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Abstract: Rapid industrialization has led to the pollution of soil and water by various types of
contaminants. Heavy metals (HMs) are considered the most reactive toxic contaminants, even
at low concentrations, which cause health problems through accumulation in the food chain and
water. Remediation using conventional methods, including physical and chemical techniques,
is a costly treatment process and generates toxic by-products, which may negatively affect the
surrounding environment. Therefore, biosorption has attracted significant research interest in the
recent decades. In contrast to existing methods, bacterial biomass offers a potential alternative for
recovering toxic/persistent HMs from the environment through different mechanisms for metal
ion uptake. This review provides an outlook of the advantages and disadvantages of the current
bioremediation technologies and describes bacterial groups, especially extremophiles with biosorbent
potential for heavy metal removal with relevant examples and perspectives.

Keywords: heavy metal removal; biosorbent; bacterial biomass; microbial metal removing strategy

1. Introduction

The rapidly escalating industrial activities release toxic heavy metals (HMs), which
pose a serious hazard to ecosystems and human health [1–3]. Environmental HM pollution
in soil and water reduces crop production and can be detrimental to health safety through
food chains owing to industrial solid waste, and agricultural inputs such as fertilizers
and pesticides. These persistent environmental contaminants are non-degradable and
can only be transformed into other harmless forms, such as Hg, Cd, As, Cr, Tl, Pb, Mn,
and Ni, which cause severe toxic effects in living organisms [4–8]. Fe, Cu, Co, and Zn
are essential HMs that act as coenzymes in biological processes and are less toxic at low
concentrations [9]. Over the last few decades, many conventional treatment methods have
been used to remove HMs from polluted environments, including chemical precipitation,
ultrafiltration, ion exchange, reverse osmosis, electrowinning, and phytoremediation [10].
The traditional methods used are described in Table 1.

Therefore, the development of remediation treatment methods is essential for mitigat-
ing the negative effects on nature. Because of the drawbacks of conventional remediation
methods, such as high cost and lack of environmentally friendly solutions, green technolo-
gies are growing in the investigation of biosorbents and potential microbial biomass. This
is because of their high removal/recovery efficiency, low cost, and safety to restore polluted
environments [11]. However, in such cases, the speed of pollutants released by bacteria is
usually low and has a short lifespan because of dead biomass, which limits their feasibility
in large-scale applications [12,13]. As an alternative, numerous studies have confirmed that
using enzymes and bio-surfactants produced from microbes is more advantageous than
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using microbes as a whole to boost remediation efficacy as biocatalysts [14,15]. Enzymatic
degradation requires highly specific and flexible operating conditions. Therefore, exploring
enzyme-producing bacterial sources remains attractive. For instance, ChrR and YieF are
two soluble enzymes that have been extracted and purified from Pseudomonas putida MK1
and Escherichia coli, respectively; these are capable of effectively reducing Cr6+ to Cr3+

under both aerobic and anaerobic conditions [14].

Table 1. Conventional methods for heavy metal removal.

Methods Description

Chemical precipitation

The most common method for heavy metal removal from solutions. The
ionic metals are converted to insoluble forms by chemical reactions

using precipitating reagents (precipitants) and form metal hydroxides,
sulfides, carbonates, and phosphates (insoluble solid particles) that can

be simply separated by settling or filtration.

Electrodialysis (ED) and Electrodialysis Reversal (EDR)

ED and EDR are considered electro-membrane separation processes as
ion-exchange membranes (IEM) that are used to separate different ions

present in solution as it permeates owing to electrical potential
difference. ED/EDR has been mainly utilized for advanced water

deionization, high-efficiency removal of ions in pure and ultrapure
water application as well as brackish water desalination.

Membrane filtration (MF)

MF is capable of removing not only suspended solid and organic
components but also inorganic contaminants such as metal ions. A
membrane is a selective layer used to make contact between two

homogenous phases with a porous or non-porous structure for the
removal of pollutants. Based on the various sizes of the particle, it is

divided into three types as below:

# Ultrafiltration (UF)

UF utilizes permeable membrane to separate heavy metals with pore
sizes in the range of 0.1–0.001 micron which permeates water and low

molecular weight solutes, while retaining the macromolecules, particles,
and colloids that are larger in size of 5–20 nm. The removal of Cu (II),

Zn (II), Ni (II), and Mn (II) from aqueous solutions is achieved by using
ultrafiltration assisted with chitosan-enhanced membrane with a
rejection of 95–100% or a copolymer of malic acid and acrylic acid

attaining a removal efficiency of 98.8% by forming macromolecular
structures with the polymers.

# Nanofiltration (NF)

NF is a pressure-driven membrane process that lies between
ultrafiltration and reverse osmosis. It is able to reject molecular ionic

species by making separation of large molecules possible by small pores
when they are within the molecular weight range from 300 to 500 Da

with a pore diameter of 0.5–1 nm. A current commercial nanofiltration
membrane NF270 is used for removing Cd (II), Mn (II), and Pb (II) with

an efficiency of 99, 89, and 74%, respectively.

# Reverse Osmosis (RO)

In RO, a pressure-driven membrane process, water can pass through the
membrane, while the heavy metal is retained. The removal performance

of an ultra-low-pressure reverse osmosis membrane (ULPROM) was
investigated for the separation of Cu(II) and Ni(II) ions from both

synthetic and real plating wastewater.

Microfiltration (MF)

MF uses the same principle as ultrafiltration. The major difference
between the two processes is that the solutes which are removed by MF

are larger than those rejected by UF using the pore size of 0.1–10 µm
with applied pressure range of 0.1–3 bar.

Photocatalysis

Photocatalysis is based on the reactive properties of electron- hole pairs
generated in the semiconductor particles under illumination by light of

energy. Metal ions are reduced by capturing the photo-excited
conduction band electrons, and water or other organics are oxidized by
the balance band holes. Heavy toxic metal ions such as Hg2+ and Ag+,
and noble metals can be removed from water by photo deposition on

Titania surface-trapped photoelectron states, probably Ti(III), and silver
deposition could be observed on the same time scale.

Recently, the use of beneficial microorganisms, such as plant growth-promoting bacte-
ria, which are also capable of reducing HMs, has significantly contributed to agriculture
and environmental schemes owing to its outstanding advantages. Numerous reports have
demonstrated that several bacteria can adapt to high levels of heavy metal pollution [16–18].
Bacteria use chemical contaminants as an energy source through their metabolic processes;
however, excessive amounts of inorganic nutrients pose a risk to their metabolism [19–21].
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Bacterial groups that contribute to HM removal include Bacillus sp., Pseudomonas sp.,
Arthrobacter sp., Alcaligenes sp., Azotobacter sp., Rhodococcus sp., and methanogens [22].
Among them, Bacillus sp. is considered a potential agent for removing various HMs, espe-
cially Gram-positive bacteria [23]. Oves et al. investigated Bacillus thuringiensis OSM269
that was tolerant to various concentrations (25–150 mg/L) of HMs, such as Cd, Cr, Cu,
Pb, and Ni [24]. Moreover, because of their diverse enzymatic systems, members of the
Streptomyces genus have recently been evaluated as important producers in the remediation
of contaminated environments [25]. In a previous study, two Pseudomonas strains were
shown to be resistant to As and other HMs such as Ag, Cd, Co, Cr, Cu, Hg, Ni, and Pb [26].
The biosorption of Al3+ and Cd2+ by an extra cellular polymeric substance (EPS) from
Lactobacillus rhamnosus was determined in a previous study [27]. In another study, one
member of the genus Cellulosimicrobium was found to be a potential bacterium that can
protect against six HMs, including Pb, Fe, Cd, Ni, Cu, and Co [28]. Recently, an exopolysac-
charide produced by Lactiplantibacillus plantarum BGAN8 strain was discovered to have a
high Cd-binding capacity and prevent cadmium-induced toxicity [29].

Thus, this review addresses the importance of the roles played by bacteria in both
biosorption and bioaccumulation platforms in HM recovery. In-depth studies on biological
phenomena are required to understand the mechanisms by which microbes use proteins
to uptake HMs in the intracellular space. This review also highlights the advantages,
drawbacks, obstacles, and potential avenues of promising unculturable bacteria, especially
extremophiles for research and practical application in HMs removal.

2. Microbial Remediation: The Mechanisms of Biosorption and Bioaccumulation
Using Bacterial Biomass as a Tool in Polluted Environmental Cleanup

The metabolic diversity and activity of microorganism have provided tremendous
potential in the field of waste treatment via cell owners of various metabolic pathways
(Figure 1). Toxic compounds have been used as energy sources for cellular processes
through fermentation, respiration, and co-metabolism [30].
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Owing to the various considerations of each group, as well as under certain exper-
imental conditions, various microbial biomasses have different bioremediation abilities.
HMs may disrupt microbial cell membranes, but bacteria possess characteristic enzymatic
profiles that are required to overcome toxic effects. The bioremediation process takes place
through various mechanisms, including:

• Alkylation and redox processes in which HMs were transformed. The speciation and
mobility of metal (loids) may be different from the initial state. For example, metals
generally are less soluble in their oxidation state, whereas the solubility and mobility
of metalloids depend on both the oxidation state and the ionic form [31].

• Passive adsorption is metabolism-independent, in which metals are on the cell surface
via electrostatic attraction with functional groups. This mechanism was explained by
the different processes including the precipitation and the surface complexation, ion
exchange as only dominating role, or physical adsorption. As protons were addressed
by the completion between pH and metal cations on the binding sites, thus, pH is
the most strongly effective factor that influences the biosorption process [32]. The
other essential factors include temperature, ionic strength, the concentration and type
of the sorbate and biosorbent, the state of biomass: suspension or immobilized and
the presence of other anion and cations in the growth medium. Most applications
focus on the utilization of dead biomass because the toxicity of bacteria is avoided, no
requirement for maintenance, and the storage of biomass is easy and can be kept for
long period without loss of effectiveness. Numerous bacterial strains were reported in
HMs biosorption that are dominant in Bacillus, Pseudomonas, Streptomyces [30,33,34].

• Active adsorption is the metabolism-dependent intracellular accumulation of toxicants
in living cells within cytoplasm. HMs were converted to non-bioavailable form by
binding with metallothioneins (MTs) as low-molecular mass cystein-rich proteins,
and metallo-chaperones. By being bound with HMs, these intracellular proteins can
also lower the free ion concentrations within cytoplasm in which the detoxification of
metals occurred [35]. This process is sensitive to environmental conditions depending
on each type of bacterial strain such as pH, temperature, salinity. Moreover, it also
depends on the biochemical structure, physiological/genetic adaptation, and the
toxicity of metal. Cyanobacteria, pseudomonads, and mycobacteria have been found as
the candidates that can synthesize MTs. MTs are usually associated with Zn, Cu,
and other toxic metals such as Cd, Hg, and Pb [36]. Pseudomonas aeruginosa and
Pseudomonas putida were reported as MTs producing bacteria exposed to Ca and Cu
contamination [37].

• The metal ions uptake is carried out by a complex mechanism of releasing EPS,
such as proteins, DNA, RNA, and polysaccharides the slippery layer on the outside
of the cell wall. These have a crucial role of stopping the penetration of metals
into the intracellular environment in which, ion exchange may occur. Numerous
bacterial strains were investigated for the commercial production of EPS such as
Stenotrophomonas maltophilia, Azotobacter chroococcum, Bacillus cereus KMS3-1 [38–40].
Bioremediation efficiency by this mechanism relies on the type and amount of carbon
source available and other abiotic stress factors like pH, temperature, and the growth
phase of each bacterium [41].

2.1. Biosorption Process

Although bioaccumulation and biosorption are used synonymously and naturally,
they differ in the ways they sequester contaminants. Volesky defined biosorption as
the adsorption of substances from solution by biological materials using physiochemical
pathways of uptake, such as electrostatic forces and ion/proton displacement [42]. This is
based on ionic interactions between the extracellular surface of the dead biomass, living
cells, and metal ions. Thus, the amount of contaminants binds to the surface of the cellular
structure rather than oxidation through aerobic or anaerobic metabolism. Biosorption has
been shown to effectively remove a variety of HMs from aqueous solutions, including
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highly toxic metal ions, such as Cd, Cr, Pb, Hg, and As [43,44]. The functional groups in the
cell walls of bacteria are responsible for binding tasks, including carboxyl, phosphonate,
amine, and hydroxyl groups [45]. Therefore, the success of biosorption relies on the
diversity of cell wall structures. Gram-positive bacteria have been shown to contain
a high sorption capacity because of their thicker peptidoglycan layer [46,47]. Recently,
some studies have investigated engineered microorganisms in combination with metal-
binding proteins and peptides on the extracellular surface to improve the capacity and
specificity of microbial sorbents [20,48]. Biosorption can remove contaminants using
microorganisms (live/dead), agriculture, and other industrial byproducts as biosorbents,
providing a fundamental background for sustainable biosorption technology for metal
removal and recovery [49,50]. The effect of several factors such as pH, temperature, shaking
speed, initial concentration of pollutants or amount of biosorbent is evaluated to optimize
the biosorption efficiency. The binding mechanism depends on the chemical nature of each
contaminant, size of the biomass, interaction between different metallic ions, and ionic
strength [51]. Additionally, biosorption is attractive owing to a number of advantages,
including the simple requirement for operation, no additional nutrients, operating cost-
effectiveness owing to its reversible process, no increase in the chemical oxygen demand
(COD), desorption ease, and high adsorption rate. However, it is necessary to consider
other factors such as the possible toxicity of the pollutants to bacterial cell in case of using
living cell in this process. Table 2 reports the potential bacterial candidates that are capable
of HMs removal by biosorption process.

Table 2. The promising bacterial strains that can remove HMs via biosorption process.

Bacterial Biosorbents Target Metals Amount of Heavy Metals
Uptake (mg/L)

Biosorption
Efficiency (%) Reference

Pseudomonas alcaliphila NEWG-2 Cr 200 96.6 [52]
Pseudomonas sp. strain DC-B3 Cr 55.35 41 [53]
Pseudomonas aeruginosa G12 Cr 10 93 [54]

Cellulosimicrobium funkei AR6 Cr 164.66 82.33 [55]
Stenotrophomonas maltophilia Cr 19.84 99.2 [56]

Acinetobacter sp. WB-1 Cr 6.82 68.17 [57]
Cellulosimicrobium sp. Cr 96.98 96.98 [58]
Stenotrophomonas sp. Cr 270 90 [59]
Cellulosimicrobium sp. Pb 200 84.62 [58]
Methylobacterium sp. Pb 300 62.28 [60,61]

Aeribacillus pallidus MRP280 Pb 86.47 96.78 [62]
Bacillus sp. PZ-1 Pb 400 >90 [63]

Arthrobacter viscosus Pb 100 97 [64]
Arthrobacter sp. 25 Pb 95.04 86.25 [65]
Pseudomonas sp. I3 Pb 49.48 98.96 [66]
Bacillus badius AK Pb 60 60 [67]

Klebsiellap enumoniae Cd 40.18 40.18 [68]
Rhodotorula sp. Cd 40 80 [69]

Bacillus megaterium sp. Cd 39.5 79 [69]
Bacillus sp. Q3 Cd 108.2 93.76 [70]

Pseudomonas aeruginosa FZ-2 Hg 10 99.7 [71]
Vibrio parahaemolyticus PG02 Hg 5 90 [72]

Pseudomonas aeruginosa Cd, Pb 62.8 (Cd); 73.1 (Pb) 87 (Cd); 98.5 (Pb) [73]
Saccharomyces cerevisiae Pb, Cd 0.045 (Pb); 0.47 (Cd) 70.3 (Pb); 76.2 (Cd) [74]

Desulfovibrio desulfuricans
(immobilize on zeolite) Zn 174 100 [75]

Micrococcus luteus DE2008 Pb, Cu 20.4 (Cu); 98.25 (Pb) 25.42 (Cu); 36.07 (Pb) [76]
Bacillus sp. Pb, Cu, Cd 990 (Cd); 970 (Cu); 200 (Pb) >90 (Cd, Cu); 20 (Cd) [77]

Oceanbacillus profundus Pb, Zn 45 (Pb); 1.08 (Zn) 97 (Pb); 54 (Zn) [78]
Staphylococcus epidermidis Cr, Zn 118 (Zn); 112 (Cr) 59 (Zn), 56 (Cr) [79]

Streptomyces sp. Pb, Cd, Cu 1.43 (Cu); 0.91 (Pb) 3.66 (Cd) Pb (83.4); Cu (74.5); Cd (68.4) [80,81]

Klebsiella sp. USL2S Hg, Pb, Cd, Ni 8500 (Hg); 10,000 (Pb); 1026
(Cd); 8479 (Ni)

85 (Hg); 97.13 (Pb); 73.33 (Cd)
86.06 (Ni) [82]

Pseudomonas azotoformans JAW1 Cd, Cu, Pb 24.64 (Cd); 17.44 (Cu); 19.55
(Pb)

98.57 (Cd); 69.76 (Cu); 78.23
(Pb) [83]

2.2. Bioaccumulation Process

However, bioaccumulation is a natural active metabolic process in which HMs accumu-
late and are taken up into intracellular living bacterial cells using proteins. Bioaccumulation
occurs when the absorption rate of contaminants exceeds the rate of loss. This process
requires respiration with energy into the cytoplasm through the cell metabolic cycle and oc-
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curs in two steps: the first step is considered to be the adsorption of HMs onto the cells and
the metal species then transported inside the cells in which the HMs can be sequestered by
proteins, the lipid bilayer as an import system, and peptide ligands as a storage system [84].
Therefore, this process depends on bacterial cell metabolism.

In intracellular sequestration, metal ions to form large ion were uptake by several com-
pounds inside cytoplasm of cell. In previous study, Pseudomonas putida shows the potential
of intracellular sequestration of metal ions such as zinc, cadmium, and copper [85]. In extra-
cellular sequestration of Gram-negative bacteria, the improvement of HMs removal relies
on improving the uptake from the periplasm into the cytoplasm of bacterial cell through
expression of inner membrane importers [86,87]. The bacterial strains investigated as the
promising HMs removing candidates via bioaccumulation mechanism are listed in Table 3.

Table 3. The potential bacterial strains that can remove HMs via bioaccumulation process.

Bacterial Biosorbents Target Metals Amount of Heavy Metals
Uptake (mg/L)

Bioaccumulation Efficiency
(%) Reference

Bacillus megaterium sp. Pb 2.1 98.5 [88]

Bacillus sp. PZ-1 Pb 100 96 [63]

Arthrobacter viscosus Pb 100 96 [64]

Bacillus thuringiensis PW-05 Hg 50 91 [89]

Vibrio fluvialis Hg 0.25 60 [90]

Enterdobacter cloacae Cd 4 72.11 [91]

Bacillus sp. Q5 Cd 97.35 76.42 [70]

Burkholderia cepacia GYP1 Cd >90 >90 [92]

Bacillus cereeus Cr 1500 81 [93]

Sporosarcina saromensis M52 Cr 50 82.5 [94]

Pseudomonas aeruginosa RW9 Cr 0.46 90 [95]

Rhizopus stolonifer Pb, Ni, Cd 170.7 (Pb); 18.7 (Ni); 25.6
(Cd)

44.44 (Pb); 16.66 (Ni); 8.3
(Cd) [96]

Bacillus subtilis Pb, Cd 2.09 (Pb); 0.37 (Cd) 98.1 (Pb); 92.5 (Cd) [88]

Pseudomonas sp. Pb, Cd 98.2 (Pb); 82.6 (Cd) >98 (Pb); 75 (Cd) [97]

Streptomyces K11 Zn 11.76 36 [98]

Streptomyces zinciresistens Cd, Zn 220.5 (Cd); 113.5 (Zn) 98.11 (Cd); 87.33 (Zn) [99]

Alcaligenes sp. MMA Cr, Zn, Cd 9.78 (Cr); 14 (Zn); 12.6 (Cd) 48.93 (Cr); 70 (Zn); 63 (Cd) [100]

Bacillus cereus RC-1 Zn, Cd, Pb 3.83 (Zn); 8.14 (Cd); 4.03 (Pb) 38.3 (Zn); 81.4 (Cd); 40.3 (Pb) [101]

2.3. Difference in Attractive Spots of Biosorption and Bioaccumulation Process

Compared to biosorption where dead bacterial cells still are able to remove HMs, bioac-
cumulation only occurs with living bacterial cell. The different points of each process were
described in Table 3. Solutions for biosorption were designed based on the conventional
sorption methods by testing the microbes ability with attractive adsorption properties and
investigating the mechanism of chemical modification on the outer surface of cells and
in metal-binding proteins and peptides [20,48]. Therefore, the chemical structure of the
cell wall plays an important role in the biosorption mechanism with the specific functional
groups different from each type of microbe.

However, bioaccumulation is a more complex process that is concerned with the inner
cell structure and space, the genetic features and cellular processes for enzyme catalysis
with the tolerance of bacterial cell under harsh environmental conditions including toxic
pollutants. Moreover, the efficiency of accumulation of a bacterial strain also depends on the
case where the bacterial strain was isolated from, in natural areas with extreme conditions
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or growing with an adaptation in contaminated site. Even though, bioaccumulation has
been studied for over two decades for the application of remediation but possibility of
translation to industrial-scale is still limited. Therefore, bioaccumulation is more attractive
with numerous open questions for identifying gaps in knowledge of researchers and
potential values for bioextractive applications.

Tables 4 and 5 show the different points of biosorption and bioaccumulation and the
advantages and disadvantages of bacterial biosorbent, respectively.

Table 4. Differences between the biosorption and bioaccumulation process of heavy metal removal
conducted by bacteria.

Contents Biosorption Bioaccumulation

General features

Passive process Active process
Ions bound on the surface of ions Intracellular accumulation of ions

Rapid and simple process Requires longer time and complex
process

Not energy requirement Requires energy sources for metabolisms
Carried out by both-live and dead
biomass Carried out only by live biomass

No sensitivity to cultivation conditions Inhibited by the lack of nutrients, low
temperature, and metal toxicity

Fresh cultivation medium is not
necessary Need of fresh cultivation medium

Biomass can be regenerated and reuse Due to the intercellular accumulation,
reuse is limited for further purpose

Main affect factors

• pH and temperature Can occur in a wide range of pH and
temperature

Be sensitive to pH and temperature
change led to a significant change in
living cells

• Selectivity Can be increased by modification or
biomass transformation Better in the case of biosorption

• Concentration and type of pollutant There is a limitation for maximum
biosorption

More significant affect cell growth led to
more affect the accumulation ability

Table 5. Major advantages and disadvantages of bacterial biosorbent.

Advantages Disadvantages

• Cost-effective and simple operation owing to utilization of
bacterial biomass.

• Multiple heavy metals uptake at a time.
• No additional nutrient requirement.
• Capable of treatment the large volumes of wastewater.
• Efficient in a wide range of conditions including

temperature, pH, salinity, and the presence of various
kinds of contaminants.

• High efficiency by decreasing the volume of solid waste
and concentration of pollutants from wastewater.

• Regeneration of biosorbents.

• Saturation of active sites of metal binding ligands.
• Incomplete metal removal in real conditions.
• May need the high energy requirements.
• Living cells are more efficient than dead cells in removal

but:

# It takes a long time to find the bacterial materials.
# There are difficulties in controlling and managing

bacterial growth and activities.
# The cost of production and maintenance of living

biomass may be high.

The sensitivity and capacity of organisms to uptake chemicals are highly variable, and
rely on environmental factors such as temperature, pH, and moisture, which can affect
the transformation and transportation, as well as the types of chemicals formed, redox
potential, nutrient status, and the organism itself [84,102]. The factors affecting biosorption
and bioaccumulation are shown in Figure 2.
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A change in the morphology and physiology of the cell was observed upon increasing
the concentration of metal ions for accumulation. Additionally, organisms capable of accu-
mulating HMs may tolerate one or more metals at higher concentrations [103]. As a result,
toxic metal ions are detoxified or transformed into non-toxic, stable, and inert forms [104].

Sulfate-reducing bacteria (SRB) have been investigated as bio-tools for removing
HMs from acid mines because they contribute to the formation of metal sulfides as toxic
metals through sulfide reactions after the conversion of sulfate to sulfide [105]. The domi-
nant microbial groups in the acid mine belonged to the phyla Acidobacteria, Actinobacteria,
Bacteroidetes, Firmicutes, Nitrospirae, and some classes of phylum Proteobacteria. SRB are
chemolithotrophic/chemoorganotrophic organisms that can utilize sulfate as the terminal
electron acceptor [106]. Kefeni et al. (2017) determined the optimal conditions for acid
mine tailings waste using mixtures of salts and available organic substrates such as manure,
sawdust, mushroom compost, sugarcane waste, and wood chips as the carbon sources, and
yeast extract as the nitrogen source for bacterial metabolism. Hydrogen sulfide gas reacts
with HMs to form insoluble metal sulfide precipitates, which remove the metals [107].

3. Potential of Extremophiles in Heavy Metal Removing

Extreme environments are mostly habitats with extreme natural conditions, such as
certain areas of the deep sea, volcanoes, and deserts with harsh temperatures, high salinity,
and alkaline/acidic pH. However, recently these extreme stressful conditions have been re-
ported more in our anthropogenic environments caused by extremely recalcitrant pollutants.
Extremophilic bacteria are seen as attractive as they generally have special well-developed
mechanisms for tolerating and removing heavy metals as well as in physical and geochemi-
cal extreme environments. They are not only extremely tolerant but can also detoxify toxic
pollutants under adverse conditions through special cellular metabolism [108–110]. They
can express defense mechanisms active against multiple extremes simultaneously [111,112].
They synthesize extremophilic enzymes and biomolecules that protect their survival and
keep active or stable under severe stress. Indigenous species isolated from contaminated
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sites have been reported to demonstrate exceptional resistance and biosorption efficiency
toward HMs. Siderophores are small biomolecules for metal scavenging, which are un-
usual structural and functional properties synthesized by extremophiles that also have
been proved [113]. It is evident that extremophiles have potential as bioremediation agents
for metal chelation. Additionally, extremophiles have fast adapting transcriptional and
translational mechanisms that involve the metal detoxification pathways [114].

Recently, to address the problem of wastewater containing heavy metal under harsh
environmental conditions, the removal of heavy metal bacterial strains has been investi-
gated [115,116]. Biosorption of HMs, including Cd2+, Cu2+, Co2+, and Mn2+, was conducted
at high temperatures of up to 80 ◦C using the thermophilic bacteria Geobacillus thermantarcti-
cus and Anoxybacillus amylolyticus [117]. A Pb-resistant psychrotrophic bacterial strain has
been found to serve as a biosorbent for Pb2+ at 15 ◦C [73]. Masaki et al. demonstrated the
bioreduction and immobilization of Cr using the extremely acidophilic Fe (III)-reducing
bacterium, Acidocella aromatica strain PFBC [118]. To enhance the stability of Cd turnover,
Cd nanoparticles were provided to precipitate Cd using Acidithiobacillus spp. [119] and
Acidocella aromatica. In a previous study, Cd, Cu, Zn, and Ni were removed from the
acidic solution by a potential thermophilic acidophilus, more specifically, Sulfobacillus ther-
mosulfidooxidans [120]. U (VI) and Fe2+ from contaminated mine water were removed
using Acidothiobacillus ferrooxidans strains [121,122] Additionally, under extremely acidic
conditions, acidophilic microorganisms have been used as host strains for detoxification
of HMs, such as bioleaching and bio-oxidation [123–125]. The characteristics of each ex-
tremophile type are illustrated in Figures 3 and 4 describing the mechanism of each type
of extremophile.
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Despite the great biotechnological potential of extremophiles, remediation efficiency,
biomass productivity, and economic profitability, their application in situ is still challenging
due to the complex adaption mechanism in extreme conditions, interspecies competition and
interaction/communication inhibiting bioremediation, and limited proliferation [109,126].
Survival mechanisms of extremophilic microorganisms are still required to develop sustainable
bioremediation processes because of the complex relationships between inside and outside
bacteria and growth environments.

4. Future Prospects

Owing to their high diversity in the living world, bacteria properties provide a valuable
source for bioremediation of multiple pollutants. There are enormous possible materials
(living or dead biomass) that can be continuously investigated to find out the Aefficiency of
HMs bioremediation. It has been proved that biosorption generally provides a greater sorp-
tion capacity in comparison with bioaccumulation [127]. The microbial genetic engineering
has been developed to enhance the capacity of microorganisms to tolerate and accumulate
HMs [128,129]. Moreover, immobilizations of bacterial biomass on suitable carrier also
may be addressed to improve the porosity, physical, and chemical stability [130]. However,
biosorption with immobilized bacterial biomass indicates drawbacks due to the exact
mechanism of the process is still not totally understood [131]. In particular, extremophiles
have been receiving special interest because they enclose a pool of genetic and metabolic
opportunities for specific purpose that can be harnessed as microfactories for the removal
of HMs as well as various types of pollutants. Nevertheless, the natural physiological
features of such extremophilic microfactories can be further explored to nourish different
devices of HMs bioremediation, which are figured out in the literature but have not been
identified or integrated so far. Additionally, the application in situ of extremophiles is still
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challenging due to a limited proliferation and their interaction in community under stresses.
The complexity of extremophiles in cellular mechanisms and interspecies relationships
under complex co-occurring extreme conditions may increase their stress to sustainably
enhance heavy metal bioremediation. In combination with conventional methods, current
technologies still need much more effort to overcome the limitations in term of bacterial
its-self metabolism, the complex interaction between microorganisms and between mi-
croorganisms with living environmental factors, such as, (1) the production of organic acid
of each type of bacteria for pH calibration in the environment; (2) organic solutes in the
water to compensate for the external osmotic pressure; (3) polysaccharides presence in the
polluted sites which are constituents of biofilm; and (4) concentration of toxic pollutants.
In such a bio-green approach, global changes can be maintained using available natural
resources to meet the cost-efficiency requirements of the treatment process. Moreover,
in combination with biotechnology and nanotechnology, a variety of other approaches
exist that could provide advanced tools in bioengineering to improve the possibility of
extremophiles for the treatment of environmental toxic pollutants.

5. Concluding Remarks

In this regard, a diversity of bacterial strains in various environments proved as a
huge source with an important potential for heavy metals removal in which the complex
and diverse mechanisms were involved at extracellular and intracellular level. However,
the feasibility of the bioremediation process at large scale is still not fully demonstrated
yet, considering both environmental and economic aspect. There is a need for a thorough
investigation of the relationships and interactions between microbes and other communities
in these habitats in the real polluted environments. During the bioremediation process,
the challenges associated with each specific situation of environmental condition and eco-
physiology should be considered and controlled from the starting phase to the end of the
process. On the other hand, this would facilitate the development of new techniques for
the isolation of multifunctional bacterial candidates capable of utilizing a large number of
pollutants as nutrients for their growth.

Author Contributions: Conceptualization: V.H.T.P.; methodology: V.H.T.P.; validation: V.H.T.P.; for-
mal analysis and investigation: V.H.T.P.; resources: W.C.; writing—original draft preparation: V.H.T.P.;
writing—review and editing: V.H.T.P., J.K. and W.C.; supervision: W.C. and S.C.; funding acquisition:
W.C. and S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & Communications Technology
Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.2021-0-01986, Devel-
opment of integrated diagnosis/control system for safety management and stable operation of food
waste drying facilities).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, X.; Zhong, T.; Liu, L.; Ouyang, X. Impact of soil heavy metal pollution on food safety in China. PLoS ONE 2015, 10,

0135182. [CrossRef]
2. Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions

in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [CrossRef] [PubMed]
3. Zhang, M.; Sun, X.; Xu, J. Heavy metal pollution in the East China Sea: A review. Mar. Pollut. Bull. 2020, 159, 111473. [CrossRef]
4. Ghaly, A.E.; Ananthashankar, R.; Alhattab, M.V.V.R.; Ramakrishnan, V.V. Production, characterization and treatment of textile

effluents: A critical review. J. Chem. Eng. Process Technol. 2014, 5, 1–19.
5. Tak, H.I.; Ahmad, F.; Babalola, O.O. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of

heavy metals. Rev. Environ. Contam. Toxicol. 2013, 223, 33–52.

http://doi.org/10.1371/journal.pone.0135182
http://doi.org/10.1016/j.scitotenv.2018.06.068
http://www.ncbi.nlm.nih.gov/pubmed/29909337
http://doi.org/10.1016/j.marpolbul.2020.111473


Microorganisms 2022, 10, 610 12 of 16

6. Dash, H.R.; Das, S. Bioremediation potential of mercury by Bacillus species isolated from marine environment and wastes of steel
industry. Bioremediat. J. 2014, 18, 204–212. [CrossRef]

7. Biswas, R.; Sarkar, A. Characterization of arsenite-oxidizing bacteria to decipher their role in arsenic bioremediation. Prep.
Biochem. Biotech. 2019, 49, 30–37. [CrossRef]

8. Mohamed, M.S.; El-Arabi, N.I.; El-Hussein, A.; El-Maaty, S.A.; Abdelhadi, A.A. Reduction of chromium-VI by chromium-resistant
Escherichia coli FACU: A prospective bacterium for bioremediation. Folia. Microbiol. 2020, 65, 687–696. [CrossRef] [PubMed]

9. Kim, J.J.; Kim, Y.S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019,
54, 226–231. [CrossRef]

10. Joshi, N.C. Heavy metals, conventional methods for heavy metal removal, biosorption and the development of low cost adsorbent.
Eur. J. Pharm. Sci. 2017, 4, 388–393.

11. Hennebel, T.; Boon, N.; Maes, S.; Lenz, M. Biotechnologies for critical raw material recovery from primary and secondary sources:
R&D priorities and future perspectives. New Biotechnol. 2015, 32, 121–127.

12. Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160,
3–14. [CrossRef]

13. Bădescu, I.S.; Bulgariu, D.; Ahmad, I.; Bulgariu, L. Valorisation possibilities of exhausted biosorbents loaded with metal ions—A
review. J. Environ. Manag. 2018, 224, 288–297. [CrossRef]

14. Rao, M.A.; Scelza, R.; Scotti, R.; Gianfreda, L. Role of enzymes in the remediation of polluted environments. J. Soil Sci. Plant Nutr.
2010, 10, 333–353. [CrossRef]

15. Schenk, P.M.; Carvalhais, L.C.; Kazan, K. Unraveling plant-microbe interactions: Can multi-species transcriptomics help? Trends
Biotechnol. 2012, 30, 177–184. [CrossRef] [PubMed]

16. Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [CrossRef]
17. Desoky, E.S.M.; Merwad, A.R.M.; Semida, W.M.; Ibrahim, S.A.; El-Saadony, M.T.; Rady, M.M. Heavy metals-resistant bacteria

(HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant. Ecotoxicol. Environ. Saf. 2020, 198, 110685.
[CrossRef]

18. Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Investigation of lipolytic-secreting bacteria from an artificially polluted soil using a
modified culture method and optimization of their lipase production. Microorganism 2021, 9, 2590. [CrossRef]

19. Ahirwar, N.K.; Gupta, G.; Singh, R.; Singh, V. Isolation, identification and characterization of heavy metal resistant bacteria from
industrial affected soil in central India. Int. J. Pure. Appl. Biosci. 2016, 4, 88–93. [CrossRef]

20. Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int.
J. Environ. Res. Public Health 2017, 14, 94. [CrossRef]

21. Ilyas, S.; Kim, M.S.; Lee, J.C.; Jabeen, A.; Bhatti, H.N. Bio-reclamation of strategic and energy critical metals from secondary
resources. Metals 2017, 7, 207. [CrossRef]

22. Germa, G. Microbial bioremediation of some heavy metals in soils: An updated review. Egypt. Acad. J. Biolog. Sci. G Microbiol.
2015, 7, 29–45. [CrossRef]

23. Alotaibi, B.S.; Khan, M.; Shamim, S. Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species.
Microorganisms 2021, 9, 1628. [CrossRef] [PubMed]

24. Oves, M.; Khan, M.S.; Zaidi, A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial
effluent contaminated north Indian soil. Saudi J. Biol. Sci. 2013, 20, 121–129. [CrossRef] [PubMed]

25. Cimermanova, M.; Pristas, P.; Piknova, M. Biodiversity of Actinomycetes from heavy metal contaminated technosols. Microorgan-
isms 2021, 9, 1635. [CrossRef] [PubMed]

26. Satyapal, G.K.; Mishra, S.K.; Srivastava, A.; Ranjan, R.K.; Prakash, K.; Haque, R.; Kumar, N. Possible bioremediation of arsenic
toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol. Rep. 2018, 17, 117–125.
[CrossRef]
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