differences	 in	 life-	history	 traits	 among	
species	can	make	it	difficult	to	identify	an	appropriate	joint	sam-
pling	design	for	all	target	species	(Devarajan	et	al.,	2020).	System-	
specific	 simulations	 considering	 the	 disparate	 life-	history	 traits	
of	 target	 species	 and	 potential	 forms	 of	 closure	 violations	 (e.g.,	
random	movement,	 staggered	entry	and	exit,	or	 local	 extinction	
due	 to	 sampling	 disturbance)	 can	 help	 inform	 sampling	 design,	
reduce	 bias	 in	 parameter	 estimates,	 and	 improve	 inferences	 on	
species	 interactions	 (Devarajan	et	al.,	2020;	Kendall	et	al.,	2013; 
Otto	et	al.,	2013).	When	using	open-	source	data	streams	(or	other	
similar	 data	 sources)	 for	which	 the	 original	 sampling	 design	was	
not	 intended	 for	multi-	species	occupancy	modeling,	 the	scale	of	
data	collection	and	appropriate	scale	for	co-	occurrence	modeling	
may	be	misaligned	(Altwegg	&	Nichols,	2019).	When	closure	vio-
lations	are	expected	(or	known	to	occur)	for	one	or	more	species	
under	an	implemented	sampling	design,	evidence	of	closure	viola-
tions	should	be	tested	for	and,	if	detected,	accounted	for	through	

F I G U R E  3 (a)	Expected	species	interaction	factor	(SIF)	for	
simulated	combinations	of	occupancy	for	Species	B,	given	that	
Species	A	was	present	(ΨBA)	or	absent	(ΨBa)	from	a	site	under	
patterns	of	avoidance	(red),	aggregation	(blue),	or	independence	
(black)	as	a	function	of	the	occupancy	for	Species	A	(ΨA);	and,	(b)	
mean	estimated	SIF	(±1	standard	error)	for	simulations	where	the	
most-	supported	model	provided	support	for	a	lack	of	independence	
(i.e.,	avoidance	or	aggregation)	when	sites	were	closed	(solid	circles)	
or	not	closed	(open	circles)	to	changes	in	occupancy	state	and	
sampling	occurred	at	N =	250	sites.	For	each	simulated	level	of	ΨA 
when	sites	were	closed	(or	not),	results	for	combinations	of	ΨBA	and	
ΨBa	are	presented	from	left	to	right	by	increasing	the	value	of	ΨBA. 
Results	are	presented	based	on	encounter	histories	at	a	fine-	scale	
resolution
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model-	based	solutions	to	reduce	bias	and	 improve	 inferences	on	
patterns	of	co-	occurrence.

Assessing	 closure	 can	 be	 difficult.	 Nonetheless,	 evaluating	 if	
the	closure	assumption	 is	met	 for	each	 target	species	can	provide	
guidance	on	the	suitability	of	the	data,	offer	greater	insights	into	the	
strength	of	inferences	related	to	patterns	of	co-	occurrence,	or	both.	
Goodness-	of-	fit	tests	for	occupancy	models	can	detect	evidence	for	
violations	of	model	assumptions	 (Broms	et	al.,	2016;	MacKenzie	&	
Bailey,	2004;	Warton	et	al.,	2017),	but	(i)	often	fail	to	provide	mean-
ingful	 results	when	sample	size	 is	 small	 (i.e.,	 fail	 to	detect	poor	 fit	
when	it	occurs;	MacKenzie	&	Bailey,	2004),	and	(ii)	can	suggest	ad-
equate	 model	 fit	 even	 when	 closure	 violations	 occur	 via	 random	
movements	 (Gould	et	al.,	2019).	 If	multiple	surveys	are	conducted	
within	each	site	visit	(or	sampling	occasion)	during	a	season,	dynamic	
occupancy	 analyses	 (Kendall	 et	 al.,	 2013;	 Otto	 et	 al.,	 2013; Rota 
et	 al.,	 2009),	 which	 apply	 Pollock's	 robust	 design	 (Pollock,	 1982) 
and	estimate	colonization	and	extinction	(i.e.,	dynamic	parameters)	
between	 site	 visits,	 can	 be	 extended	 for	 multiple	 species	 (Farris	
et	 al.,	 2017;	Fidino	et	 al.,	2019;	MacKenzie	et	 al.,	2021)	 and	com-
pared	to	static	(single-	season)	models	to	formally	test	for	evidence	
of	closure	(e.g.,	via	a	likelihood	ratio	test).	Although	the	application	
of	 dynamic	models	 is	more	 appropriate	 than	 goodness-	of-	fit	 tests	
for	assessing	closure,	the	approach	requires	a	sampling	design	that	
is	 not	 commonly	 used	 for	 occupancy	 modeling	 (or	 anticipated	 to	
be	used	 for	many	 future	 studies)	 due	 to	 the	extra	 effort	 required	
(Kendall	et	al.,	2013).	Alternatively,	species-	specific	occurrence	data	
may	be	temporally	thinned	(or	partitioned)	and	analyzed	as	smaller	
temporal	intervals	to	check	if	the	signs	(effects)	of	beta	coefficients	
changed	 (Devarajan	 et	 al.,	 2020).	 Time-	dependent	 single-	season	
models	may	 not	 be	 adequate	 for	 reducing	 bias	 caused	 by	 closure	
violations	(Otto	et	al.,	2013).

The	 scenarios	 evaluated	here	were	not	 exhaustive	 and	 simu-
lations	 performed	 were	 intentionally	 simplified	 to	 minimize	 the	
factors	 influencing	 inferences	 about	 patterns	 of	 co-	occurrence.	
Nevertheless,	these	simulations	highlight	challenges	to	interpreta-
tion	of	results	from	co-	occurrence	models	when	closure	violations	
occur,	and	similar	challenges	are	expected	under	other	scenarios	
unless	closure	violations	are	minimized.	The	extent	of	closure	vio-
lation	was	directly	related	to	the	probability	of	movement,	which	
was	fixed	at	a	 low	rate	such	that	the	probability	that	the	species	
never	moved	from	a	site	was	>0.65.	Consequently,	the	results	of	
these	simulations	reflect	expectations	when	closure	violations	are	
relatively	 low,	and	more	severe	violations	of	the	closure	assump-
tion	 would	 likely	 further	 decrease	 the	 power	 of	 co-	occurrence	
models	to	detect	patterns	of	avoidance	or	aggregation.	Simulations	
not	presented	here	indicated	that	for	the	average	values	of	occu-
pancy	used	in	this	study,	decreasing	the	probability	of	movement	
for	both	species	 from	0.02	 to	0.005	 increased	 the	proportion	of	
simulations	 for	which	 the	 true	pattern	of	avoidance	 (0.90)	or	ag-
gregation	(0.87)	was	detected,	whereas	increasing	the	probability	
of	movement	to	0.05	decreased	the	proportion	of	simulations	for	
which	 the	 true	pattern	of	 avoidance	 (0.31)	 or	 aggregation	 (0.25)	

was	 detected.	 I	 did	 not	 consider	 conditions	 where	 closure	 was	
violated	 for	 a	 single	 species.	 Although	 beyond	 the	 scope	 of	 the	
current	work,	simulations	evaluating	the	influence	of	environmen-
tal	covariates,	closure	violations	by	only	a	single	species,	and	ad-
ditional	 sampling	 design	 considerations	 would	 help	 advance	 our	
understanding	of	 factors	 impacting	 the	 reliability	of	 inferred	 co-	
occurrence	patterns.	Although	I	restricted	the	simulations	to	two	
species	 and	 analyzed	 the	 data	 with	 the	 widely	 used	 conditional	
two-	species	 occupancy	 modeling	 framework,	 the	 application	 of	
unconditional	multi-	species	occupancy	models	 (Rota	et	al.,	2016) 
has	been	increasing.	I	expect	violations	of	the	closure	assumption	
would	 have	 similar	 impacts	 on	 results	 from	 unconditional	multi-	
species	modeling	 (Rota	et	al.,	2016),	 including	underestimates	of	
detection,	overestimates	of	occupancy,	and	higher	perceived	over-
lap	 in	 the	 distribution	 of	 species	 than	 actually	 occurred,	 which	
would	 limit	 the	 power	 to	 detect	 patterns	 of	 non-	independence.	
Still,	 simulations	 evaluating	 the	 impacts	of	 closure	on	 inferences	
from	unconditional	modeling	procedures	and	considering	>2 spe-
cies	would	 advance	 our	 understanding	 of	 the	 reliability	 of	 infer-
ences	related	to	species	co-	occurrence	patterns.
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