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Abstract: Amyloid oligomeric species, formed during misfolding processes, are believed to play
a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the
structure of amyloid intermediates and their aggregation pathways is essential in understanding
the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are
challenging due to the low abundance and heterogeneity of those metastable intermediate species.
Single-molecule techniques have the potential to overcome these difficulties. This review aims to
report some of the recent advances and applications of vibrational spectroscopic techniques for the
structural analysis of amyloid oligomers, with special focus on single-molecule studies.

Keywords: vibrational spectroscopy; amyloid oligomers; amyloid intermediates; protein structure;
single molecule

1. Introduction

The formation of fibrillar peptide and protein aggregates and their deposition within
and around cells is a hallmark of numerous neurodegenerative and metabolic diseases,
ranging from Alzheimer’s and Parkinson’s diseases to type II diabetes and dialysis-
related amyloidosis [1]. Those so-called amyloid fibrils are structurally defined by stacked
β-strands running perpendicular to the long fibril axis (cross-β structure) (Figure 1c). A
range of amyloid-forming species, such as amyloid-β (Aβ), α-synuclein, tau, and the islet
amyloid polypeptide (IAPP), are intrinsically disordered in their native states [1]. During
the ordinary (“on-pathway”) process of aggregation, those peptides undergo structural
reorganization to form metastable intermediate species called oligomers, which further
self-assemble into protofibrils and finally into mature fibrils, as illustrated in Figure 1a.
An increasing body of evidence suggests that it is not the mature fibrils, but rather the
oligomeric intermediates that exhibit higher toxicity [2–4]. For instance, studies have shown
that Aβ oligomers and tau oligomers can cause synaptic disfunction [5–10] and impair
membrane integrity [11–14]. Similarly, α-synuclein [15] and IAPP [16,17] oligomers were
found to exert toxicity through membrane disruption. In addition, it has been shown that
metal ions, such as Cu2+, Zn2+, or Fe3+, can alter the aggregation pathway of amyloids [18–
21]. For instance, Zn2+ has been reported to bind to Aβ peptides and induce the formation
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of off-pathway oligomers, which do not end up as fibrils but as large, amorphous aggre-
gates (Figure 1b) [22,23]. The properties and structures of toxic amyloid oligomeric species
are of immense interest in order to understand amyloid disease and amyloid formation, yet
the oligomeric structures are not studied in as much detail as the mature fibrillar forms. It
is due to their heterogeneity in conformation and size, their transient nature, and their low
abundance that those intermediate species are difficult to characterize with conventional
structure determination methods, such as X-ray diffraction (XRD) or nuclear magnetic
resonance (NMR) spectroscopy. X-ray diffraction has substantially contributed to the de-
termination of amyloid fibril structure by first demonstrating the characteristic cross-β
conformation [24]. However, most amyloid intermediate species cannot be studied using
XRD, as this technique requires the peptide samples to be of high purity and crystallized,
which usually is not possible for amyloid oligomers. A brief introduction to common spec-
troscopic methods for protein structure determination, as well as a comparison between
them, is given in the next section. We want to emphasize that most conventional techniques
only provide information averaged over an ensemble of molecules and thus are typically
unable to extract information about individual species within the diverse populations of
amyloid intermediates. The aim of this review is to highlight some of the recent advances
in vibrational spectroscopic techniques and tools which to this date have been used for the
structural investigation of amyloid intermediate species while putting emphasis on single
molecule techniques, as those are best suited to overcoming the issue of heterogeneity and
low abundance of amyloid intermediates.

Figure 1. Schematic illustration of amyloid aggregation. (a) On-pathway mechanism: native
monomers misfold and undergo conformational change to form prefibrillar oligomers, protofib-
rils, and mature fibrils. (b) Alternative pathway induced by metal ions: monomers form off-pathway
oligomers which do not end up as fibrils but amorphous aggregates. (c) Schematic illustration of
parallel and anti-parallel cross-β structure. Amyloid fibrils have parallel cross-β conformation.

2. General Introduction and Comparison of Vibrational Spectroscopy and Other
Common Spectroscopic Methods

Vibrational spectroscopy, such as Fourier transform infrared spectroscopy (FTIR) and
Raman spectroscopy, are commonly used techniques for the characterization of protein
structures. While infrared (IR) absorption is active for vibrations that alter the dipole mo-
ment, Raman scattering is active for vibrations that alter polarizability [25]. For molecules
with a well-defined specific symmetry, such as water, two-atomic gases, or benzene, mutual
exclusion rules can be derived based on the properties of their respective symmetry point
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group. In such a case, Raman responds only to inversion-symmetric vibrational modes,
while IR only responds to inversion-antisymmetric modes so that the same band can never
be observed in both spectra, a phenomenon known as the mutual exclusion rule [26]. While
this is not the case for non-centrosymmetric molecules, such as amyloid aggregates, the
relative magnitudes of various vibrational bands are still substantially different between
the two techniques and may also be affected differently by conformational changes. Hence
different selection rules apply to the two techniques, which therefore provide complemen-
tary information of molecular vibrations, as weak IR bands may experience a strong Raman
response and vice versa [25]. Other widely used spectroscopic methods for protein struc-
ture analysis include nuclear magnetic resonance (NMR), fluorescence spectroscopy (FS),
UV–Vis spectroscopy, and circular dichroism (CD). NMR measures the energy required
to change the alignment of magnetic nuclear spins in a magnetic field, which depends
on the local environments of the atom. NMR is a high-resolution technique and a very
powerful tool, as it is able to provide site-specific information on localized segments of
the polypeptide chain [27]. FS uses electromagnetic light to excite electrons in the studied
samples and measure the subsequent emission of photons when the excited electrons
transit back to the ground state via intermediate states [28]. Many native protein sequences
contain intrinsic fluorophores—for example, tryptophan side chains—which are partic-
ularly sensitive to changes in the local environment, thus providing useful information
about tertiary structure [29]. Alternatively, non-native fluorophores can be site-specifically
introduced into protein molecules [28]. UV–Vis spectroscopy measures the absorbance
of electromagnetic light by the protein’s fluorophores [30], and CD spectroscopy detects
differences in absorption by chiral molecules of left- and right-handed circularly polarized
light [31].

Among the aforementioned spectroscopic methods, NMR is the only one able to
provide structural information with atomic resolution. Nonetheless, solid-state NMR is
an inherently insensitive technique that requires frozen or lyophilized samples, which
must also be isotopically labeled [32]. Solution NMR, on the other hand, can resolve the
three-dimensional structure of proteins and provide information about dynamics and
intermolecular interactions under physiological conditions [33]. However, solution NMR
requires large quantities of pure samples (0.1–1.0 mM) [34] in a soluble form at room
temperature and for them to remain stable for the duration of data acquisition, which could
take as long as tens of hours [29]. The proteins need to be of small sizes (≤100 kDa) [35] due
to the difficulty in understanding the link between chemical shifts and structural parame-
ters [36]. Nevertheless, major contributions to resolving amyloid structures, particularly
fibril structure, have been made using NMR spectroscopic techniques, which lie outside
of the scope of this review. There exists an abundance of excellent literature covering this
topic, to which the reader is referred [34,37–41].

UV–Vis spectroscopy and CD spectroscopy are commonly used in laboratories due
to their relatively easy operation and fast data analysis [42]. UV–Vis spectroscopy is very
sensitive to interference by stray light or light scattering and suffers from low resolution
and overlapping spectral peaks. While UV–Vis spectroscopy can only be used to observe
tertiary structural changes of proteins, circular dichroism can detect both secondary and
tertiary protein structures, but estimations of the secondary structure composition of CD
spectra are less reliable for α/β-mixed or β-sheet-rich proteins, such as amyloid oligomers
and fibrils, due to their spectral variability and lower spectral amplitudes [31,43]. FTIR
spectroscopy, on the other hand, resolves β-sheet composition with accuracy, which makes
it a suitable candidate for the study of amyloids [44]. A major drawback, though, is the
strong absorption of IR radiation by water, which overlaps with the amide I band and
therefore limits its use for biological samples in aqueous environments [45]. Strategies for
overcoming this issue include measurements in deuterated solutions and a method called
attenuated total reflection (ATR) FTIR, in which an evanescent IR wave penetrates only a
few micrometers of sample layers deposited on the surface of a high-refractive-index mate-
rial [46]. Alternatively, Raman spectroscopy has a major advantage over IR in that water
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bands are weak in Raman, enabling the measurement of samples in an aqueous environ-
ment close to physiological conditions. In FTIR, the amide I band is primarily used to assign
secondary structures to proteins, while in Raman both the amide I and III bands provide
structural information. Additionally, Raman provides information on aromatic residues in
the region below 1620 cm−1 [36]. However, protein signals are usually very weak in bulk
Raman acquisition, and therefore, high sample concentrations in the millimolar range are
required [47]. To overcome this issue, numerous strategies have been developed to increase
the sensitivity of Raman spectroscopy, such as resonance Raman spectroscopy (RRS) and
plasmon-enhanced Raman spectroscopy (PERS). The latter is an umbrella term introduced
by Ding et al. [48] generalizing the concept of surface-enhanced Raman spectroscopy (SERS)
and tip-enhanced Raman spectroscopy (TERS) to include any techniques that exploit the
antenna effect in the vicinity of suitably nanostructured plasmonic material interfaces to
achieve a highly localized ultrahigh Raman sensitivity. In RRS, an excitation wavelength
within the absorption band of the sample is used to enhance vibrational signatures strongly
coupled with a small subset of vibrations localized on the resonant chromophore [49]. In
contrast to non-resonance Raman spectroscopy, in which all of a molecule’s vibrations
contribute to the spectrum with comparable intensities, this results in increased selectivity
and enhancement factors as high as 108 [49]. Plasmon-enhanced Raman techniques can pro-
vide signal enhancements of up to 14 orders of magnitude compared to conventional bulk
Raman spectroscopy [50,51], allowing structural studies down to the single-molecule level.
Furthermore, the combination with near-field techniques can enable a great enhancement
of the spatial resolution of IR and Raman spectroscopy [52,53].

Other frequently used methods for single-molecule detection are based on fluores-
cence spectroscopy, such as single-molecule Förster resonance energy transfer (smFRET)
and fluorescence correlation spectroscopy (FCS) [54,55]. The challenge lies in the fact that
since even tryptophan, the natural amino acid with the highest fluorescence quantum yield
(~0.13), is not suitable for single-molecule detection due to its low photostability, labelling
with extrinsic fluorophores is unavoidable for single-molecule detection [54]. Fluorescent
tags have been shown to significantly modify the size distributions of amyloid oligomers,
indicating an impact on their formation, whereas the structures of fibrils remained al-
most unaffected [56]. Therefore, label-free techniques are preferred for the analysis of
amyloid oligomer structure. Table 1 summarizes and compares relevant properties of the
aforementioned spectroscopic methods.

Table 1. Comparison between various spectroscopic techniques.

Fluorescence NMR CD UV–Vis FTIR Raman

Basic principle

Light emission by
residual
aromatic

amino acids

Nuclear
spin relaxation

Differential
absorption of

circular
polarized light

Electronic transitions

Vibrations of
molecular bonds

(changes in
dipole moments)

Vibrations of molecular
bonds (changes

in polarizability)

Resolution

Medium
(tertiary structure

on a local
level)

High
(secondary and

tertiary structure
on a global and

local level)

Low to medium
(secondary and

tertiary structure
on a global level)

Low to medium
(tertiary structure on a

global level)

Low to medium
(secondary

structure on a
global level; tertiary
structure on a local

level with
isotope-labeling)

Medium to high
(secondary and tertiary

structure on a
global level)

Sensitivity
Single molecule

(extrinsic FS)–µM
(intrinsic FS)

0.1–1 mM µM–mM µM
0.1–1 mM (proteins),

1–100 mM
(small molecules)

Single molecule (PERS)–
mM (bulk Raman)

Limitations

Photostability
issues, limited

fluorophore
lifespan,

auto-fluorescence;
fluorescent labeling
might affect protein

aggregation and
structure

(extrinsic FS)

High sample purity,
sample size limit

≤100 kDa (solution
NMR); high

amount of sample,
lyophilized and

isotopically labeled
samples (ssNMR)

Less accurate
predictions for
β-structure than

for α-helices

Stray light and light
scattering

interferences,
overlapping of
spectral peaks

Water interference,
overlapping of
spectral peaks

Fluorescence
interference,

photodecomposition
and low signal

(bulk Raman); requires
appropriate

substrate/plasmonic
structures (PERS)

References: [31,34–36,42,43,45,50,51,57–59].
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3. Ensemble-Averaged Studies of Amyloid Oligomer Species
3.1. Infrared Spectroscopy

The amide I infrared band of proteins is highly sensitive to secondary structure signa-
tures, but strong overlapping water absorptions prevent studies in aqueous environments,
leading to the widespread use of deuterated solutions. However, D2O is non-physiological,
thus raising fundamental questions regarding the impact of isotope exchange on protein
dynamics. An alternative way to overcome the problem of strong IR absorption by aque-
ous solutions is ATR-FTIR. In a recent publication by Milosevic et al. [60], ATR-FTIR was
utilized to study the conformational changes during the fibrillization of hen egg white
lysozyme (HEWL) over a time period of 0 to 60 days. The native form was measured in
H2O solution and in 90% ethanol (C2H5OH) solution. Significant shifts in the amide I and
amide III regions of the IR spectra towards β-sheets upon transition to ethanol solution
were observed. Deconvolution of the amide I region revealed that the oligomer state is
structurally closer to the mature fibril than to the native monomer. To further increase
sensitivity and selectivity of this technique, the surface of the internal reflection element
can be functionalized with amyloid specific antibodies, such as monoclonal 1E8 antibody
for capturing Aβ [61] or monoclonal HT7 antibody for tau detection [62]. Gerwert and
co-workers [61,63,64] developed an ATR-FTIR based immuno-sensor for the detection
and secondary structure analysis of small amounts of Aβ peptides in their physiological
aqueous environment (Figure 2a). In this work, it was demonstrated that this sensor can
measure the Aβ peptide secondary structure distribution in the cerebrospinal fluid (CSF)
and blood plasma of Alzheimer’s disease (AD) patients. It was found that the amide I band
frequency of Aβ peptides, which indicates β-sheet conformation, was significantly shifted
in AD patients compared to control patients and thus could be used as a spectral biomarker
for AD.

Two-dimensional IR (2D IR) spectroscopy is another method that was used to discrim-
inate the structure of amyloids [65–67]. Advantages of 2D IR over ATR-IR or other linear
IR techniques include its ability to measure cross peaks and diagonal anharmonicities that
are sensitive to the structure and coupling between different vibrational modes [68,69].
In addition, 2D IR signals scale nonlinearly with the optical field amplitude, resulting
in narrower line widths and improved spectral resolution [69,70]. For instance, Lomont
et al. [65] utilized this advantage to identify a band at 1610 cm−1 in Aβ40 and Aβ42 fibrils
(Figure 2b), which does not appear in β-sheet-rich oligomers and cannot be resolved in
linear IR spectroscopy because it is covered by the broad characteristic β-sheet band for
amyloid fibrils, centered at 1625 cm−1. They hypothesized that this 1610 cm−1 transition
stems from a delocalized amide I mode, and, through spectral modeling of amyloid struc-
tures, came to the conclusion that the lower transition frequency of this mode could be
explained by differences in β-sheet structure of different regions of the fibril.

FTIR can further be combined with isotope labeling, where the residue of interest
is replaced with an analogue bearing an isotope-labeled 13C=16O or 13C=18O carboxylic
group, which causes a shift in the amide I frequency. Isotope labeling thus acts as a probe
to obtain residue-specific structural information and enables the study of the kinetics of the
structural transitions of a mixture of different peptides, as demonstrated in recent studies
on Aβ40 and post-translationally pyroglutamylated Aβ (pEAβ3-40) [71] as well as mixtures
of Aβ40 and Aβ42 monomers and oligomers [72,73]. Similarly to the aforementioned ATR-
FTIR based immunosensor by Gerwert et al., this technique can be further combined with
antibody functionalization, as demonstrated by Zanni and co-workers [74]. Their recently
developed 2D IR spectroscopic immunosensor combined with isotope labeling was able
to capture hIAPP oligomers and distinguish two different fibrillar polymorphs by their
structure. These results support the hypothesis that the fibrillar polymorphs emerge from a
common intermediate oligomer.

The above-mentioned works represent selected examples of recent studies for the appli-
cation of IR-based methods used for the conformational analysis of amyloid intermediates.
For a more detailed review on ATR-FTIR spectroscopic and 2D IR spectroscopic techniques
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coupled with isotope labeling which have been used in the past for amyloid conformation
studies, the reader is referred to the publications by Li et al. [75] and Sarroukh et al. [76].

Figure 2. (a) Schematic overview of the immuno-infrared-sensor. If the marker band (amide I) is
dominated by disordered or α-helical monomeric isoforms, the patient is diagnosed as non-AD (blue).
If β-sheet isoforms are enriched (red), the amide I signal is shifted below the threshold (1642 cm−1),
indicating AD. Part of figure reproduced from Ref. [64] with permission. (b) Two-dimensional IR
spectra of Aβ42 aggregated for 30 min, 1 day, and 7 days (representative for the transition from
oligomers to mature fibrils); diagonal slices through the fundamental transition (dashed line); and
representative TEM images for Aβ42. The 1610 cm−1 transition is marked with an asterisk in the 2D
spectra and diagonal cuts. Part of figure adapted with permission from Ref. [65]. Copyright 2018
American Chemical Society.

3.2. Raman Spectroscopy

In recent years, thanks to advancements in the fabrication of nanostructures and
nanoparticles, PERS has become an increasingly popular tool for investigating protein struc-
ture due to its high spatial resolution and sensitivity. This technique requires a plasmonic
substrate material, usually enhanced by a favorable morphology, such as randomly rough-
ened surfaces, individual nanoparticles, and ordered nanostructure arrays [77]. Many stud-
ies use gold or silver nanoparticles as plasmonic material. For instance, D’Urso et al. [78] ex-
ploited the enhancement properties of silver nanoparticles for the study of hIAPP and Aβ40
oligomers as well as the equimolar mixture of both peptides during their self-assembling
processes in aqueous solution at nanomolar concentrations. Analysis of the amide I bands
revealed that hIAPP oligomers are rich in β-sheet secondary structures, whereas Aβ40 is
rich in α-helices. The spectra of oligomers formed by the equimolar mixture of hIAPP and
Aβ40, on the other hand, only contained a shoulder of α-helices as secondary structure.

Bhowmik et al. [79] introduced a new approach to mimicking cell membranes by coat-
ing their silver nanoparticles with a lipid bilayer to study the conformation of membrane-
bound Aβ40 oligomers. Hereby, an enhancement in SERS can only be expected if the
oligomer penetrates the membrane and draws close to the nanoparticle surface. Additional
isotope labeling enabled the secondary structure analysis at the level of individual residues.
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For the membrane-attached oligomers, a β-sheet–β-turn–β-sheet motif was observed,
which is also a shared characteristic of a class of transmembrane pores called “porins” [80].
Therefore, these results support the hypothesis that Aβ oligomers exert their toxicity by
forming an unregulated ion channel or “pore” [81], leading to ionic dyshomeostasis across
the neuronal membrane with subsequent neuronal malfunction and neuronal death [79].

In a more recent study, Banchelli et al. [82] utilized silver nanowires for the detection
of Aβ42 intermediates at different stages of aggregation (Figure 3). The Raman spectra
showed high similarity between amyloid-beta-derived diffusible ligands (ADDLs), which
are known for their high toxicity, and another toxic Aβ42 oligomeric species (A+), whereas
differences with respect to those of non-toxic Aβ42 oligomers (A-) were apparent (Figure 3c).
Furthermore, those spectra were compared to those of polyLys, polyArg, polyHis, and
polyGlu in order to study the specific contribution of side groups mainly responsible for
SERS signals characterizing the toxic type A+ and ADDLs forms. From these observations,
it was concluded that Tyr, appearing as intense bands at 830, 850, and 1604 cm−1, as well
as Lys and Arg residues, may be part of the characteristic “toxic” molecular fingerprint of
type A+ oligomers and ADDLs. As possible toxicity mechanisms, it was proposed that Tyr
residues may facilitate the association of biological membranes with misfolded oligomers
when they are exposed on the oligomer surface due to their hydrophobicity, whereas
positively charged Lys residues on the oligomer surface may promote the interaction with
the negatively charged ganglioside, with further insertion of the hydrophobic oligomer
within the membrane bilayer [82].

Figure 3. (a) Picture of the silver-spotted substrate used for SERS analysis showing a drop of Aβ42
solution deposited on a 2 mm large spot. Inset: contact angle image of a water droplet after de-
position on the spot; exemplary AFM image of the spot showing intertwined AgNWs. (b) Series
of SERS spectra of Ab42 oligomers over 2 h, 24 h, 48 h, and 96 h incubation time and of mature
fibrils (from bottom to top). (c) SERS spectrum of ADDLs compared to that of type A+ (toxic) and
A- (non-toxic) oligomers. SERS spectra of polyHis, polyGlu, polyArg, and polyLys are also displayed
for comparison. Bands of polyLys and/or polyArg describing relevant spectral features of type A+
oligomers and ADDLs are identified with colored boxes. Figure adapted from Ref. [82] with permission.

For further applications of Raman spectroscopy to neurodegenerative diseases, the
reader is referred to the detailed review by Devitt et al. [83].

4. Single-Molecule and Low-Copy Number Studies of Amyloid Oligomer Species

In this context, the term “single-molecule” refers to studies with a resolution of a single
aggregate, which is composed of many monomers, thus generally representing a larger
scale than the single-molecule limit of non-aggregating biomolecules. This enables the use
of techniques such as AFM, which may otherwise be unable to resolve single molecules of
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smaller species. In addition to this, some techniques do not have the capability to confirm
whether a single oligomer or a small number of individual aggregates were detected, which
is why we include the term “low-copy-number”, referring to a number of about 10 or less,
at which individual signatures appear more prominently than the ensemble average. This
transitional regime of low-number statistical data analysis has its own benefits, as briefly
discussed in the concluding remarks.

Infrared and Raman spectroscopies have been employed to perform single-molecule
experiments of amyloid oligomers. Despite the vast success of Raman spectroscopy in
single-molecule experiments in general, it is outweighed by IR in terms of the number of
publications to date in the case of amyloid oligomers.

4.1. Infrared Spectroscopy

Although Hoffmann et al. [84] still fell short of achieving single-molecule resolution,
they probably were the first case of an amyloid oligomer IR-spectroscopic study to come
close, doing so by applying gas-phase multiple photon dissociation IR spectroscopy. With-
out the nano-antenna enhancement of which later works took advantage, it was necessary
to employ this nonlinear method, which yields less quantifiable results, in order to achieve
the required sensitivity to detect low-copy-number of molecules. This technique was used
in tandem with THT staining, TEM and ion mobility-mass spectrometry to characterize
various aggregation states of NFGAIL, an amyloidogenic model peptide. With this method,
the authors were able to associate oligomers with compact and extended morphology with
β-turns and β-sheets, respectively.

Ruggeri and co-workers successfully studied amyloids in various aggregation states
at single-molecule resolution using AFM-IR, demonstrating the capability of simultaneous
data acquisition by two fundamentally distinct techniques at the single-molecule level
(Figure 4a). To this end, a microdroplet sample deposition technique was developed [85]
and the AFM setup parameters were optimized [86]. A tunable quantum cascade laser
was integrated in the system to perform off-resonance low-power short-pulse infrared
nanospectroscopy [87]. The IR absorption amplitude is determined with the AFM tip itself
by thermochemical detection, removing the need for using an optical spectrometer. On
this platform, Aβ42 was studied [88], matching up morphological and elastic properties
measured by AFM with amide I signatures of the secondary structure to infer a change
from anti-parallel to parallel β-sheet stacking structure in the transition from oligomeric to
fibrillar species.

Feuillie et al. [89] investigated wild-type Aβ42 and two mutated variants, L34T and
oG37C, in the presence and absence of a model lipid membrane. In Figure 4b, a schematic
depiction of the AFM-IR setup is shown, as well as AFM maps of amyloid fibrils and
oligomers with corresponding IR spectra. We focus here on the spectroscopic aspects
of the presented data, for the very detailed AFM-related results, the reader may refer to
the original publication. The IR amide I signature revealed that the rapidly aggregating
L34T variant’s secondary structure was dominated by parallel β-sheets as early as one day
after incubation was initiated. In contrast, the oG37C variant, which is known to form no
fibrils even after long incubation times, showed strong β-turn and anti-parallel β-sheet
signatures. Interestingly, Aβ wild type exhibited a mixed signature of β-turns together
with parallel and antiparallel beta sheet stacks at intermediate incubation times before
shifting towards a parallel beta-sheet-dominated signal, very similar to L34T. The authors
concluded that the wild type initially engages in various aggregation pathways leading
to both parallel and anti-parallel β-sheet structures, and subsequently undergoes a slow
process of structural reorganization into parallel β-sheet-dominated fibrils. Additionally,
the interaction of the three Aβ variants with a model membrane was observed in operando.
The (non-single-molecule) IR signatures after 4 h of incubation time revealed a presence of
anti-parallel β-sheet rich structures embedded in the oG37C-injected and, to a lesser extent,
the wild-type-injected membrane but not in the sample with the L34T variant. The work
features a detailed discussion of aggregate structures with numerous literature references.
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Figure 4. (a) AFM maps of Aβ42 oligomers with corresponding IR spectra. Part of figure reproduced
from Ref. [88] with permission. (b) Schematic illustration of an AFM-IR setup (above). AFM maps
of amyloid fibrils and oligomers with corresponding IR spectra (below). Part of figure reproduced
from Ref. [89] with permission. Copyright 2020 Feuillie et al. (c) AFM maps and corresponding IR
line absorption maps of various oligomeric aggregates. Part of figure adapted with permission from
Ref. [90]. Copyright 2021 American Chemical Society.

Dou et al. [90] employed AFM-IR to study the aggregation process of α-synuclein in
the presence of two different phospholipids. A significant influence of added phospholipids
on the formation of α-helices, parallel and antiparallel β-sheets was reported. In this work,
the scanning capability of the system was exploited by creating 2D maps of IR absorption
amplitudes that can be correlated to AFM height images. For this, the IR absorption for
selected wavenumbers was recorded in order to display the presence of phospholipids, the
ratio of parallel β-sheets to α-helix, and the presence of antiparallel β-sheets, respectively,
in separate maps (Figure 4c). In contrast to other works, spectra from several sample points
for each condition were shown, giving the reader an impression of the natural variability of
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single-molecule results. Overall, this work stands out in terms of utilizing and visualizing
the IR spectral data in a more effective way than others.

Waeytens et al. [91] studied Aβ fibrils and oligomers by AFM-IR, reporting a detrimen-
tal effect of ZnSe substrate surface on the sample, drawing no further conclusion about the
structural composition of the studied aggregates. Banerjee et al. investigated aggregates of
tau [92] and Aβ42 [93] by AFM-IR. While tau oligomers were not discussed in the main
text, tau fibrils as well as Aβ42 oligomers and fibrils were reported to exhibit unexpected
β-structure signatures in some cases, indicating a significant variability in structure on the
single-molecule level, in contrast to common presumption.

4.2. Raman Spectroscopy

Various variants of PERS have been extensively applied to single molecule studies for
two and a half decades [48,94–99]. Continuous advances in terms of understanding and
optimizing the material and morphological properties of plasmonic nanoantennas [51,100]
have further increased sensitivity and accuracy, as exemplified by the following stud-
ies. TERS, in a similar fashion to AFM-IR, combines plasmon-enhanced Raman spec-
troscopy [48] with AFM. Already for a number of years, a wealth of work has been pub-
lished on single-molecule TERS of amyloid fibrils [101–107]. We would like to highlight
the work by Deckert-Gaudig et al. [108], in which the hydrophobicity of insulin fibril
subdomains was mapped and co-localized with amino acid TERS signatures at a high
spatial resolution.

Not many publications could be found related to PERS of oligomeric amyloid species.
Bonhommeau et al. [109] also used the wild-type and L34T/oG37C variants of Aβ42,
demonstrating the capability to distinguish between the final stages (one month incubation)
of the three different variants (two in fibrillar, one in oligomeric form) by monitoring the
amide I and III bands. Devitt et al. [110] demonstrated differentiation of distinct interme-
diate and final aggregation stages of BSA, β2-microglobulin and tau proteins based on
a number of Raman modes from the amide I region and aromatic amino acids after principal
component analysis of the spectra. Since the aim of these papers was to demonstrate the dis-
tinction capability, no further discussions of structural implications of the spectral features
were presented. D’Andrea et al. [111] used a TERS setup to investigate oligomers of HypF-
N, an amyloidogenic protein extracted from E. coli in the single-aggregate regime (TERS
spectra shown in Figure 5a). In contrast to other SERS and TERS experiments, the analysis
of the amide III band was dropped in favor of the amide I region. A distinction between
toxic and non-toxic oligomers was achieved by performing a Lorentzian fit decomposition
of spectral contributions of the amide bands and aromatic amino acids. A discussion about
possible implications of amino acid conformational changes with regards to interactions
between oligomers and the cell membrane distinguishes this work from the rest.

The setup used by Vu et al. [112] differs significantly from the TERS and IR assays
discussed above in that the measurements can be performed in the solution phase since no
AFM is involved. Instead, a pair of Ti/Au electrodes with a nanogap that acts as plasmonic
nano-antenna is used to trap a low copy-number or single molecule of amyloid protein
via dielectrophoresis (DEP) directly in the SERS hotspot and is coupled with a confocal
Raman microscope for SERS measurements (Figure 5b). While single-molecule detection
cannot be confirmed with direct evidence on this platform, the application of DEP trapping
at such low target concentrations strongly suggests that at least some of the spectra taken
in solution phase were recorded from single molecules [96,113]. Aβ40 was studied in the
absence and presence of Zn2+ ions after four different incubation times from 0 h up to 144 h,
with spectra taken in solution, but also in the dried phase, which helped reveal features
in the amide I region that were absent in solution. In addition to assigning secondary
structures to the various aggregates, Phe and His signatures were analyzed, and their
structural implications were discussed.
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Figure 5. (a) TERS spectra of toxic and non-toxic oligomer samples. Part of figure reproduced from
Ref. [111] with permission. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
(b) Above: Cartoon of the working principle of the nanogap device. Peptides are trapped via
DEP inside the gap between a pair of electrodes and the SERS signal is simultaneously measured
(upper inset); TEM images of Aβ40 aggregates with and without the presence of Zn2+ (lower insets);
below: SERS spectra of Aβ40 in solution trapped with the nanogap device with and without Zn2+

after different incubation times. Figure adapted with permission from Ref. [112]. Copyright 2021
American Chemical Society.

5. Discussion

The single-molecule resolution of AFM-IR was demonstrated to be a valuable tool for
obtaining conclusive results regarding the structure of heterogeneous intermediate amyloid
protein aggregate stages. Specifically, the use of a tunable laser source and the instant
detection method enable fast scanning of a large area at a specific excitation wavelength.
Since most of the time, the interest is focused on a few signature wavenumbers in the
amide I region, this opens up possibilities to observe a time-resolved series of such specific
signature in a 2D-mapped region, as demonstrated by Dou et al. [90]. However, there is
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still room for improvement in this new and promising technique. For instance, the system
works with a gold-coated AFM tip over a gold surface, inducing a nano-antenna effect [87],
which, similar to TERS, is potentially subject to a plasmonic nanogap enhancement in the
relevant IR range [114–116]. It appears that this facet of AFM-IR has not been discussed in
the literature to date. However, there may be an opportunity to optimize the spectroscopic
performance by adjusting the plasmonic response by various methods, as exemplified
by PERS and subsidiary fields (see the above section for relevant references). Overall,
the spectroscopic aspect of the experiment was in some cases not exploited to its full
possibilities. By highlighting the works that made excellent use of the technique, we hope
that our readers may take inspiration to make the best of their experiments. Regarding
oligomer samples, due to individual variations, the correlation of aggregate species and
secondary structure signature may not always be obvious on the single-molecule level.
Care should be taken when inferring general conclusions from limited data sets. Statistical
significance is a key factor in single molecule experiments, especially when drawing
comparisons to ensemble averages.

5.1. Comparing Various Single-Molecule Methods

Most of the works reviewed in this section took advantage of the highly localized
nano-antenna resonance. At this point, there is probably no other technique that can match
its ability to focus a greatly enhanced optical field within a nano-scaled volume in dry
or liquid conditions that can be easily coupled with other techniques and operated with
commercially available optical equipment, especially if the surface plasmon response is
well-matched with the excitation wavelength. The recent application to IR spectroscopy
shows its great versatility, with expectation that it can be applied to a greater variety of
optical techniques in the future. The main strength of both AFM-IR and TERS lies in the
simultaneous structural investigation at the single-molecule level with a combination of
two powerful techniques yielding correlated morphological, mechanical, and vibrational
information of the same entity. A major constraint of both techniques is the need to operate
in dried conditions, which is underlined by the efforts that are made to mitigate adverse
effects of the drying process and to confirm that certain structural features are preserved
after drying. In direct comparison, the main drawback of AFM-IR as opposed to TERS is
the need to scan the spectral range, limiting the acquisition rate for recording wide-range
spectra. Ruggeri et al. [87] mentioned a scan rate of 100 cm−1 s−1. On the other hand, if one
is only interested in one or few specific spectral bands, AFM-IR may be the better option
since it can achieve higher acquisition rates when applied to a very limited spectral range.
Apart from that, IR and Raman signatures complement each other, so in the future, one
may explore the possibility of integrating them into the same system, thus enjoying the
joint merits of both.

Of the works reviewed in this section, only Vu at al. measured vibrational spectra in
aqueous solution in the quasi-single-molecule regime. While secondary structure features
have been proven to be still detectable in dried samples, it cannot be assured that the
structure is not affected otherwise. For that reason, it is preferential to perform single-
molecule experiments of oligomers in the solution phase, especially when investigating
less explored details of the spectrum. An approach to solving this problem was presented
by Khatib et al. [52] and Lu et al. [117], who demonstrated nano-scale IR spectroscopy of
liquid samples. The problem of IR absorption is circumvented by encapsulating a very
small water volume in between graphene monolayer sheets and detecting scattered light
rather than transmitted light. This technique belongs to the family of scanning near-field
optical microscopy (SNOM) and also takes advantage of the plasmonic nanoantenna effect.
While, to the best of our knowledge, no single-molecule results have been published with
this method, the potential to reach single molecule resolution has been proven in dry
environments for IR and Raman variants of SNOM [53]. In particular, Paulite et al. [118]
studied single amyloid fibrils by IR-SNOM, indicating that with some further development
in the sensitivity, the goal may come within reach to investigate amyloid oligomers in



Molecules 2022, 27, 6448 13 of 19

liquid by IR spectroscopy. The spatial isolation of a low number of amyloid aggregates
and/or monomers, which may be adjusted by dilution, in a very small water volume offers
an advantage in freezing the aggregation process—especially for smaller intermediate
aggregates—as in bulk conditions, the aggregation tends to continue during the experiment.
It would be beneficial if this method could be applied to other branches of nanospectroscopy,
such as TERS or AFM-IR, although the high lateral thermal conductivity of graphene [119]
as well as thermal dissipation in water must be considered when trying to apply it to the
thermochemical detection of single molecules in AFM-IR. Alternatively, other IR detection
methods with single-molecule capability could be explored for the use with AFM in order
to overcome the issue.

When using TERS, there is still much potential to develop this powerful technique,
such as by venturing further into the lesser-known waters of non-amide Raman bands,
as demonstrated by Deckert-Gaudig et al. [108], using the AFM setup to create linescans
(such as Deckert-Gaudig and van den Akker [102] did for fibrils) or 2D maps based on
Raman signatures, or by analyzing time-lapse series of Raman spectra. Finot et al. [120,121]
demonstrated the use of statistical data to infer correlation of different amino acid signals
as an example for structural information beyond α-helix/β-sheet/random coil structure
that can be extracted from spectroscopic data. Raman spectra can easily be acquired at
rates around one scan per second. For instance, Huang et al. [122] measured low-copy-
number signals of amino acids with an exposure time of 0.1 s. Similar to Vu et al., a
dielectric force related to DEP was applied to guide the target towards a SERS hotspot.
Dielectric force offers a very reliable and low-destruction trapping technique [123] suitable
for single-molecule label-free PERS, since proteins typically can be trapped readily by such
methods [123].

5.2. Impact

Key questions regarding the disease, such as environmental influence on aggregation
pathways or drug efficiency, can be addressed by analyzing the amide I or III region of single
spectra, as demonstrated in the reviewed works. The quick and reliable differentiation of
various toxic and non-toxic oligomer species as well as fibrils gives a promising prospect
for high-throughput screening of potential drugs or diagnostic substances. However,
there is much room to further exploit the spectroscopic data obtained from such sensitive
experiments. Often, much time and effort are put into the development of novel high-end
platforms; while outstanding sensitivity is demonstrated with standard samples, much less
frequently is this followed up by a systematic application to targets of practical interest.
Despite this, all the authors reviewed in this work have embraced the challenge to depart
from the well-trodden paths and venture into directions that benefit the advance of medical
science. Hopefully, in the future, more attention can be drawn into the study of impactful
pathogens, such as amyloid oligomers, at the single-molecule level.

6. Concluding Remarks and Perspectives

In the reviewed works, the powerful spectroscopic techniques often appear to play
a minor supporting role in the analysis, and the results fall short of advancing our fun-
damental understanding of the various aggregation pathways of amyloidogenic proteins
by elucidating new details about oligomer structure. We hope that these outstanding
techniques can be used more frequently to observe the natural state of single molecules,
even at the risk of not being able to explain all observations.

The mechanism leading to different amyloid aggregation pathways is still poorly un-
derstood. This is mostly due to non-fibrillar oligomers being a group of high diversity [84],
often lacking long-term stability, that cannot be studied in detail in large ensembles. How-
ever, this diversity also presents itself as a fascinating opportunity to study a variety of
conformations assumed by assemblies of the same basic building blocks and in this way
unlock our understanding of a variety of medical conditions. The key idea of performing
single or low-copy-number molecule studies is to avoid errors and missed information
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caused by ensemble averaging. The opportunity to observe a multitude of fluctuating
properties that tend to get obscured in averaged measurements easily gets hampered
when trying to improve the repeatability of the experiment, for example, by deliberately
fixing the sample in place, suppressing dynamic conformational changes or time-averaging
recorded spectra.

Single molecule techniques are best exploited in a relatively low-signal-to-noise regime.
Molecular conformational changes and Brownian motion may affect position and width
of spectral signatures on short timescales. This means that by evaluating a large enough
amount of statistical data with short exposure time, more diverse information may be
revealed that otherwise would remain veiled in spectra averaged over an ensemble or a
long exposure time. The spirit of this principle is exemplified by well-established low-
copy-number techniques, such as dynamic light scattering or fluorescence correlation
spectroscopy, and the above-mentioned recent approaches to time-lapse spectral analysis.
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