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A B S T R A C T

A capital return rate function for growth processes is introduced and applied to financial considerations in
periodically growing multiannual plants. The capital return rate function is composed of a momentary capital
return function, a probability density function in the time domain, and their integration over time or age. It is
shown that the expected value of capital return rate within a single stand equals momentary capital return rate
within an estate, integrated over an even distribution of stand ages. We distribute the capitalization to operative
and non-operative capitalization. In the case of a low non-operative capitalization, financially sound operations
favor relatively small amount of operative capital. In the case of a high, but constant non-operative capitalization,
optimal practices correspond to those resulting in maximum sustainable yield. Appreciating non-operative
capitalization favors small operative capitalization. Optimal rotation and operative capitalization are weak
functions of increasing level of non-operative capitalization, even if they are strong functions of its increment rate.
It is argued that large but non-appreciating non-operative capitalization, favoring practices corresponding to
maximum sustainable yield, would not appear frequently. In summary, it is found that appreciation of non-
operative capitalization dominates financially sustainable management practices.
1. Introduction

Businesses should be sustainable. In businesses involved in growing
multiannual plants, sustainability may refer to maintenance of growing
stock, maintenance of growth, or maintenance of productive area (Kuu-
sela, 1961; Posavec et al., 2012). Another view is that maintenance is not
necessarily enough, there possibly should be a progression in the amount
of growing stock, growth, or possibly productive area (Kuusela, 1961).
Financial considerations have been incorporated to sustainability
criteria. Most commonly, a discounting interest rate is applied in order to
compute the present value of future incomes and expenses (Faustmann,
1849; Pearse, 1967; Samuelson, 1976; Yin and Newman, 1995; Deegen
et al., 2011; Campbell, 1999; Nyyss€onen, 1999; Tahvonen, 2016; Gong
and L€ofgren, 2016; Abdallah and Lasserre, 2017). The discounting in-
terest may vary over time (Price, 2011, 2017a; Buongiorno and Zhou,
2011; Brazee, 2017). It has been stated that uncertainty induces declining
discount rates along with time (Groom et al., 2005; Price, 2011, 2017b;
Hepburn and Koundouri, 2007); however it can be shown that there is an
opposite effect on prolongation interest. Risk of destructive events has
been considered as a premium to discount interest (Loisel, 2011; Hyyti-
€ainen and Haight, 2010). Evolution of prices, as well as fluctuations in
growth and prices may be added (Buongiorno and Zhou, 2011; Yin and
orm 9 July 2019; Accepted 22 O
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Newman, 1997). Taxation does contribute, as well as personal financies
(Koskela and Alvarez, 2004; Tahvonen and Salo, 1999; Tahvonen et al.,
2001). A Hamiltonian formulation is available (Termansen, 2007).

It has recently been shown that maximization of net present value of
future net proceeds may lead to financially devastating consequences
(K€arenlampi, 2019a). An obvious reason for this is that a discounting
interest rate is taken externally, were as optimization of capital return
rate should be based on the features of any production process. Such
results have been gained in the case of stationary rotation forestry
(K€arenlampi, 2019a). Stationarity here means that stand ages are evenly
distributed, and the even stand age distribution is retained by regular
regeneration. Stationarity, in the financial sense, also requires that prices
and expenses, including non-operative valuations like an eventual bare
land value, do not evolve in real terms. It has been shown that maxi-
mizing an internal rate of return (IRR: Boulding, 1955; Newman, 1988)
yields only slightly biased results in stationary forestry (K€arenlampi,
2019a). Maximization of the net present value of future proceeds be-
comes similar to the IRR, provided the discounting interest rate is cali-
brated to yield a realistic bare land value (K€arenlampi, 2019a).

Another interesting development regards financial performance of
continuous-cover forestry (K€arenlampi, 2018). Frequent diameter-limit
harvestings, in the absence of any regeneration cycles, result as
ctober 2019
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essentially stationary operation. However, such a system may be finan-
cially nonstationary, provided prices or expenses evolve (K€arenlampi,
2018). A low, stationary non-operative capitalization appears to favor
financially a small volume of standing trees. A large non-operative
capitalization requires a large amount of standing trees, corresponding
to a large cutting limit diameter (K€arenlampi, 2018). Finally, a significant
appreciation rate on non-operative capitalization requires a small volume
of standing trees, corresponding to a low cutting limit diameter
(K€arenlampi, 2018).

In this paper, we investigate capital return in the business of growing
multiannual plants in a periodic manner. We do not apply any financial
stationarity criterion. Instead, we investigate the effects of eventually
evolving capitalization. A momentary return rate of capital is defined, as
well as its probability density function. Then, the capital return is inte-
grated over time on the one hand, and over age on the other hand (cf.
K€arenlampi, 2019b).

The effect of non-operative capitalization on the financial sustain-
ability is investigated within the frameworks of two practical forestry
examples (Gong and L€ofgren, 2016). The effect of stationary
non-operative capitalization on the capital return is investigated, as well
as consequent optimal rotation. Then, the effect of appreciating
non-operative capitalization on operative and total capital return is
studied. Thirdly, long-term solutions are developed, covering many
rotation cycles. The latter formulations are solved under the boundary
condition of high non-operative capitalization. A few cases of interme-
diate non-operative capitalization are discussed. Themethods introduced
could be used to any growth process, provided a yield function can be
approximated.

2. Model

2.1. State-space capital return model

Let us first write a momentary rate of capital return, in terms of
capitalization K and time t:

rðtÞ¼ dκ
KðtÞdt (1)

By definition, the expected value of the capital return rate is

hri¼
Z

rpðrÞdr (2)

where p refers to a probability density function. In the time domain, Eq.
(2) becomes

hri¼
Z τ

0
rpðrÞ dr

dt
dt (3)

where τ is rotation time, and

pðr; tÞ¼ pðrÞ dr
dt

(4)

is the probability density function of capital return rate in the time
domain. On the other hand, the expected value of the capital return rate
is

hri¼

�
dκ
dt

�

hKi ¼

Z τ

0

dκ
dt

dt
Z τ

0
Kdt

¼

Z τ

0
rKdt

Z τ

0
Kdt

(5)

where the numerator is written in terms of the partition function (or state
sum) of the change rate of capitalization, and the denominator is the
partition function of the capitalization (K€arenlampi, 2019b). Comparing
Eqs. (3), (4) and (5), we find that the probability density function of
2

capital return rate in the time domain is

pðr; tÞ¼ KðtÞZ τ

0
Kdt

(6)

In Eqs. (1) and (5), the difference between κ in the numerator and K in
the denominator relates to eventual operative investment. The capitali-
zation K is immediately affected by any eventual operative investment
(or withdraval), and then consequently becomes affected by amortiza-
tions. The net return rate dκ

dt in the numerator possibly is indirectly
affected by investments through increased growth, etc., but apart from
that, considers investments in terms of amortizations only. Even amor-
tizations of operative investments throughout the applied (or remaining)
rotation age are applied.

The Equations above were written in the time domain. That is not the
only possibility. Let us convert some of them into the domain of stand
age. Firstly, an expected value of capitalization is, by definition,

hKi¼
Z ∞

0
pðKÞKdK (7)

where pðKÞ is the probability density function of capitalization K. By
change of variables we get

hKi¼
Z τ

0
pðKÞK dK

da
da ¼

Z τ

0
pðaÞKða; tÞda (8)

where a is stand age, and τ is rotation age. The expected value of the
increment rate of capitalization is

�
dκ
dt

�
¼

Z τ

0
pðaÞ dκða; tÞ

dt
da (9)

Correspondingly, the momentary expected rate of relative capital
return is

hrðtÞi¼

�
dκ
dt

�

hKi ¼

Z τ

0
pðaÞ dκða; tÞ

dt
da

Z τ

0
pðaÞKða; tÞda

¼

Z τ

0
pðaÞκða; tÞrða; tÞda
Z τ

0
pðaÞKða; tÞda

(10)

Now, Eq. (10) equals Eq. (5), provided there is an even distribution of
stand ages (pðaÞ is constant). Even if the outcome is the same, the deri-
vations are rather different; Eq. (10) discusses an estate with a variety of
stand ages, whereas function (5) may well be applied to any single stand.
Interestingly, Eq. (10) indicates that the capitalization, as well as the
capital return rate, may be functions of two separate variables, time and
stand age. It is further worth noting that even apart from a “normal
forest” boundary condition (Leslie, 1966) the constancy of the proba-
bility density of stand age within the integration range is valid when
discussing one single stand.

Let us now develop Eq. (5) further by introducing an operative and a
non-operative component of capitalization. Operative capitalization
component appreciates through growth. Non-operative capitalization
may be due to excess demand of real estate in comparison to supply,
recreational values, speculation for future real estate development, etc.
We include any bare land value in the non-operative capitalization. The
operative capitalization is denoted as OðtÞ, non-operative capitalization
as UðtÞ, and rewrite Eq. (5) as

hri¼ 1Z τ

0
ðOþ UÞdt

Z τ

0

dðΩþ UÞ
dt

dt¼ΔΩðτÞ þ ΔUðτÞ
τ½hOi þ hUi� (11)

In Eq. (11), the difference between Ω in the numerator and O in the
denominator again relates to eventual operative investment. The capi-
talization O is immediately affected by any eventual operative invest-
ment, and then consequently becomes reduced by amortizations. The net
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return rate dΩ
dt in the numerator considers investments in terms of amor-

tizations only. Correspondingly, the accumulated net yield ΔΩðτÞ may
differ from net change in operative capitalization ΔOðτÞ in the occurrence
of withdrawals (harvesting etc.).

We find from Eq. (11) that in the case the operative capitalization is
much higher than the non-operative capitalization, the role of the latter
vanishes. If non-operative capitalization is much higher than operative
capitalization, the role of the operative capitalization vanishes. In case
the non-operative capitalization is large but constant, the highest oper-
ative return would simply correspond to the greatest average yieldΔΩðτÞ=
τ. The situation is more complicated if there is a nonvanishing time
change rate of the non-operative capitalization dU=dt.

3. Results

3.1. A volumetric yield example

As a practical forestry example, we consider two recently introduced
(Gong and L€ofgren, 2016) yield functions, applicable to average pine
stands in Northern Sweden. A volumetric growth function is

VðtÞ¼ 580:14*
�
1� 6:3582�t=95

�2:8967
(12)

The first application introduced by Gong and L€ofgren (2016) assumes
a stumpage price of 250 SEK/m3, and an initial investment of 6000
SEK/ha. The maximum sustained yield rotation being 95 years, a 3%
discount interest would yield an optimal rotation age of 52 years (Gong
and L€ofgren, 2016). We now apply Eq. (11) for this case.

The non-operative capitalizationU should be parametrized somehow.
We choose to fix the ratio U =O at the time instant of 100 years. We first
establish a treatment where the non-operative capitalization is constant
in time. In other words, dU=dt ¼ 0. Then we apply nonzero change rates
for the non-operative capitalization, using a few alternative appreciation
rates. We first discuss the operative return rate of capital, and then the
total return rate of capital.

In Fig. 1, the non-operative capitalization is set as zero. In other

words,
�
U =O

�
100

¼ 0. Fig. 1 shows the operative capital return of 4.18%

at rotation time 40 years, provided the initial investment is SEK 6000, as
approximated by Gong and L€ofgren (2016).

If the growth could be initiated with a tiny investment of 600 SEK,
operative capital return of 13.1% would be achieved at 17 years of
Fig. 1. Pine stand value growth according to a North-Swedish growth function (12) (G
rate according to Eq. (3) for three different levels of initial investment, with hUi=hO
growth in millions per hectare.
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rotation (Fig. 1). In case the initial investment would have to be doubled
to 12 000 SEK, maximum capital return of 2.67% would be achieved at
54 years of rotation.

In Fig. 2 we introduce a nonzero non-operative capitalization, but
retain dU=dt ¼ 0. We plot the optimal rotation time, average capitali-
zation ratio hUi=hOi at optimal rotation, as well as the capital return

percentage as a function of fixed
�
U =O

�
100

.
�
U =O

�
100

¼ 0 on the left

naturally corresponds to the situation illustrated in Fig. 1. Then, as a
function of increasing non-operative capitalization, the optimal rotation
time evolves towards 95 years, corresponding to greatest possible
average net yield rate ΔΩðτÞ=τ, or equivalently the maximum sustainable
yield (MSY). Simultaneously, the operative capital return rate becomes
reduced, and the average capitalization ratio at optimum rotation time
hUi=hOi increases. Results are plotted for three different values of initial

investment, similarly to Fig. 1, and they differ the most at small non-
operative capitalization.

In Fig. 3, we retain a variety of values of non-operative capitalization,
but introduce a nonzero dU=dt. There is only one value of initial in-
vestment, 6000 SEK/ha. We arrange the data according to average
capitalization hUi=hOi at the instant of maximum operative capital return

ΔΩðτÞ
τ½hOiþhUi� (cf. Eq. (11)). Interestingly, the maximal operative capital return

is almost independent on the appreciation rate of the non-operative
capitalization. Still more interestingly, the optimal rotation time is
rather sensitive to the appreciation rate. Perhaps most interestingly, the
optimal rotation age is a rather weak function of the level of non-
operative capitalization; in the case of 4% appreciation, increasing
non-operative capitalization does not increase the optimal rotation time
beyond 46 years.

In Fig. 4 we discuss total return of capital, instead of the operative
return. We again arrange the data according to average capitalization
hUi=hOi, but now at the instant of maximum total capital return u (cf. Eq.

(11)). It is found that the maximal total capital return approaches the
appreciation rate of the non-operative capitalization along with
increasing non-operative capitalization. More interestingly, the non-
operative appreciation rate strongly contributes to the effect of non-
operative capitalization on the optimal rotation time. At zero apprecia-
tion, the optimal rotation time approaches the Maximum Sustainable
Yield rotation along with non-operative capitalization, as already
recognized from Eqs. (1), (2) and (3) and from Figs. 2 and 3. However in
ong and L€ofgren, 2016). Solid black lines correspond to average financial return

i ¼ 0. Value growth is given in units of 10 000 SEK, whereas the accumulated



Fig. 2. Optimal rotation time, average capitalization ratio hUi=hOi, and capital return percentage as a function of
�
U =O

�
100

for three different levels of initial in-
vestment for dU=dt ¼ 0.

Fig. 3. Optimal rotation time and operative capital return percentage as a function of average capitalization ratio hUi=hOi at optimum rotation, for four different levels
of annual appreciation of non-operative capitalization.
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the case of appreciating non-operative capitalization this does not
happen. As a function of increasing non-operative capitalization, the
optimal rotation time approaches a constant that rather significantly
differs from the MSY-rotation. Most interestingly, in the case of 4%
annual non-operative appreciation, the optimal rotation time never in-
creases from 40 years, which is the optimum at zero non-operative
capitalization.

Deeper understanding of the results shown in Figs. 3 and 4 probably
requires discussion of capital return as a function of rotation time in the
presence on non-operative capitalization. We show the operative and the
total capital return as a function of rotation time in Fig. 5, where�
U =O

�
100

¼ 1, and non-operative capital appreciation rate is 2%. It is

found that the maximum total capital return rate is found at rotation time
46 years, where the average capitalization ratio is 1.53. The maximum
operative capital return rate is found at rotation time 52 years, where the
average capitalization ratio is 1.365. Beyond 100 years of rotation, the
total capital return rate is below the non-operative capital appreciation
4

rate.
One can readily recognize that the situation depicted in Fig. 5 is not

stationary in the long term. In case the non-operative capitalization keeps

appreciating, the boundary condition
�
U =O

�
100

evolves. With 2%

appreciation rate of the non-operative capitalization, after 35 years�
U =O

�
100

¼ 2. After another 35 years,
�
U =O

�
100

¼ 4. Fig. 6 shows the

capital return rates, as well as the capitalization ratio, for the latter value
of the boundary condition. We find that the maximum total capital return
rate is found at rotation time 48 years, where the average capitalization
ratio is 5.86. The maximum operative capital return rate is found at
rotation time 56 years, where the average capitalization ratio is 5.06.
Beyond 100 years of rotation, the total capital return rate is below the
non-operative capital appreciation rate. In accordance with Figs. 3 and 4,
the optimal rotation time somewhat increases along with non-operative
capitalization, but the increment ceases along with further non-
operative capitalization. A comparison of Figs. 5 and 6 shows that the



Fig. 4. Optimal rotation time and total capital return percentage as a function of average capitalization ratio hUi=hOi at optimum rotation, for four different levels of
annual appreciation of non-operative capitalization.

Fig. 5. Total and operative capital return percentages as a function of rotation time for Pine stand growth function (12). The Figure also displays average capitalization

ratio hUi=hOi. Non-operative capital appreciation rate is 2%, and
�
U =O

�
¼ 1.
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capital return curve as a function of rotation time becomes flatter along
with increasing non-operative capitalization. However there is a distinct
increment of the capital return at low rotation times, related to amorti-
zation of the initial operative investment.

It is worth noting that at the 2% appreciation rate the non-operative
capitalization, the average capitalization ratio hUi=hOi predominantly

decreases along with increasing age, due to increasing operative capi-
talization O (Figs. 5 and 6). This is not necessarily the case if the
appreciation rate of the non-operative capitalization is greater than 2%.

3.2. A value growth example

Eq. (12), as well as Figs. 1, 2, 3, 4, 5, and 6, assumes the real-valued
volumetric stumpage price to be constant. In other words, the value
growth corresponds to volumetric growth, multiplied by a constant. That
may be an unrealistic assumption, for a variety of reasons, including
harvesting expenses, as well as industrial use of the crop. In order to
release this assumption, Gong and L€ofgren (2016) established an

100
5

age-dependent price function

pðtÞ¼ 104:63*ðt � 29Þ0:2602 (13)

We will now apply Eq. (13), for T > 29, in addition to Eq. (12), in
order to establish another version of the practical forestry example.

Fig. 7 shows the outcome for
�
U =O

�
100

¼ 0. Maximum sustainable

yield is gained at 130 years of rotation. Applying Eq. (11) provides a
capital return of 5.14% at rotation time 44 years, in the absence of any
non-operative capitalization.

If the growth could be initiated with a tiny investment of 600 SEK,
maximum capital return of 35.2% would be achieved at 30 years of
rotation. In case the initial investment would have to doubled to 12 000
SEK, maximum capital return of 3.22% would be achieved at 58 years of
rotation.

The above results do not depend on any arbitrary external interest
rate. A standard (Faustmann) discounting procedure could be applied for
the case. 2% discount interest would yield an optimal rotation time 78



Fig. 6. Total and operative capital return percentages as a function of rotation time for Pine stand growth function (12). The Figure also displays average capitalization

ratio hUi=hOi. Non-operative capital appreciation rate is 2%, and
�
U =O

�
100

¼ 4.

Fig. 7. Pine stand value growth according to a North-Swedish value growth function (13), (Gong and L€ofgren, 2016). Solid black lines correspond to average financial
return rate according to Eq. (3), for three different levels of initial investment. Value growth is given in units of 20 000 SEK, whereas the accumulated growth in
millions per hectare.
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years. A 3% discount interest would yield an optimal rotation of 63 years.
For this yield curve, there is not any positive Net Present Value for 4%
discount interest. The least amount of money would lost at 60 years of
rotation.

In Fig. 8 we introduce a nonzero non-operative capitalization, but
retain dU=dt ¼ 0. We plot the optimal rotation time, average capitali-
zation ratio hUi=hOi at optimal rotation, as well as the capital return

percentage as a function of fixed
�
U =O

�
100

.
�
U =O

�
100

¼ 0 on the left

naturally corresponds to the situation illustrated in Fig. 7. Then, as a
function of increasing non-operative capitalization, the optimal rotation
time evolves towards 130 years, corresponding to greatest possible
average net yield rate ΔΩðτÞ=τ. Simultaneously, the capital return rate
becomes reduced, and the average capitalization ratio at optimum rota-
tion time hUi=hOi increases. Results are plotted for three different values

of initial investment, similarly to Fig. 7, and they differ the most at small
6

non-operative capitalization.
In Fig. 9 we retain a variety of values of non-operative capitalization,

but introduce a nonzero change rate dU=dt. There is only one value of
initial investment, 6000 SEK/ha. We arrange the data according to
average capitalization hUi=hOi at the instant of maximum operative

capital return ΔΩðτÞ
τ½hOiþhUi� (cf. Eq. (11)). Interestingly, the maximal operative

capital return is almost independent on the appreciation rate of the non-
operative capitalization. Still more interestingly, the optimal rotation
time is rather sensitive to the appreciation rate. Perhaps most interest-
ingly, the optimal rotation age is a rather weak function of the level of
non-operative capitalization; in the case of 4% appreciation, increasing
non-operative capitalization does not increase the optimal rotation time
beyond 56 years.

In Fig. 10 we discuss total return of capital, instead of the operative
return. We again arrange the data according to average capitalization

hUi=hOi, but now at the instant of maximum total capital return ΔΩðτÞþΔUðτÞ
τ½hOiþhUi�



Fig. 8. Optimal rotation time, average capitalization ratio hUi=hOi, and capital return percentage as a function of
�
U =O

�
100

for three different levels of initial in-
vestment for dU=dt ¼ 0, using price function (13).

Fig. 9. Optimal rotation time and operative capital return percentage as a function of average capitalization ratio hUi=hOi at optimum rotation, for four different levels
of annual appreciation of non-operative capitalization, using price function (13).
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(cf. Eq. (3)). It is found that the maximal total capital return approaches
the appreciation rate of the non-operative capitalization along with
increasing non-operative capitalization. More interestingly, the non-
operative appreciation rate strongly contributes to the effect of non-
operative capitalization on the optimal rotation time. At zero apprecia-
tion, the optimal rotation time approaches the Maximum Sustainable
Yield rotation along with non-operative capitalization, as already
recognized from Eq. (11) and from Figs. 8 and 9. However in the case of
appreciating non-operative capitalization this does not happen. As a
function of increasing non-operative capitalization, the optimal rotation
time approaches a constant that rather significantly differs from theMSY-
rotation. In the case of 4% annual non-operative appreciation, the
optimal rotation time only increases to 46 years, from the optimum of 44
at zero non-operative capitalization.

Deeper understanding of the results shown in Figs. 9 and 10 probably
requires discussion of capital return as a function of rotation time in the
presence on non-operative capitalization. We show the operative and the
total capital return as a function of rotation time in Fig. 11, where
7

�
U =O

�
100

¼ 0:5, and non-operative capital appreciation rate is 2%. It is

found that the maximum total capital return rate is found at rotation time
52 years, where the average capitalization ratio is 1.16. The maximum
operative capital return rate is found at rotation time 56 years, where the
average capitalization ratio is 1.03. Beyond 120 years of rotation, the
total capital return rate is below the non-operative capital appreciation
rate.

One can, again, recognize that the situation depicted in Fig. 11 is not
stationary in the long term. In case the non-operative capitalization keeps

appreciating, the boundary condition
�
U =O

�
100

evolves. With 2%

appreciation rate of the non-operative capitalization, after 35 years�
U =O

�
100

¼ 1. After another 35 years,
�
U =O

�
100

¼ 2. Fig. 12 shows the

capital return rates, as well as the capitalization ratio, for the latter value
of the boundary condition. It is found that the maximum total capital
return rate is found at rotation time 56 years, where the average



Fig. 10. Optimal rotation time and total capital return percentage as a function of average capitalization ratio hUi=hOi at optimum rotation, for four different levels of
annual appreciation of non-operative capitalization, using price function (13).

Fig. 11. Total and operative capital return percentages as a function of rotation time for Pine stand growth functions (12) and (13). The Figure also displays average

capitalization ratio hUi=hOi. Non-operative capital appreciation rate is 2%,
�
U =O

�
100

¼ 0:5.
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capitalization ratio is 4.11 (value does not appear the Figure). The
maximum operative capital return rate is found at rotation time 66 years,
where the average capitalization ratio is 3.24. Beyond 120 years of
rotation, the total capital return rate is below the non-operative capital

appreciation rate. It is worth noting that even if
�
U =O

�
100

¼ 2,
�
hUi=hOi

�
100

> 2.
3.3. Long-term solutions

It is found from Figs. 3, 4, 5, 6 and 9, 10, 11, 12 that appreciating non-
operative capitalization leads to rather low operative capitalizations, in
order to maximize capital return within a particular growing cycle.
However, Eqs. (1), (2) and (3) show that along with appreciating non-
operative capitalization, the operative capital return approaches zero,
and the total capital return the appreciation rate of the non-operative
8

capitalization. In such circumstances, other forms of capital use may
become appropriate, instead of growing crops without gaining any
operative return of it. However it is of interest how a long-term appre-
ciation of the non-operative capitalization would affect financial sus-
tainability, provided multiannual plants are continuously cultivated.

Firstly, let us denote the total capital return within growth cycle i,
according to Eq. (11), as

Ti ¼ΔΩi þ ΔUi

τihKii
(14)

The expected value of total capital return over a longer period is, in
analogy with Eq. (11)

hTi¼ 1
hhKii

P
τiTihKiiP

τi
(15)

where hhKii is the grand mean of capitalization over time.
Provided the applied rotation τi is independent of i,



Fig. 12. Total and operative capital return percentages as a function of rotation time for Pine stand growth functions (12) and (13). The Figure also displays average

capitalization ratio hUi=hOi. Non-operative capital appreciation rate is 2%,
�
U =O

�
100

¼ 2.

P.P. K€arenlampi Heliyon 5 (2019) e02728
hTi¼ 1
hhKii

TihKii
n

(16)

P

where n is the number of growth cycles. Then, Eq. (16) can be rewritten

hTi¼ 1
nτhhKii

X
ðΔΩi þΔUiÞ¼ 1

nτ½hOi þ hhUii�
X

ðΔΩi þΔUiÞ (17)

Inserting appropriate expressions for the sum and the mean, one can
readily rewrite Eq. (17) as

hTi¼ 1
τ
ΔΩþ U0

n ðeunτ � 1Þ
hOi þ U0

eunτ�1
unτ

(18)

where u is the non-operative capitalization appreciation rate.
Taking the high-capitalization boundary condition hOi < < hhUii

results as
Fig. 13. The factor n*u*ΔΩ
ðeunτ�1Þ from Eq. (19), magnified for clarity, for three different c

function (12). The accumulated net growth appearing in Eq. (19) is in 100 000 SEK

9

hTihOi<<hhUii ¼
nuΔΩ

U0ðeunτ � 1Þ þ u (19)
The first term of Eq. (15) naturally refers to operative capital return
rate, whereas the second to non-operative capital return rate. We readily
find that the operative capital return vanishes with increasing unτ.
However, there is a particular optimum range for the rotation time τ for
any combination of appreciation rate u and number of growth cycles n.
The combination nuΔΩ

ðeunτ�1Þ is plotted or a variety of values of un in Fig. 13,

using the growth function appearing in Eq. (12). It is found that for un ¼
0.05, the optimal rotation time a corresponds to 42 years. Increasing the
values of un to 0.1 and 0.2, reduces the rotation time to 32 and 26 years,
respectively. One can readily verify that as un approaches zero, the so-
lution approaches the rotation of 95 years, corresponding to maximal
sustainable yield.

Using the price function (13) in addition to the growth function (12),
it is found that the rotation corresponding to the maximal long-term
capital return according to Eq. (19) again significantly depends on the
ombinations rates u*n, as a function of rotation time τ, for Pine stand growth
, the growth rate and average growth rate in 1000 SEK/year.
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appreciation rate of the non-operative capitalization, multiplied by the
number of cycles un. We find from Fig. 14 that for un ¼ 0.05, the optimal
rotation time τ corresponds to 50 years. Increasing the values of un to 0.1
and 0.2, reduces the rotation time to 40 and 34 years, respectively. One
can readily verify that as un approaches zero, the solution approaches the
rotation of 130 years, corresponding to maximal sustainable yield.
3.4. Intermediate capitalizations

Figs. 13 and 14 being drawn with the boundary condition hOi < <

hhUii, and indicating financial sustainability of rather low operative
capitalizations, it is of interest to consider what kind of operative capi-
talizations would be feasible for repeated growth cycles at intermediate
capitalizations. In the case of growth function (12), this can be readily

done by discussing Figs. 5 and 6. Fig. 5 corresponding to
�
U =O

�
100

¼ 1

and u ¼ 2%, shows optimal rotations of 46 and 52 years, in relation to
total and operative return, respectively. On the other hand, in Fig. 6 the

first boundary condition is increased to
�
U =O

�
100

¼ 4, resulting as

optimal rotations 49 and 56 years. We conclude that along with further
rotation cycles, the result changes only slightly. This result is in concert
with Figs. 3 and 4, which also indicate that the increment of the optimal
rotation ceases with further capitalization. The rotations do not differ
much from corresponding long-term solutions in Fig. 13. It appears that
non-operative capitalization appreciation rate greater than 2% pushes for
still shorter rotations (Figs. 3 and 4). Long rotation times, approaching
the maximum sustainable yield, are financially sustainable only in the
case of high capitalization and negligible non-operative appreciation rate
combined (Eq. (11), Figs. 2, 3, and 4). In the mind of the author, such a
case is a curiosity, probably not frequently appearing in real life.

In the case of applying the value function (13) in addition to the
growth function (12), one can consider what kind of operative capitali-
zations would be feasible for repeated growth cycles at intermediate
capitalizations by discussing Figs. 11 and 12. Fig. 11 corresponding to�
U =O

�
100

¼ 0:5 and u ¼ 2%, shows optimal rotations of 52 and 56 years,

in relation to total and operative return, respectively. On the other hand,

in Fig. 12 the first boundary condition is increased to
�
U =O

�
100

¼ 2,

resulting as optimal rotations 56 and 66 years. We conclude again that
Fig. 14. The factor n*u*ΔΩ
ðeunτ�1Þ from Eq. (19), magnified for clarity, for three different non

growth function (12). The accumulated net growth appearing in Eq. (19) is in 100 000
(13) is used.
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along with further rotation cycles, the result changes only moderately.
This result is in concert with Figs. 9 and 10, which also indicate that the
increment of the optimal rotation ceases with further capitalization. The
rotations do not differ much from corresponding long-term solutions in
Fig. 14. It appears that non-operative capitalization appreciation rate
greater than 2% pushes for still shorter rotations (Figs. 9 and 10). Long
rotation times, approaching the maximum sustainable yield, are finan-
cially sustainable only in the case of high capitalization and negligible
non-operative appreciation rate combined (Eq. (3), Figs. 8, 9, and 10).
Such a case, again, probably does not frequently appear in real life.

4. Discussion

We have introduced a momentary capital return rate function, the
expected value of capital return rate, as well as the expected value of
capital return rate in time-age domain. The capital return rate depends on
any yield function, or value growth function, describing the increment
rate of capitalization. Provided the value growth function can be properly
established for local circumstances, the introduced return rate function
can be used for the design of technical operations and commercial
transactions. The financial treatment is not necessarily limited to forest
trees but may be applicable to other multiannual plants, like bamboo,
provided appropriate yield functions are available (Wi et al., 2017).
Further, the methods are not necessarily limited to biological growth
processes –whatever growing business can be treated similarly, provided
the yield function can be approximated.

The approach introduced in this paper is obviously new, at least within
the business of periodically growing multiannual plants like forest trees.
The momentary capital return rate in Eq. (1) is related to the Pressler's
indicator rate (1860), which however has not been widely applied within
the field. The equality to Pressler applies only under the boundary condi-
tion of invariable non-operative capitalization, which according to the re-
sults of this paper would be a rather strong assumption. Further, Pressler's
indicator rate corresponds to momentary capital return, not to the relevant
expected values appearing in Eqs. (2), (5), (10), and (11).

The momentary capital return rate, as well as the expected value over
a rotation, can be applied to any individual stand. We have succeeded
showing that the expected value is the same as the capital return rate for a
forest estate with evenly distributed stand ages. In other words, Eqs. (5)
and (10) are the same, provided stand ages are evenly distributed.

It appears that the appreciation rate of non-operative capitalization is
-operative appreciation rates u*n, as a function of rotation time τ, for Pine stand
SEK, the growth rate and average growth rate in 1000 SEK/year. Price function
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a factor dominating sustainable management practices. The range of the
annual appreciation rate investigated was from zero to 4%. The validity
of this range was verified using trade statistics of forest estates in Finland,
from 1990 to 2018.

Most of the numerical results in this paper have been discussing
optimal rotation times. This is because the rotation times can easily be
determined on the basis of the yield function (12) and the value function
(13), and they do constitute easily comprehensible example applications.
The results however can be easily compared with those of a recent study
regarding continuous-cover forestry with frequent diameter-limit cutting
(K€arenlampi, 2018). In both cases, low non-operative capitalization fa-
vors low operative capitalization, which in turn corresponds to either
young rotation age or low cutting limit diameter. High but stationary
non-operative capitalization favors high operative capitalization, even up
to that corresponding to maximum sustainable yield. High increment rate
of non-operative capitalization favors low operative capitalization, even
if the magnitude of the non-operative capitalization would be high
(Figs. 4 and 10, K€arenlampi, 2018).

There are many operations which can be designed on the basis of
capital return, including soil preparation, planting or seeding, young
stand cleaning, precommercial thinning, fertilization, drainage, and
commercial thinning. Commercial thinning cycles may be designed to
harvest either small or large trees, or a combination of both. All these
activities have an immediate effect on the capitalization, as well as a non-
immediate effect on growth and correspondingly future capitalization.

In the present paper, no external-interest discounting is applied, and
neither are any cash flows emphasized. We feel that in the economical
environment of the 21st century, financial considerations are better
justified, in comparison to cash flows. Wealth predominantly appears as
codes and numbers within information systems, and can be liquidized
within seconds. Consequently, capital appreciation rate, instead of cash
flow, has become a feature dominating economic activity. In addition, it
has been recently shown that application of external interest rates may
have devastating financial consequences (K€arenlampi, 2019a).
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