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Background: Vertebral osteomyelitis and discitis (VOD), an infection of intervertebral discs, often requires 
spine surgical intervention and timely management to prevent adverse outcomes. Our study aims to develop 
a machine learning (ML) model to predict the indication for surgical intervention (during the same hospital 
stay) versus nonsurgical management in patients with VOD.
Methods: This retrospective study included adult patients (≥18 years) with VOD (ICD-10 diagnosis codes 
M46.2,3,4,5) treated at a single institution between 01/01/2015 and 12/31/2019. The primary outcome 
studied was surgery. Candidate predictors were age, sex, race, Elixhauser comorbidity index, first-recorded 
lab values, first-recorded vital signs, and admit diagnosis. After splitting the dataset, XGBoost, logistic 
regression, and K-neighbor classifier algorithms were trained and tested for model development.
Results: A total of 1,111 patients were included in this study, among which 30% (n=339) of patients 
underwent surgical intervention. Age and sex did not significantly differ between the two groups; however, 
race did significantly differ (P<0.0001), with the surgical group having a higher percentage of white patients. 
The top ten model features for the best-performing model (XGBoost) were as follows (in descending order 
of importance): admit diagnosis of fever, negative culture, Staphylococcus aureus culture, partial pressure of 
arterial oxygen to fractional inspired oxygen ratio (PaO2:FiO2), admit diagnosis of intraspinal abscess and 
granuloma, admit diagnosis of sepsis, race, troponin I, acid-fast bacillus culture, and alveolar-arterial gradient 
(A-a gradient). XGBoost model metrics were as follows: accuracy =0.7534, sensitivity =0.7436, specificity 
=0.7586, and area under the curve (AUC) =0.8210.
Conclusions: The XGBoost model reliably predicts the indication for surgical intervention based on 
several readily available patient demographic information and clinical features. The interpretability of a 
supervised ML model provides robust insight into patient outcomes. Furthermore, it paves the way for the 
development of an efficient hospital resource allocation instrument, designed to guide clinical suggestions.
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Introduction

Vertebral osteomyelitis and discitis (VOD) is an infection 
of the vertebrae and intervertebral discs that can be life-
threatening, with effects on mortality and long-term 
morbidity (1). The incidence of VOD admissions in the U.S. 
has been estimated to be 4.8 per 100,000, with an average 
9-day length of hospital stay. This results in a substantial 
cost burden (2). Notably, the number of cases has increased 
in recent years, a phenomenon which is likely attributed 
to a combination of factors including an aging population, 
intravenous drug use, and improved knowledge of 
diagnostics (2). Furthermore, despite significant advances in 
techniques to diagnose VOD and a greater understanding 
of infectious etiologies, the overall mortality rate remains 
high, up to 20%, even after appropriate clinical care (3).

Most VOD cases result from the hematogenous spread 
of primary infection to secondary sites in the vertebrae. 
Therefore, initial clinical sequelae are often dominated 
by additional manifestations in the primary infection 
site, such as the urinary tract, skin, and/or soft tissues (4). 
Delays in diagnosis can potentially result in suboptimal 
treatment and poor resource allocation (5). Currently, the 

initial treatment paradigm involves selecting one of the 
two therapies—medical management or a combination of 
medical and surgical interventions (6). To determine the 
optimal treatment course, spine surgeons must consider 
several factors, including, but not limited to, neurologic 
symptoms/deficits, spinal instability, disease presentation, 
and patient comorbidities/frailty (7-9). Consequently, there 
is a subjective component to these decisions, which results 
in some noticeable variability in management between 
clinicians.

In cases of delayed treatment,  native vertebral 
osteomyelitis cases have a 25% mortality rate and can result 
in significant pain, neurologic deterioration, paraplegia, and 
deformity (6). VOD is associated with significant morbidity; 
around 33% of patients contract residual disability and 
about 15% of patients are left with permanent neurological 
damage. Delayed diagnosis further worsens clinical 
outcomes (10). The considerable variance in prognoses, 
coupled with a significant risk of unfavorable outcomes, 
underscores the essential need for the development of 
evidence-informed clinical support tools. These tools will 
prove invaluable for refined clinical decision-making and 
effective allocation of hospital resources, particularly for 
patients suffering from VOD (5,11-16).

Currently, there is no validated quantitative-based 
prognostic tool aiding early determination of the need for 
surgical intervention in a patient with VOD. In this study, 
machine learning (ML) models were employed to predict 
the need for surgical intervention in VOD patients using 
baseline metrics available at the initial presentation. We 
hypothesized that using a statistically robust ML algorithm 
would identify features that accurately prognosticate the 
need for spinal surgical intervention. We present this article 
in accordance with the STARD reporting checklist (available 
at https://jss.amegroups.com/article/view/10.21037/jss-23-
111/rc).

Methods

Study data

This study included a retrospective cohort of 1,111 adult 
patients (18 years and older) from 2015–2019 who were 
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diagnosed with VOD and underwent either medical 
management or surgical intervention. For inclusion in our 
prognostic models, patients had to have a VOD diagnosis 
assigned to their admission at some point during their stay. 
Pediatric patients (<18 years) and patients with tumors or 
traumatic etiology were excluded. ICD-10 diagnosis codes 
M46.2,3,4,5 were used to identify patients with concomitant 
VOD during their admission. This study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The use of this data for this study was approved by 
the Washington University Institutional Review Board, IRB 
ID Number: 202101050 and individual consent was waived.

Candidate predictors

Covariates of interest included age, sex, race, admit 
diagnosis, and the Elixhauser comorbidity index quantified 
by van Walraven’s score (17). The first-recorded heart 
rate, blood pressure, O2 saturation, serum comprehensive 
metabolic panel, serum complete blood count, serum lactate 
and blood cultures were also analyzed and used for feature 
selection.

Preprocessing and missing values

There were initially 535 features included in the study 
including but not limited to sex, age, race, Elixhauser 
comorbidity index, admit diagnosis, and first-recorded vital 
signs, laboratory values, and culture results. Any variables 
missing in more than 50% of cases were removed from 
consideration. Analysis of variance (ANOVA) i.e., ANOVA 

F-value between label/feature for classification tasks were 
then employed to select the top 50 features among the 
remaining variables, and missing data was replaced via 
mean imputation. Since there was a noticeable discrepancy 
between the sizes of the non-surgical and surgical 
populations, a balanced training dataset was generated via 
undersampling.

Primary outcome

Statistical analysis
All statistical analyses were performed using the Pandas 
and NumPy libraries (Python 3.10, Python Software 
Foundation). Descriptive statistics were used to assess 
baseline patient demographic and clinical characteristics. 
The chi-square test was used to assess categorical variables, 
while the unpaired two-tailed Student t-test was used to 
evaluate continuous variables (parametric). Every P value 
was two-sided. The cutoff for statistical significance was 
P<0.05.

Training, validation, and evaluation
A total of three classification algorithms (XGBoost, logistic 
regression, and K-nearest neighbors) were trained, tested, 
and validated to develop an interpretable model capable of 
predicting the likelihood of a spine surgical intervention 
in VOD patients during the same admission. The Scikit-
learn library (Python 3.10, Python Software Foundation) 
was used to train the three classification algorithms. For 
the XGBoost ML model, hyperparameter tuning was 
accomplished via a grid search with cross-validation. Twenty 
percent of the dataset was set aside to test the models, and 
another twenty percent subset was used for validation. 
Both cross-validation resampling and bootstrapping were 
utilized during the validation step. Feature importance was 
assessed for the XGBoost model, which can directly output 
a feature importance score based on the mean decrease in 
Gini impurity. Sensitivity and specificity were calculated for 
each model and then used to build the receiver operating 
characteristic (ROC) curve. Model accuracy, area under 
the curve (AUC), sensitivity, and specificity were used to 
compare and evaluate model performance (Figure 1). 

Results

Clinical characteristics

A total of 1,111 patients had a diagnosis of VOD, among 
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Figure 1 Receiver operating characteristic curves for XGBoost, 
logistic regression, and K neighbors classifier models. ROC, 
receiver operating characteristic. 
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which 70% (n=772) were managed medically, and 30% 
(n=339) underwent surgical intervention. With respect 
to cohort characteristics, age and sex did not significantly 
differ between the two groups; race, however, did differ 
substantially (P<0.0001), with the surgical group having 
a higher percentage of white patients (Table 1). Several of 
the top admit diagnoses were shared between the surgical 
and nonsurgical groups. However, an admit diagnosis 
of “intraspinal abscess and granuloma” was found more 

frequently in those patients who underwent a surgical 
intervention (Table 2).

Gradient-boosted decision tree model prognosticating the 
need for surgical intervention

The best performing model, XGBoost, was trained on the 
50 features selected by ANOVA F-value. These features 
each had less than 50% missing cases, and included a variety 

Table 1 Cohort characteristics

Model features (covariates) Nonsurgical (N=772) Surgical (N=339)

Age (years), mean (standard deviation) 59.1 (16.1) 59.4 (13.3)

Sex, n (%)

Male 511 (66.2) 211 (62.2)

Female 261 (33.8) 128 (37.8)

Race, n (%)

Caucasian 460 (59.6)* 256 (75.5)*

Black 286 (37.0)* 70 (20.6)*

Other 24 (3.1) 10 (2.9)

Asian 2 (0.3) 3 (0.9)

BMI (kg/m2), mean (standard deviation) 27.8 (8.4) 28.5 (8.3)

Length of stay (days), mean (standard deviation) 10.1 (11.2)* 21.4 (28.2)*

Discharge disposition, n (%)

Home 467 (60.5)* 173 (51.0)*

Hospice facility 18 (2.3) 5 (1.5)

Acute care hospital 26 (3.4)* 4 (1.2)*

Nonacute care facility 220 (28.5) 138 (40.7)

In-hospital death 36 (4.66) 16 (4.7)

Miscellaneous/other 5 (0.6) 3 (0.9)

Readmission, n (%)

30-day 160 (20.7) 63 (18.6)

60-day 222 (28.8) 92 (27.1)

90-day 267 (34.6) 103 (30.4)

Charlson score, mean (standard deviation) 3.2 (2.7) 3.2 (2.8)

Elixhauser score (vanWalraven09), mean (standard deviation) 10.6 (11.2)* 12.1 (11.2)*

Elixhauser score (Moore17), mean (standard deviation) 10.8 (14.0)* 12.8 (13.9)*

Table 1 (continued)
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Table 1 (continued)

Model features (covariates) Nonsurgical (N=772) Surgical (N=339)

Elixhauser comorbidities, n (%)

Congestive heart failure 168 (21.8) 75 (22.1)

Cardiac arrythmias 190 (24.6) 105 (31.0)

Valvular disease 86 (11.1) 59 (17.4)

Pulmonary circulation disorders 51 (6.6) 37 (10.9)

Peripheral vascular disorders 85 (11.0) 41 (12.1)

Hypertension 474 (61.4) 232 (68.4)

Paralysis 178 (23.1) 64 (18.9)

Other neurological disorders 134 (17.4) 63 (18.6)

Chronic pulmonary disease 151 (19.6) 83 (24.5)

Diabetes, uncomplicated 71 (9.2) 32 (9.4)

Diabetes, complicated 240 (31.1) 101 (29.8)

Hypothyroidism 95 (12.3) 42 (12.4)

Renal failure 180 (23.3) 75 (22.1)

Liver disease 66 (8.5) 40 (11.8)

Peptic ulcer disease excluding bleeding 10 (1.3) 5 (1.5)

AIDS/HIV 5 (0.6) 3 (0.9)

Lymphoma 11 (1.4) 5 (1.5)

Metastatic cancer 41 (5.3) 20 (5.9)

Solid tumor without metastasis 64 (8.3) 31 (9.1)

Rheumatoid arthritis/collagen vasculitides 32 (4.1) 22 (6.5)

Coagulopathy 83 (10.8) 49 (14.5)

Obesity 108 (14.0) 67 (19.8)

Weight loss 177 (22.9) 94 (27.7)

Fluid and electrolyte disorders 270 (35.0) 156 (46.0)

Blood loss anemia 5 (0.6) 5 (1.5)

Deficiency anemia 52 (6.7) 23 (6.8)

Alcohol abuse 34 (4.4) 17 (5.0)

Drug abuse 109 (14.1) 44 (13.0)

Psychoses 19 (2.5) 14 (4.1)

Depression 178 (23.1) 95 (28.0)

*, indicates significance with P<0.05. AIDS/HIV, acquired immunodeficiency syndrome/human immunodeficiency virus.
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Table 2 Top five admit diagnoses by cohort

No. Nonsurgical (N=772) Surgical (N=339)

1 Sepsis, unspecified organism (n=76, 9.8%) Sepsis, unspecified organism (n=22, 6.5%)

2 Dorsalgia, unspecified (n=42, 5.4%) Intraspinal abscess and granuloma (n=18, 5.3%)

3 Osteomyelitis of vertebra, lumbar region (n=34, 4.4%) Osteomyelitis of vertebra, lumbar region (n=14, 4.1%)

4 Osteomyelitis of vertebra, sacral and sacrococcygeal 
region (n=31, 4.0%)

Dorsalgia, unspecified (n=12, 3.5%)

5 Fever, unspecified (n=29, 3.8%) Osteomyelitis of vertebra, thoracic region (n=9, 2.7%)

[ADMIT DIAGNOSIS] Fever, unspecified 

[CULTURE] Negative 

[CULTURE] Staphylococcus aureus 

[LAB/VITAL] PaO2:FIO2 ratio 

[ADMIT DIAGNOSIS] Intraspinal abscess and granuloma 

[ADMIT DIAGNOSIS] Sepsis, unspecified organism 

[DEMOGRAPHIC] Race 

[LAB/VITAL] Troponin I 

[CULTURE] Acid-fast bacillus 

[LAB/VITAL] A-a gradient

Fe
at

ur
es

0.00 0.02 0.04 0.06 0.08 0.10
Feature importance

Figure 2 Top ten most important features for XGBoost, logistic regression, and K neighbors classifier.

of demographic factors, such as race, as well as several 
clinical factors, such as admit diagnosis.

The top ten features with respect to predictive power 
were as follows (in descending order of importance): admit 
diagnosis of fever, negative culture, Staphylococcus aureus 
culture, partial pressure of arterial oxygen to fractional 
inspired oxygen ratio (PaO2:FiO2), admit diagnosis of 
intraspinal abscess and granuloma, admit diagnosis of 

sepsis, race, troponin I, acid-fast bacillus culture, and A-a 
gradient (Figure 2). Thus, these are likely important clinical 
predictors of a spine surgical intervention in the setting of 
VOD.

The model metrics for the model with greatest 
performance (XGBoost) were as follows: accuracy =0.7534, 
sensitivity =0.7436, specificity =0.7586, and AUC =0.8210 
(Table 3).
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Discussion

Patients exhibiting neurological deficits due to epidural or 
paravertebral abscesses, those displaying spinal instability 
with potential or actual cord compression, as well as 
those for whom medical treatment has proven ineffective, 
constitute the clinical scenarios where spinal surgery is 
indicated. In such scenarios, the goal of surgical intervention 
encompasses decompressing the neural elements, securing 
culture specimens for targeted antibiotic therapy, and 
reinforcing the stability of the spinal column in instances of 
spinal instability. For a non-spine surgeon, the evaluation 
of who benefits from a spine surgical consultation is often 
delayed while awaiting an MRI to better characterize the 

extent of disease. In this study, three different ML models 
are presented that use readily available clinical data to 
predict the indication for a spine surgical intervention 
(during the same hospital stay) with modest performance. 
This tool could be used to assist non-surgeons in consulting 
spine surgeons early based on data readily acquired during a 
patient’s initial presentation to the emergency room or onto 
a medical floor. These results constitute the first evidence 
to date regarding the applicability of modern ML classifiers 
for predicting the indication for surgical intervention 
(during the same hospital stay) in patients with VOD 
(Figure 3). Additionally, this tool could improve resource 
allocation for patients with newly diagnosed VOD, as not 
all patients with VOD would benefit from an early spine 

Table 3 Performance metrics for XGBoost, logistic regression, and K neighbors classifier models

ML model Accuracy Sensitivity Specificity AUC

XGBoost 0.7534 0.7436 0.7586 0.8210

Logistic regression 0.6861 0.6538 0.7034 0.7325

K neighbors classifier 0.7085 0.6667 0.7310 0.7456

ML, machine learning; AUC, area under the curve.

Figure 3 An interpretable model for vertebral osteomyelitis and discitis (VOD) surgical decision-making using a gradient-boosted decision 
tree model. LDH, lactate dehydrogenase.
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surgical consultation. Moreover, our findings illuminate an 
imbalance in the administration of surgical treatment for 
VOD when comparing white patients to those from other 
ethnic backgrounds. The recognition of this latent disparity 
paves the way for a recalibration of clinical support tools, 
thereby mitigating the insidious sway of subconscious biases 
that may otherwise color the medical care provided to 
patients.

Predicting spine surgery in other spinal disease models

The ultimate objective of employing ML in spine surgery 
is to devise a “plug-and-play”, forward-looking model. 
The model would be able to ascertain optimal surgical 
candidates and predict clinical outcomes, relying solely 
on patient factors identified from the day of admission. 
Literature on the utilization of ML for preoperative 
prediction of intraoperative and postoperative outcomes in 
anterior lumbar spine surgery has already been explored (18), 
but studies on ML for the creation of decision-making trees 
for other spinal pathologies are limited. The literature has 
multiple ML studies pertaining to degenerative lumbar disc 
disease (DLDD) and spinal deformity. A majority of the 
studies are focused on predicting complications rather than 
assessing clinical outcomes associated with either surgical 
or nonsurgical management. The discernment of surgical 
candidates amongst nonoperative patients can alleviate the 
burden on the healthcare system, consequently mitigating 
overall cost of care or allocating costly care to patients 
most likely to have an optimal clinical outcome. Xie et al. 
created an Artificial Neural Network model to determine 
surgical candidacy for 387 DLDD patients. Of the initial 
55 variables, eight variables were used for input into the 
algorithm. Their model had an AUC of 0.90, predictive 
accuracy of 0.92, and a Youden’s Index-determined 
sensitivity and specificity of 0.85 and 0.92, respectively. 
Severe canal stenosis had a normalized importance of 
beyond 90%, making it the most significant determinant 
in their model for surgical intervention (19). Wilson et 
al. created a deep U-Net ML model to determine which 
patients with lumbar stenosis would most likely require a 
laminectomy (20). The overall model had an AUC of 0.88, 
with an AUC of >0.70 at each level of lumbar stenosis. 
The sensitivity and specificity of the model were 0.81 and 
0.85 (20), similar to the performance found in our models.  
These previous reports support the feasibil i ty of 
implementing ML to model surgical decision-making.

Although the AUCs of the models we created were 

modest, the AUCs likely reflect that our models are not 
overfitting the dataset, which is a common issue with 
more flexible, less interpretable, and “blackbox” models, 
such as artificial neural networks or deep U-net models. 
Additionally, our model’s AUC performance will likely 
improve as we add patients to the dataset, and given that it 
is not overfitting the dataset, it would potentially perform 
better than more flexible when applied to clinical data from 
another institution on external validation.

Strengths and limitations

Our study utilized data from a comprehensive single-center 
database of patients with VOD that includes all flowsheet 
data, types of care support required during the index 
encounter [e.g., oxygen delivery, renal replacement therapy, 
need of intensive care unit (ICU) stay, transfusions], 
laboratory data, microbiological data, and operating room 
data. This registry offers higher quality data than those 
found in the traditional insurance claims databases and 
national registries which often have abstraction errors (21). 
As opposed to previous studies, which mainly employed 
models to identify risk factors for poor outcomes or 
complications after surgery, in this study, a model was 
developed with modest accuracy that predicts which patient 
will undergo a surgical intervention based on readily 
available clinical data at the time of admission.

This study has specific limitations. Primarily, the dataset 
is not specialized for spine surgery and is bereft of specific 
clinical factors that spine surgeons utilize to determine who 
stands to gain the most from such surgery. These important 
factors that are not available within the dataset include 
crucial radiographic findings like the severity of spinal cord 
compression and spinal instability, previous administration 
of targeted antibiotic therapy prior to surgery, and patient 
neurological status. Secondly, the ML models have only 
been internally validated, so future external validation is 
warranted to enhance the generalizability of the predictions. 
The findings of this study will serve as a foundation for 
future research to use predictive modeling and enhance 
the delivery of spine surgery for VOD. Lastly, the dataset 
used to train the ML models does not account for practice 
patterns and intrinsic selection biases that surgeons may 
have regarding the operative candidacy of a patient. As 
mentioned earlier, high-risk patients with significant 
medical comorbidities or poor social resources may be 
disproportionately managed nonsurgical. Consequently, 
this could introduce bias in the training of the model. 
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Nevertheless, the intent behind these models would be 
to aid non-surgeon physicians in both emergency rooms 
and on medical floors in seeking consultation with a spine 
surgery service using clinical information that is commonly 
available early in a patient’s treatment course, even before 
an MRI is obtained. In other words, the clinical support 
tool utilizing the models from our study would not make 
definitive decisions about spine surgery, but rather provide 
a prompt and informed suggestion for consultation when 
pertinent.

Further research incorporating neurological status and 
pertinent imaging findings in a similar ML model will 
certainly add value to the model’s prediction accuracy, 
quality, and utility of results.

Conclusions 

Based on the evaluation of three models, the XGBoost 
model predicts the indication for a spine surgical 
intervention (during the same hospital stay) based on 
several readily available patient demographic information 
and clinical features. This model was the most superior in 
terms of all performance metrics assessed. This tool may be 
a useful clinical decision-making support tool to optimize 
resource allocation and facilitate early consultation for spine 
surgery in VOD patients. However, further validation and 
impact studies are needed to fully realize the benefit of this 
prediction model.
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