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Abstract
Introduction The purpose of this study is to assess the func-
tional connectivity of the motor cortical network in patients
with brachial plexus avulsion injury (BPAI) after contralateral
C7 nerve transfer, using resting-state functional magnetic res-
onance imaging (RS-fMRI).
Methods Twelve patients with total brachial plexus root avul-
sion underwent RS-fMRI after contralateral C7 nerve transfer.
Seventeen healthy volunteers were also included in this fMRI
study as controls. The hand motor seed regions were defined
as region of interests in the bilateral hemispheres. The seed-
based functional connectivity was calculated in all the sub-
jects. Differences in functional connectivity of the motor cor-
tical network between patients and healthy controls were
compared.
Results The inter-hemispheric functional connectivity of the
M1 areas was increased in patients with BPAI compared with
the controls. The inter-hemispheric functional connectivity
between the supplementary motor areas was reduced
bilaterally.
Conclusions The resting-state inter-hemispheric functional
connectivity of the bilateralM1 areas is altered in patients after

contralateral C7 nerve transfer, suggesting a functional reor-
ganization of cerebral cortex.
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Introduction

Brachial plexus avulsion injury (BPAI) is the most severe
peripheral nerve injury and typically results in paralysis of
the affected upper limb, which significantly reduces quality
of life. Surgical restoration of hand function, especially finger
flexion, is challenging in patients with total BPAI.
Contralateral C7 nerve transfer to the median nerve via a long
vascularized ulnar nerve graft is an effective procedure that
was first developed by Gu et al. in clinical studies [1–4]. After
contralateral C7 nerve transfer, the bilateral limbs of patients
with BPAI share a single pyramidal pathway, descending from
the cerebral cortex ipsilateral to the affected plexus, resulting
in restoration of the affected arm function.

In early post-operative stages, the motor function recovery
appeared only as bilateral associated movements. However, a
few patients regained independent motor function of the af-
fected wrist and fingers following long-term functional exer-
cise [5]. The unique clinical phenomenon suggests extensive
cortical reorganization in the bilateral motor cortex. However,
the central mechanisms underlying motor plasticity after con-
tralateral C7 nerve transfer remain unclear, although a few
functional imaging studies showed intra-hemispheric and
inter-hemispheric cortical plasticity in rats and humans
[6–10]. However, the interactions of motor networks in the
resting state after contralateral C7 nerve transfer have not yet
been investigated. Resting-state functional magnetic
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resonance imaging (RS-fMRI) has been used to explore the
inter-regional correlation in terms of functional connectivity
or Bintrinsic connectivity,^ which is thought to reflect the in-
trinsic functional architecture of the human brain [11–13].
This technique has been widely used to investigate functional
reorganization in subjects suffering from central or peripheral
nervous system disease [14–16].

In the present study, the functional connectivity of the mo-
tor cortical network in patients with BPAI after contralateral
C7 nerve transfer has been assessed using RS-fMRI.

Material and methods

Subjects

The subjects included 12 patients with unilateral total BPAI due
to traffic accidents (7 men and 5 women, mean age
26.2 ± 9.1 years, range 17–54 years). On average, the interval
between trauma and contralateral C7 transfer surgery was
3.5 months, ranging from 1 to 13 months. The average interval
between contralateral C7 transfer surgery and functional MRI
was 34.4 months, ranging from 18 to 48 months (Table 1). All
the patients had complete avulsion of the five roots, and the
muscle strength of finger and wrist flexion in all the patients
was graded as M0 before contralateral C7 nerve transfer. The
preliminary diagnosis of complete brachial plexus injury was
based on detailed history, meticulous physical examination,
and results using needle electromyography (EMG). All the pa-
tients were subjected to computed tomographic myelography
(CTM) and MRI of brachial plexus. MRI of brachial plexus
was acquired at two centers randomly to reduce travel time of
the patients in the study. Acquisition parameters were adjusted
to be as equal as possible between the two scanners at two
centers, while still having near optimal settings for each system.
Each patient underwent clinical evaluation for residual motor
function and signs of associated neurological lesions. All the
patients underwent surgical exploration and contralateral C7
nerve transfer via the modified pre-spinal route and direct co-
aptation of the contralateral C7 nerve with the lower trunk to
restore finger flexion [3]. All the surgical interventions were
performed by the same medical team at Beijing Jishuitan
Hospital. The modified British Medical Research Council
(MRC) muscle grading system [4] was used to evaluate the
motor function after the patients regained finger flexion. The
strength of finger flexion was testedwith the wrist extended 20°
to 30°. Muscle strength was graded as poor (M0 to M2), fair
(M2+ to M3), good (M3+ or M4−), or excellent (M4 to M5−).
The muscle strength of finger and wrist flexion in all the pa-
tients was graded as M4.

No history of psychiatric or neurological abnormalities was
found in any patient. The control group consisted of 17 age-
matched healthy volunteers (mean age 26.3 ± 2.8 years, range

21–30 years) with no history of psychiatric or neurological
abnormalities. All the participants were right-handed.
Handedness was determined using Peking University Hand
Preference Inventory. Written informed consent was obtained
from all subjects. The study protocol, amendments, and in-
formed consent were reviewed and approved by the local in-
stitutional review boards.

MR data acquisition

MR imaging was performed using a 1.5-T MR scanner
(Siemens Magnetom Espree, Germany). All the data were
acquired using a standard quadrature birdcage head coil for
both RF transmission and reception. Anatomical images were
obtained from axial multi-slice SE T1-weighted images [TR
(repetition time) = 500 ms, TE (echo time) = 7.7 ms, matrix
size 256 × 256, FOV 230 × 230 mm, slice thickness 5 mm and
gap 1.5 mm, 20 slices]. Resting-state functional images were
acquired using a whole-brain 3D echo-planar imaging (EPI)
sequence [TR 2730 ms, TE 45 ms, flip angle = 90°, matrix
64 × 64, slice thickness 5 mm, gap 1.5 mm, FOV
230 × 230 mm, resolution 3.6 × 3.6 mm in-plane], providing
blood oxygenation level-dependent (BOLD) contrast. The
resting run generated 180 whole-brain volumes. High-resolu-
tion, T1-weighted gradient echo 3D images (magnetization
prepared rapid gradient echo imaging (MPRAGE)) were then
acquired for coregistration [TR/TE = 1970 ms/3.6 ms, flip
angle = 15°, slice plane sagittal, slice thickness = 1 mm, gap
0.5 mm, FOV = 256 × 256 mm, matrix size = 192 × 256, 176
slices].

During the resting fMRI session, the subjects were
instructed to keep their eyes closed, to remain motionless,
and not to think of anything in particular.

Data preprocessing

Resting-state fMRI data were pre-processed using previously
described procedures [17]. The following steps were per-
formed: slice timing and rigid body correction for head mo-
tion, data smoothing (6-mm full width at half maximum), low-
pass temporal filtering, ventricular and white matter signal
regression, normalization for global mean signal intensity
across runs, and transformation of the data into a standard atlas
space. All images were temporarily low-pass filtered
(0.01 Hz < frequency < 0.08 Hz).

Whole-brain signal regression was also included in the
processing stream, which improved the correction of
motion-related artifacts [18]. All subjects included in this
study met the quality control criterion of slice-based temporal
signal-to-noise ratio >100.

The strength of functional correlation between the motor
cortex (M1) and supplementary motor area (SMA) was quan-
tified for each patient using hand motor seed regions
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(Talairach-Tournoux coordinates ±41, 17, 58) defined from an
independent study of actual hand movements [19]. The time
course of each region of interest (ROI; radius = 6 mm) was
then extracted before functional connectivity analysis. After
the ROIs were defined, Pearson’s correlation coefficients be-
tween the time course of each ROI and that of every voxel in
the whole brain (voxel-wise analysis) were calculated.

Correlation maps were computed for the two cerebral seed
regions in each participant. The group-averaged, Fisher’s r-to-
z transformed correlation map was generated for each seed
region. As a result, brain areas with significant connectivity
to the ROIs within each group were obtained with a p value
<0.005 (uncorrected) at voxel level and a p value <0.05 with
an extent threshold of 27 voxels for the clusters (AlphaSim
correction).

In order to test for crossed laterality, direct comparisons of
the left and right cerebral seed regions were computed via
arithmetic subtraction of the z score correlation maps.

Results

In healthy volunteers, by placing an ROI in the left-hand or the
right-hand motor seed regions, the cortical map showed sig-
nificant functional connectivity between bilateral M1 areas
and bilateral SMAs (Fig. 1 (a and b) and Table 2).

By placing an ROI in the hand area contralateral to the
injured side or the intact side, significant functional connec-
tivity was found between bilateral M1 areas and bilateral
SMAs (Fig. 1 (c and d) and Table 2).

Compared with healthy volunteers, the inter-hemispheric
functional connectivity of the M1 areas in the resting-state
fMRI was increased in the patients with BPAI after contralat-
eral C7 nerve. Inter-hemispheric functional connectivity be-
tween the two SMAs was reduced in the patients (Fig. 2 (a and
b) and Table 3).

Discussion

As a non-invasive imaging modality, fMRI has revolutionized
our understanding of functional networks and cerebral orga-
nization in both normal and pathological brains over the past
several decades. Task-based functional imaging studies
showed intra- and inter-hemispheric cortical plasticity in rats
and humans following contralateral C7 nerve transfer for
BPAI [6–10]. However, task-based fMRI scan is challenging
for most BPAI patients who have to accomplish motor func-
tion of the affected wrist and fingers by bilateral associated
movements, which result in movement artifacts. One of the
important advantages of RS-fMRI is independence from func-
tional tasks. In addition, the interactions of the motor networks
can be investigated in the resting state after contralateral C7
nerve transfer.

In this study, alterations in the functional connectivity of
motor cortex in BPAI following contralateral C7 nerve trans-
fer were measured to investigate cortical reorganization. Our
most important finding related to increased inter-hemispheric
functional connectivity between the bilateral M1 areas in pa-
tients with BPAI after contralateral C7 nerve transfer com-
pared with that of the controls. The strength of functional
connectivity is consistent with the degree of spontaneous neu-
ronal activity synchronization [11–13]. Functional connectiv-
ity reflects the intrinsic functional architecture of the human
brain [11–13]. Changes in functional connectivity were found
in subjects afflicted with central or peripheral nervous system
disease [20–24]. Studies showed that resting-state inter-hemi-
spheric functional connectivity and intrinsic horizontal func-
tional connections of the primary motor areas were reduced
following brachial plexus avulsion injury [21, 24]. In the pres-
ent study, the motor function of the affected wrist and fingers
in patients with BPAI after C7 nerve transfer recovered with
contralateral movements. The findings in this study suggest
that the increased inter-hemispheric functional connectivity

Table 1 Patient demographics
Case no. Sex Age (years) Handedness Lesions Muscle grade Time course of fMRI

post-surgery (months)

1 F 24 R R M4 48

2 F 23 R L M4 48

3 M 23 R R M4 24

4 M 26 R L M4 48

5 M 17 R R M4 36

6 M 23 R R M4 42

7 F 29 R L M4 24

8 M 39 R R M4 18

9 F 22 R L M4 36

10 F 54 R R M4 27

11 M 17 R L M4 34

12 M 24 R L M4 28
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was related to the increased synchronization of the two prima-
ry motor areas and changes in intrinsic functional architecture
of the patient’s brain. This result suggests functional reorgani-
zation of the two primary motor areas in patients with BPAI
after contralateral C7 nerve transfer.

The resting-state fMRI study in patients with BPAI after
contralateral C7 nerve transfer was seldom reported, in con-
trast to task functional imaging studies. Accumulating evi-
dence involving task functional imaging studies in patients
with BPAI shows long-term plasticity between cortical

Fig. 1 Functional connectivity map, healthy controls vs. patients. An
ROI in the left-hand motor seed regions (a). An ROI in the right-hand
motor seed regions (b). An ROI in the hand area contralateral to the

injured side (c). An ROI in the hand area contralateral to the intact side
(d). Cortical map showed significant functional connectivity between
bilateral M1 areas and bilateral SMAs

Table 2 Significant functional
connectivity of healthy controls
and patients

Group ROIs Regions Talairach-Tournoux coordinates

Cluster size (mm3) x y z t value

Control L_Hand L_M1 8748 −40 −13 56 14.63

R_M1 8532 30 −25 56 8.42

SMA 1377 −7 −22 53 5.21

R_Hand L_M1 11,691 −43 −13 51 7.76

R_M1 11,313 40 −20 56 10.21

SMA 1269 13 −22 51 5.75

Patient Injured side L_M1 10,017 −40 −16 56 15.06

R_M1 4860 26 −43 59 10.98

Intact side L_M1 4185 −25 −34 62 4.47

R_M1 10,557 16 −43 59 10.98

L left, R right, M1 the primary motor cortex, SMA supplementary motor area
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hemispheres, in addition to cortical plasticity between neigh-
boring regions in the same hemisphere [7, 25–27]. A study of
long-term cortical remodeling in BPAI after contralateral C7
nerve transfer suggests that the motor control of the reinner-
vated limbwas switched from the ipsilateral hemisphere of the
affected plexus to the bilateral hemispheres and finally to the
contralateral neural network activation [24], which is consis-
tent with animal studies [9, 28]. The studies also suggest time-
dependent cortical reorganization. In the current study, the
affected wrist and fingers in patients after contralateral C7
nerve transfer moved with the contralateral movements, and
increased synchronization of the two primary motor areas of
the brain occurred at specific clinical stages. We believe that
functional connectivity may be altered when patients con-
trolled the injured limb independently. RS-fMRI can be used
to further elucidate the mechanisms of functional recovery in
patients with contralateral C7 nerve transfer.

In this study, reduced inter-hemispheric functional connec-
tivity occurred between the two SMAs of patients. A study

with resting-state functional connectivity in patients with
BPAI also discovered decreased functional connectivity be-
tween the SMA and multiple brain regions [29]. The SMA
is thought to be a key structure and played a higher role in
behavioral planning and execution, such as alternate motor
plans, task switching, acquisition of new motor skills, and
motor selection [30–32]. The motor function recovery is ini-
tiated with the primary motor function, compared with the
poor restoration of higher and complex motor function.

The present study has several limitations. First, the study is
a cross-sectional investigation. Longitudinal investigation in-
cluding different pre- and post-surgical time points is impor-
tant to study the dynamics of cortical plasticity in patients with
BPAI. In this study, including the normal controls, controls
from pre-surgical BPAI patients might provide more informa-
tion, because functional connectivity change might be from
C7 nerve transfer and post-surgical functional exercise and
might also have existed before C7 nerve transfer. Second,
the sample size was small since the incidence of contralateral

Fig. 2 An ROI in the hand area contralateral to the injured side (a). An
ROI in the hand area contralateral to the intact side (b). Compared with
healthy volunteers, patients showed an increase in inter-hemispheric

functional connectivity of the M1 areas in the resting-state fMRI and
reduced functional connectivity between the two SMAs

Table 3 Significant differences
of functional connectivity
between healthy controls and
patients

Contrasts ROIs Regions Talairach-Tournoux coordinates

Cluster size (mm3) x y z t value

Patients > controls Injured side L_M1 1026 −40 −34 54 3.59

R_M1 1053 26 −43 59 3.94

Intact side L_M1 1242 −40 −34 54 3.59

R_M1 1809 43 −34 59 4.41

Patients < controls Injured side SMA 4266 −4 −7 62 4.97

Intact side SMA 2430 −7 7 56 4.65

L left, R right, M1 the primary motor cortex, SMA supplementary motor area
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C7 nerve transfer for BPAI is rare. Further, the small size was
not conducive to a study based on age groups, although it is
known that younger subjects may display additional neural
plasticity. A longitudinal study with a larger number of pa-
tients is needed to investigate the changes in functional con-
nectivity. We also intend to comprehensively evaluate the
functional imaging results combined with muscle strength
grading.

In conclusion, this study demonstrates that the resting-state
inter-hemispheric functional connectivity of the bilateral M1
areas was altered in patients with BPAI following contralateral
C7 nerve transfer, suggesting functional reorganization of the
cerebral cortex.

Compliance with ethical standards

Funding This study was funded by the National Natural Science
Foundation of China (Grant no: 81,271,558) and the Beijing Natural
Science Foundation (Grant no: 7,132,061). The study was also funded
by grants from the Beijing Bureau of 215 Program (No. 2013–3-033;
2009–02-03).

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval All procedures performed in the studies involving human
participants were in accordance with the ethical standards of the institutional
and/or national research committee and with the 1964 Helsinki Declaration and
its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual par-
ticipants included in the study.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

1. Gu YD, Chen DS, Zhang GM, Cheng XM, Xu JG, Zhang LY, Cai
PQ, Chen L (1998) Long-term functional results of contralateral C7
transfer. J Reconstr Microsurg 14:57–59

2. Gu YD, Zhang GM, Chen DS, Yan JG, Cheng XM, Chen L (1992)
Seventh cervical nerve root transfer from the contralateral healthy
side for treatment of brachial plexus root avulsion. Journal of hand
surgery (Edinburgh, Scotland) 17:518–521

3. Wang SF, Li PC, Xue YH, Yiu HW, Li YC, Wang HH (2013)
Contralateral C7 nerve transfer with direct coaptation to restore
lower trunk function after traumatic brachial plexus avulsion. J
Bone Joint Surg Am 95(821–827):s821–s822

4. Terzis JK, Kokkalis ZT (2009) Selective contralateral c7 transfer in
posttraumatic brachial plexus injuries: a report of 56 cases. Plast
Reconstr Surg 123:927–938

5. Zuo CT, Hua XY, Guan YH, XuWD, Xu JG, Gu YD (2010) Long-
range plasticity between intact hemispheres after contralateral cer-
vical nerve transfer in humans. J Neurosurg 113:133–140

6. Gao G-j, X-y F, XuW-d, Y-d G,W-j T, G-x S, Li K, Li Y, Dao-ying
G (2006) Functional reorganization of human motor cortex after
unaffected side C7 nerve root transposition. Chinese Journal of
Radiology 40:55–59

7. Beaulieu JY, Blustajn J, Teboul F, Baud P, De Schonen S, Thiebaud
JB, Oberlin C (2006) Cerebral plasticity in crossed C7 grafts of the
brachial plexus: an fMRI study. Microsurgery 26:303–310

8. Lou L, Shou T, Li Z, Li W, Gu Y (2006) Transhemispheric func-
tional reorganization of the motor cortex induced by the peripheral
contralateral nerve transfer to the injured arm. Neuroscience 138:
1225–1231

9. Jiang S, Li ZY, Hua XY, Xu WD, Xu JG, Gu YD (2010)
Reorganization in motor cortex after brachial plexus avulsion inju-
ry and repair with the contralateral C7 root transfer in rats.
Microsurgery 30:314–320

10. Wang M, Li ZY, XuWD, Hua XY, Xu JG, Gu YD (2010) Sensory
restoration in cortical level after a contralateral C7 nerve transfer to
an injured arm in rats. Neurosurgery 67:136–143 discussion 143

11. Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L,
Gelbard-Sagiv H, Kipervasser S, Andelman F, Neufeld MY,
Kramer U, Arieli A, Fried I, Malach R (2008) Interhemispheric
correlations of slow spontaneous neuronal fluctuations revealed in
human sensory cortex. Nat Neurosci 11:1100–1108

12. Lu H, Zuo Y, GuH,Waltz JA, ZhanW, Scholl CA, ReaW, Yang Y,
Stein EA (2007) Synchronized delta oscillations correlate with the
resting-state functional MRI signal. Proc Natl Acad Sci U S A 104:
18265–18269

13. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional
connectivity in the motor cortex of resting human brain using echo-
planar MRI. Magn Reson Med 34:537–541

14. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006)
Spontaneous neuronal activity distinguishes human dorsal and ven-
tral attention systems. Proc Natl Acad Sci U S A 103:10046–10051

15. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen
DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007)
Intrinsic functional architecture in the anaesthetized monkey brain.
Nature 447:83–86

16. Qiu TM, Chen L, Mao Y, Wu JS, Tang WJ, Hu SN, Zhou LF, Gu
YD (2014) Sensorimotor cortical changes assessed with resting-
state fMRI following total brachial plexus root avulsion. J Neurol
Neurosurg Psychiatry 85:99–105

17. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW,
Buckner RL (2010) Intrinsic functional connectivity as a tool for
human connectomics: theory, properties, and optimization. J
Neurophysiol 103:297–321

18. Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di
Martino A, Li Q, Zuo XN, Castellanos FX, Milham MP (2013) A
comprehensive assessment of regional variation in the impact of
head micromovements on functional connectomics. NeuroImage
76:183–201

19. Lu J, Liu H, Zhang M, Wang D, Cao Y, Ma Q, Rong D, Wang X,
Buckner RL, Li K (2011) Focal pontine lesions provide evidence
that intrinsic functional connectivity reflects polysynaptic anatom-
ical pathways. The Journal of neuroscience : the official journal of
the Society for Neuroscience 31:15065–15071

20. Schilbach L, Hoffstaedter F, Muller V, Cieslik EC, Goya-
Maldonado R, Trost S, Sorg C, Riedl V, Jardri R, Sommer I,
Kogler L, Dernt l B, Gruber O, Eickhoff SB (2016)
Transdiagnostic commonalities and differences in resting state
functional connectivity of the default mode network in schizophre-
nia and major depression. NeuroImage Clinical 10:326–335

21. Liu B, Li T, Tang WJ, Zhang JH, Sun HP, Xu WD, Liu HQ, Feng
XY (2013) Changes of inter-hemispheric functional connectivity
between motor cortices after brachial plexuses injury: a resting-
state fMRI study. Neuroscience 243:33–39

252 Neuroradiology (2017) 59:247–253



22. Klingner CM, Volk GF, Brodoehl S, Burmeister HP, Witte OW,
Guntinas-Lichius O (2012) Time course of cortical plasticity after
facial nerve palsy: a single-case study. Neurorehabil Neural Repair
26:197–203

23. Klingner CM, Volk GF, Maertin A, Brodoehl S, Burmeister HP,
Guntinas-Lichius O, Witte OW (2011) Cortical reorganization in
Bell’s palsy. Restor Neurol Neurosci 29:203–214

24. Fraiman D, Miranda MF, Erthal F, Buur PF, Elschot M, Souza L,
Rombouts SA, Schimmelpenninck CA, Norris DG, Malessy MJ,
Galves A, Vargas CD (2016) Reduced functional connectivity with-
in the primary motor cortex of patients with brachial plexus injury.
Neuroimage Clin 12:277–284

25. Hua XY, Liu B, Qiu YQ, Tang WJ, Xu WD, Liu HQ, Xu JG, Gu
YD (2013) Long-term ongoing cortical remodeling after contralat-
eral C-7 nerve transfer. J Neurosurg 118:725–729

26. Sokki AM, Bhat DI, Devi BI (2012) Cortical reorganization follow-
ing neurotization: a diffusion tensor imaging and functional mag-
netic resonance imaging study. Neurosurgery 70:1305–1311 dis-
cussion 1311

27. Yoshikawa T, Hayashi N, Tajiri Y, Satake Y, Ohtomo K (2012)
Brain reorganization in patients with brachial plexus injury: a

longitudinal functional MRI study. TheScientificWorldJOURNAL
2012:501751

28. Stephenson JB, Li R, Yan JG, Hyde J, Matloub H (2013)
Transhemispheric cortical plasticity following contralateral C7
nerve transfer: a rat functional magnetic resonance imaging surviv-
al study. The Journal of hand surgery 38:478–487

29. LuY, Liu H,HuaX, XuWD, Xu JG, GuYD (2016) Supplementary
motor cortical changes explored by resting-state functional connec-
tivity in brachial plexus injury. World Neurosurg 88:300–305

30. Hiroshima S, Anei R, Murakami N, Kamada K (2014) Functional
localization of the supplementary motor area. Neurol Med Chir 54:
511–520

31. Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, Seo SW, Cox
RW, NaDL, Kim SI, Saad ZS (2010) Defining functional SMA and
pre-SMA subregions in human MFC using resting state fMRI:
functional connectivity-based parcellation method. NeuroImage
49:2375–2386

32. Nachev P, Wydell H, O’Neill K, Husain M, Kennard C (2007) The
role of the pre-supplementary motor area in the control of action.
NeuroImage 36(Suppl 2):T155–T163

Neuroradiology (2017) 59:247–253 253


	Functional...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Material and methods
	Subjects
	MR data acquisition
	Data preprocessing


	Results
	Discussion
	References


