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Computed Tomography Perfusion (CTP) imaging is a cost-effective and fast approach to

provide diagnostic images for acute stroke treatment. Its cine scanning mode allows

the visualization of anatomic brain structures and blood flow; however, it requires

contrast agent injection and continuous CT scanning over an extended time. In fact, the

accumulative radiation dose to patients will increase health risks such as skin irritation,

hair loss, cataract formation, and even cancer. Solutions for reducing radiation exposure

include reducing the tube current and/or shortening the X-ray radiation exposure time.

However, images scanned at lower tube currents are usually accompanied by higher

levels of noise and artifacts. On the other hand, shorter X-ray radiation exposure time with

longer scanning intervals will lead to image information that is insufficient to capture the

blood flow dynamics between frames. Thus, it is critical for us to seek a solution that can

preserve the image quality when the tube current and the temporal frequency are both

low. We propose STIR-Net in this paper, an end-to-end spatial-temporal convolutional

neural network structure, which exploits multi-directional automatic feature extraction

and image reconstruction schema to recover high-quality CT slices effectively. With

the inputs of low-dose and low-resolution patches at different cross-sections of the

spatio-temporal data, STIR-Net blends the features from both spatial and temporal

domains to reconstruct high-quality CT volumes. In this study, we finalize extensive

experiments to appraise the image restoration performance at different levels of tube

current and spatial and temporal resolution scales.The results demonstrate the capability

of our STIR-Net to restore high-quality scans at as low as 11% of absorbed radiation dose

of the current imaging protocol, yielding an average of 10% improvement for perfusion

maps compared to the patch-based log likelihood method.
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1. INTRODUCTION

Acute stroke has high mortality and severe long-term disability
rates worldwide. In the United States, more than 795,000 people
have a stroke annually, and about 140,000 of them lose their lives,
accounting for 5% of all deaths (1). Someone develops a stroke
approximately every 40 s, and nearly every 4 min, someone loses
he or her life because of stroke. Stroke can occur at any age, and
it increases in likelihood with age. In 2009, two-thirds of people
who had been hospitalized for stroke were older than 65 years
old (2). The estimated cost related to stroke in the United States
is about 34 billion dollars each year (3).

Acute stroke is an emergency, and successful patient outcomes
require accurate diagnosis and prompt treatment. It is critical for
someone to receive treatments for stroke within three hours from
when he or she presents initial symptoms, as the disability rate
measured three months after the stroke is generally high in those
who did not receive timely treatments (4). There are two types
of stroke: hemorrhagic and ischemic stroke. Hemorrhagic stroke
occurs when a fragile blood vessel ruptures, while ischemic stroke
is caused by thrombosis or embolism. Due to different etiologies
and therapies, it is essential for patients to get timely diagnoses
and treatments.

Computed Tomography (CT) scanning is a widely used
imaging modality for rapid and detailed evaluation of the brain
and cerebral vasculature; it is particularly valuable in the triage
of acute stroke patients. CT can provide a rapid diagnosis of
ischemic or hemorrhage stroke. It is clinically meaningful as
rapid diagnosis enables clinicians to initiate optimized treatment
for each of these two major categories of stroke. Patients with
ischemic stroke often benefit from further characterization of
brain tissue hemodynamics, and as such, often go through CT
Perfusion (CTP) for further diagnosis and to guide treatment
planning such as thrombolytic therapy. As CTP imaging can
promptly offer an active view of cerebrovascular physiology,
doctors can acquire CTP to evaluate cerebral blood flow status.

Obtaining a comprehensive visualization of blood flow
dynamics and a clear brain anatomic structure requires contrast
dose injection and repeated CT scanning. Under the acute
stroke protocol, X-ray radiation from a 40-s CTP scan is
comparable to a year’s worth of radiation exposure from natural
surroundings (5, 6). The CTP/CT Angiography (CTA) data
acquisition process on a whole brain has a mean dose level
of 6.8 mSv (7), which is two times more than that from
natural background radiation sources; in comparison, the annual
radiation exposure from the natural background is around 2.4
mSv (8). Moreover, repetitively scanning brain regions leads to
accumulative radiation exposure to patients that may increase
health risks such as skin irritation/erythema, hair loss/epilation
(9), cataract formation (10), and even the induction of cancer (11,
12). In the US, about 80million CT scans are performed annually.
Therefore, seeking solutions to reduce the radiation dose that is
associated with CT scans draws many researchers’ attention.

Many researchers have attempted to seek practical solutions
for radiation dose reduction in CT imaging. Solutions for
reducing radiation exposure include two primary directions:
optimizing CT systems and reducing contrast dose. Typical

optimization of CT systems comprises shortening temporal
sampling frequency and reducing radiation sources such as the
tube current/voltage and the number of beams and receptors.
However, a simple reduction by the methods above will increase
image noise and artifacts. In order to reduce CTP radiation
exposure and maintain high diagnostic image quality, we
integrate a deep learning approach with CT imaging to carry out
this study.

In this paper, we propose an end-to-end Spatial-Temporal
Image Restoration Net (STIR-Net) for CTP image restoration.
This structure consists of two main components: Super-
Resolution Denoising Nets (SRDNs) and a multi-directional
conjunction layer which addresses image super-resolution (SR)
and denoising in both spatial and temporal cross-sections. The
contributions of this work are five-fold:

1) SRDN’s patch representation layer extracts features from both
the spatial and temporal dimensions of the CTP volume as
cross-sections, which allows our model to present spatial-
temporal details at the same time.

2) SRDN has the ability to perform image SR and denoising
individually and simultaneously. It also can handle multi-level
noise and multi-scale resolution and sampling.

3) We integrate multiple SRDNs based on different cross-
sections into a multi-directional network, which can boost the
performance further than individual cross-sections.

4) The results of the experiments demonstrate the effectiveness
of STIR in the recovery of low radiation dose CTP images.
STIR-Net can provide practical solutions for radiation dose
reduction from three aspects (low tube current, decreased
temporal sampling rate, and poor spatial resolution) with
comparable image quality to the standard dose protocol.

5) We also provide the comparisons of Cerebral Blood Flow
(CBF) and Cerebral Blood Volume (CBV), these maps attest
that our proposed method can provide comparable results to
the existing methods.

It is important to point out that no work has addressed low
tube current, decreased temporal sampling rate, and poor spatial
resolution simultaneously with a single deep learning structure.
Through extensive experiments, our results demonstrate that
STIR-Net has the capability of image restoration from these three
types of data limitations simultaneously. Compared to low-dose
scans using conventional methods, our network yields an average
of 21% improvement of peak signal-to-noise ratio (PSNR) at
around 21% to 42% low tube currents for the CTP sequences
and an average of 10% improvement for the calculated perfusion
maps. Hence, STIR-Net is a promising method for reducing
radiation exposure in CTP imaging.

2. RELATED WORK

It is necessary to develop low-dose CTP protocols to reduce
the risks associated with excessive X-ray radiation exposure.
Different acquisition parameters such as tube current, temporal
sampling frequency, and the spatial resolution are meticulously
related to the quality of the reconstructed CTP images,
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especially for generating perfusion maps that will be directly
used by doctors to make treatment decisions. Related work
includes radiation dose reduction approaches with respect to
image processing strategies, deep learning approaches, image
SR methods, and denoising methods. The previous work of
our spatio-temporal architecture is introduced at the end of
this section.

2.1. Radiation Dose Reduction Approaches
Radiation dose reduction approaches include reducing tube
current, temporal sampling frequency, and beam number. There
is a linear relationship between radiation dose and the tube
current. For example, lowering 50% of the tube current will
lead to a 50% reduction in radiation dose. However, image
noise and the square root of tube current have an inverse
proportional relationship. Simply reducing the tube current will
deteriorate the CTP image quality with increased noise and
artifacts. Current simulation studies demonstrate the possibility
and the effectiveness of maintaining image quality at reduced
tube current (13, 14). Reducing temporal sampling frequency is
the same as the increment of time intervals between acquiring
two CTP slices in the same CT study. Similar to the decrement of
the tube current, the reduction in temporal sampling frequency
will reduce radiation correspondingly, as the total amount of
scanning period is fixed and the time interval has been increased.
However, current research (15–17) shows that the reductions in
sampling interval yield little advantages when the time intervals
are greater than 1 s.

2.2. Image-Based Radiation Dose
Reduction Approaches
Acquiring CT scans at low-dose and long scanning intervals
will result in noisy and low-resolution (LR) images, with
insufficient hemodynamic information. It is important to obtain
higher quality CT images from limited data. Therefore, we
address this problem of CT radiation reduction as image-
based dose reduction. Recent work shows that an image-based
dose reduction approach is a promising way for CT radiation
reduction. For example in Yu et al. (18), a study of pediatric
abdomen, pelvis, and chest CT examinations demonstrate that
a 50% dose reduction can still maintain diagnostic quality.
The image-based approaches include iterative reconstruction
algorithm, sparse representation and dictionary learning, and
example-based restoration methods. We review the relevant
work as follows.

The iterative reconstruction (IR) algorithm is a promising
approach for dose reduction. It produces a set of synthesized
projections by meticulously modeling the data acquisition
process in CT imaging. For example, adaptive statistical iterative
reconstruction (ASIR) algorithm (19) was the first IR algorithm
to be used in the clinic. By modeling the noise distribution
of the acquired data, ASIR can provide clinically acceptable
image quality at reduced doses. Many CT systems apply ASIR
as an assuring radiation dose reduction approach because it can
reduce image noise and provide dose-reduced clinical images
with preserved diagnostic value (20). Another IR algorithm
is called model-based iterative reconstruction, which is more

complicated and accurate than ASIR, as it models photons and
system optics jointly.

Sparse representation and dictionary learning describe data
as linear combinations of several fundamental elements from
a predefined collection called a dictionary. In the computer
vision andmedical image analysis domains, sparse representation
and dictionary learning have shown promising results in
various image restoration applications. Such applications include
sparsity-based simultaneous denoising and interpolation (21) for
optical coherence tomography images reconstruction, dictionary
learning with group sparsity and graph regularization (22) for
medical image denoising and fusion, and (23) for magnetic
resonance image reconstruction.

The example-based restoration approach is another popular
method for image restoration. It extracts and stores patch
pairs from both low-quality images and high-quality images
in a database as prior knowledge. At the restoring phase, it
learns a model that can synthesize high-quality images by
searching the best-matched paired patches. Applications in image
restoration (24–26) show the promising performance by using
prior knowledge.

2.3. Deep Learning
In recent years, deep learning methods have emerged in various
computer vision tasks, including image classification (27) and
object detection (28), and have dramatically improved the
performance of these systems. These approaches have also
achieved significant improvement in image restoration (29, 30),
super-resolution (31), and optical flow (32). The reason for
the significant performance is due to the advanced modeling
capabilities of the deep structure and the corresponding non-
linearity combined with discriminative learning on large datasets.

Convolutional Neural Network (CNN), as one of the most
renowned deep learning architectures, shows promising results
for image-based problems. CNN structures are usually composed
of several convolutional layers with activation layers, followed
by one or more fully connected layers. The CNN architecture
design utilizes image structures via local connections, weights
sharing, and non-linearity. Another benefit of CNN is that they
are easier to train and have fewer parameters than fully connected
networks with the same number of hidden units. CNN structures
allow automatic feature extraction and learning from limited
information to reconstruct high-quality images.

2.4. Image Super-Resolution
Image super-resolution aims at restoring HR images from the
observed LR images. SR methods use different portions of LR
images, or separate images, to approximate the HR image.
There are two types of SR algorithms: frequency domain-based
and spatial domain-based. Initially, SR methods were mostly
for problems in the frequency domain (33, 34). Algorithms
addressed in the frequency domain using a simple theoretical
basis for observing the relationships between HR and LR
images. Though these algorithms show high computational
efficiency, they are limited due to sensitivity to model errors
and difficulty in managing complex motion models. Algorithms
for the spatial domain then became the main trend by
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overcoming the drawbacks of the frequency domain algorithms
(35). Predominate spatial domain methods include non-uniform
interpolation (36), iterative back-projection (37), projection onto
convex sets (38), regularized methods (39), and a number of
hybrid algorithms (40).

Deep learning is a popular approach for image SR problems,
and it has achieved significant performance (31, 41–43).
However, most SR frameworks focus on 2D images, as involving
the temporal dimension is more challenging, especially in CTP
imaging. In this work, we propose to overcome the difficulties
involving spatial dimension and to prove the feasibility of our
framework in cerebral CTP image restoration.

2.5. Image Denoising
Image denoising tasks aim at recovering a clean image from an
observed noisy image, whereas the observed image is intruded by
additive Gaussian noise. One of the main challenges for image
denoising is to accurately identify the noise and remove it from
the observed image. Based on the image properties being used,
existing methods can be classified as prior-based (44), sparse
coding based (25), low-rank-based (45), filter-based (46), and
deep learning based (47, 48). The filter-based approach (46)
methods are classical and fundamental, and many subsequent
studies are developed from it (49).

Numerous works have reconstructed clean CT images that can
preserve the image quality of perfusion maps successfully; these
works include methods such as bilateral filtering, non-local mean
(50), nonlinear diffusion filter (51), and wavelet-based methods
(52). The oscillatory nature of the truncated singular value
decomposition (TSVD)-based method has initiated research that
incorporates different regularization methods to stabilize the
deconvolution. This research has shown varying degrees of
success in stabilizing the residue functions by enforcing both
temporal and spatial regularization on the residue function
(53, 54). However, prior studies have focused exclusively on
regularizing the noisy low-dose CTP, without considering the
corpus of high-dose CTP data and the multi-dimensional data
properties of CT images.

Recently, deep learning based methods (47, 48) have shown
many advantages in learning the mapping of the observed low-
quality images to the high-quality ones. These methods use CNN
models that are trained on tens of thousands of samples; however,
paired training data is usually scarce in the medical field. Hence,
an effective learning based model is desired. In this work, we
utilize data extracted from different cross-sections of the CTP
volume to achieve better performance in image SR and denoising.
The experiment result shows that the proposed network can
handle various noise and image degradation levels.

2.6. Spatial-Temporal Architecture
In our previous work, we proposed Spatio-Temporal
Architecture for Super-Resolution (STAR) (55) for low-dose
CTP image super-resolution. It is an end-to-end spatio-temporal
architecture that preserves image quality at reduced scanning
time and radiation that has been reduced to one-third of its
original level. This is an image-based dose reduction approach
that focuses on super-resolution only. STAR is inspired by the

work in Kim et al. (31) and is extended to three-dimensional
volumes by conjoining multiple cross-sections. Through this
work, we found that features extracted from both spatial and
temporal directions are helpful to improve SR performance.
The integration of multiple single-directional networks (SDNs)
can boost the performance of SR for the spatio-temporal CTP
data. The experimental results show that the proposed basic
model of SDN improves both spatial and temporal resolution,
while the multi-directional conjoint network further enhances
the SR results—comparing favorably with only temporal or only
spatial SR. However, this work only addresses low spatial and
temporal resolution; it misses the important noise issue in low
dose CTP.

In this paper, we propose STIR-Net, an end-to-end spatial-
temporal image restoration net for CTP radiation reduction.
We compose and integrate several SRDNs instead of SDNs
at different cross-sections for both image super-resolution and
denoising simultaneously. The STIR-Net structure is explained in
section 3. In section 4, we provide the experiment platform setup
and describe the data acquisition method and the preprocessing
procedures. In section 5, we detail the experiments and results.
Finally, section 6 concludes the paper.

3. METHODOLOGY

In this section, we first introduce the patch representation schema
for generating 2D spatio-temporal input patches for STIR-Net.
Then, we describe how to synthesize the multi-directional spatio-
temporal image restoration network by joint super-resolution
and denoising at various cross-sections.

3.1. Patch Representation
Three types of patches serve as inputs in this work, consisting
of the following: patches for image SR tasks, for denoising tasks,
and for conjoint SR and denoising tasks. All the 2D LR patches
are generated from the 3D CTP volumes. We use X × Y × T to
indicate the three dimensions of the volume, where X and Y are
spatial dimensions and T is the temporal dimension. We extract
2D patches along the X × Y direction as well as along one of the
spatial directions with temporal T dimension: X × T and Y × T.
We create 2D LR patches by down-sampling the cross-sectional
images in the spatial direction, temporal direction, or both spatial
and temporal directions. For instance, using X × T and Y × T
cross-sections, we remove every other pixel along the T direction
to simulate scanning intervals which are two times longer. This
corresponds to two times less X-ray radiation exposure in the
resulting images. For the denoising task, we simulate the low tube
current images by adding spectrum Gaussian noise on the entire
CTP volume, with more details in section 4.3. The 2D patches
for denoising are generated based on the noisy volumes along
the X × T, Y × T, and X × Y cross-sections. For joint SR and
denoising tasks, we apply the same scaling strategies that we use
to create LR patches, but we apply them on top of noisy volumes.
After feeding these LR and/or noisy patches with their labels
(the patches extracted from the standard dose) into convolution
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layers for learning the spatio-temporal details, HR and/or de-
noised outputs will be generated in the testing stage based on the
captured features.

3.2. STIR-Net: Spatial-Temporal Image
Restoration Net
Our proposed STIR-Net is a CNN-based end-to-end spatial-
temporal architecture for image restoration. To begin, we
describe the fundamental SRDN structure—super-resolution
denoising networks for cross-section images. Then, we explain
in detail the composition of STIR-Net.

3.2.1. SRDN: Super-Resolution Denoising Structure
The usage of kernel combination strategy in GoogLeNet (56)
shows that a creative structuring of layers can lead to improved
performance and computationally efficiency. Inception modules
place various sizes of kernels in parallel. This can extract fine-
gain details in volume, while the broader kernel can cover a large
receptive field of the input. Extracting diverse information can
help with the prediction in classification tasks; however, image
denoising poises different challenges.

SRDN is an end-to-end structure that learns from pair-wise
LR/noisy patches with their original clean images and outputs
high-quality CT images based on low-quality input images while
testing. The structure of SRDN is shown in Figure 1. The main
functional part of SRDN is built by stacking four modularized
Kernel Regulation Blocks (KR-Block). KR-Blocks are inspired
by GoogLeNet (56), which has a combination of kernels of
varying sizes. Specifically, each block comprises of two 1 × 1
convolutional layers, one 7 × 7 convolutional layer, and one
3 × 3 convolutional layer for regulating the features extracted
by the 7 × 7 convolutional layer. The combination of large and
small filters is to balance extraction of subtle and edge features.
Moreover, each block is embedded with a skip-connection, which
allows reference to the feature mapping from previous layers and
boosts the network performance.

• Serial connections. Image classification needs to summarize
diverse information to a linear classifier. On the contrary,
image denoising needs to find the most prominent features
for a progressive transformation. Therefore, we adopt three
kernel sizes (e.g., 1 × 1, 3 × 3, and 7 × 7) in the KR-block
module. Kernels of each size are placed in series to allow the
small kernels to regulate the features extracted by the large one.

• Small behind large. Large kernels (e.g., 7 × 7) can extract
certain features by observing a local region with more
statistical pixel information. The small kernels (e.g., 3 × 3)
are primarily used for exploiting deeper prior information
from the underlying feature-maps obtained by large preceding
kernels. The subtle textures are especially highlighted during
this regularization procedure. Large kernels excel in noise
removal but may also smooth the whole image irrespective
of its edges or details. Small kernels can preserve subtle
textures, but noise pixels may detract from the information
attained. Therefore, placing a small kernel behind the
large one is a straightforward strategy to enhance the
denoiser regularization.

• Feature blending. The features extracted by large kernels
contain both actual pixel values and noise, whereas the small
kernel can capture real pixels while simultaneously ignoring
much of the noise. At the end of a KR-block, features
captured by small kernels are blended with the features
extracted from large kernels. To allow the locally highlighted
features to be shared across neighboring KR-blocks, feature-
blending is processed by pixel-wise summation (see Figure 1-
top) rather than concatenation (e.g., in GoogLeNet). This
helps with finding the most prominent features for a forward
transformation. Eventually, the output of a KR-block contains
more accurate pixel information with less noise.

• 1 × 1 convolution. The special usage of 1 × 1 convolution in
KR-block is for two purposes: first, it reduces the dimensions
inside KR-block modules, such as the first 1 × 1 convolution
layer; second, it adds more non-linearity by having PReLU
immediately after every 1×1 convolution and suffers less from
over-fitting due to smaller kernel size.

3.2.2. SRDN Architecture
Convolutional networks learn a mapping function between a
corrupted image input and a corresponding noise-free image.
The network contains L convolution layers (Conv), each of
which implements a feature extraction procedure. To ensure our
network has rich feature representations, we use a considerable
amount of large filters in the first two convolutional layers (57) to
extract diverse and representative features for feature mapping
and spatial transformation. We define densely convolutional
features extracted from the lth layer as

xl = Conv(yl, fl, nl, cl)f≥7×7,n≥128 (1)

where l = 1...L indexes the layer, yl, fl, nl, and cl represent
the l’s input, the filter size, filter number, and channel number,
respectively. xl are the feature maps extracted from yl by
Conv(·), which denotes convolution. As the top and bottom
layers have different functional attentions (57), the network can
be decomposed into three parts (the bottom part is shown in
Figure 1): feature extraction, feature regulation and mapping,
and image reconstruction. In the proposed SRDN, the first two
layers have the same volume: (fl, nl, cl) = (7, 128, 1).

Several KR-blocks are cascaded to perform feature regulation,
mapping, and transformation. Also, residual learning is
performed here by skip-connection, which connects the outputs
of two adjacent KR-blocks. The use of skip connection between
KR-blocks leads to faster and more stable training. The purpose
of using a shortcut between the input and the end of the
network is to incorporate more information from the original
input into image reconstruction. This strategy helps relax the
network interference difficulty because input data contains much
real pixel information that can be taken as a prior. To make
SRDN more compact, we introduce two 1 × 1 composite units,
referred as “Shrinking” and “Expanding,” shown in Figure 1.
After densely convolutional feature-extraction layers, we reduce
the number of feature maps by “Shrinking.” After feature
regulation and mapping, we expand feature maps such that there
are sufficient various features that can be provided for image
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FIGURE 1 | (Top) A kernel regulation block (KR-block) with a massive of convolution computations (128 × 7 × 7) comprises two 1 × 1 convolution components for

computation reduction and one 3 × 3 convolution module for regularizing the features extracted by the preceding large size kernels. The number of dark-gray blocks

indicates the quantity of kernels in the current convolutional layers, and the size of dark-gray blocks represents the size of kernels and the density of convolution. The

color arrows represent the quantity of feature-map outputs. (Bottom) SRDN is consisted of feature extraction, shrinking, regulation and mapping, expanding, and

image reconstruction. Four KR-blocks are embedded in the proposed SRDN.

reconstruction. The convolutional layer before the last layer has
the volume: (fl, nl, cl) = (3, 128, 1). We utilize a deconvolutional
layer with the volume: (fl, nl, cl) = (3, 1, 1) as our last layer.

3.2.3. STIR-Net Structure
The combination of the various features extracted from multi-
directional data enhances the network’s capability for inference
and generality. Since multi-directional inputs provide different
perspectives of the 3D volume data, they cannot merely be
regarded as feeding more training data into multi-networks.
Instead, they complement each other nicely to encode the sparse
features through the network.

Dense convolutions and kernel regulation strategy ensure
diverse features from multi-directional brain CT images, which
can be encoded as network representations. In this paper, we
adopt three SRDNs to cope with three directional extracted data
respectively: Y × T, X × T, and X × Y to form our STIR-Net.
The structure of STIR-Net is shown in Figure 2. During training,
the input and output layers are matched with pair-wise noisy and
label patches. The label here refers to the patches extracted from
the original high radiation dose CTP volume (X × Y × T). Each
SRDN contains 4 KR-blocks that can fully encode the features
from each directional data without overfitting. For the testing
stage, the outputs of the three SRDNnets assemble into a conjoint
learning layer. This layer blends various features from all SRDN
nets together to be one spatio-temporal volume by calculating the
mean of the three outputs.

4. PLATFORM AND DATA ACQUISITION

4.1. Computational Platform
We use the deep learning framework Caffe (58) for constructing
the proposed STIR-Net. All experiments are conducted by a GPU
workstation that contains four NVIDIA PASCAL xp GPUs. For

data preprocessing and post analysis, we use MATLAB (Version
R2016b) as it is an efficient programming language for matrix-
based image processing.

4.2. Datasets
We evaluate the proposed method on 23 stroke patients’ CTP
sequences. All CTP sequences are scanned using the same acute
stroke protocol for patients from August 2007 to June 2010 using
GE Lightspeed or Pro-16 scanners (General Electric Medical
Systems, Milwaukee, WI). The scanners are in cine 4i scanning
mode and perform 45 s acquisitions at one rotation per second
using 80 kVp and 190 mAs. Approximately 45 mL of non-ionic
iodinated contrast was administered intravenously at 5 mL/s
using a power injector with a 5 s delay. The thickness of the
brain region at the z-axis is 20 mm for each sequence, and each
sequence has four slices along the z-axis where each slice is 5 mm
thick (cross-plane resolution). The brain region has 0.43 spatial
resolution (in-plane resolution) on the xy-plane. The slices within
one CTP sequence are intensity normalized and co-registered
over time. The entire volume size of one patient is 512× 512× 4
× 119, where 512 is the height and width of each CT slice, 4 is the
number of slices on the z-axis, and 119 is the number of frames
in the CTP sequence. In this paper, we only select one slice along
the z-axis, thus the size of resulting the CTP volume is 512× 512
× 119, denoted as X × Y × T.

We randomly split the patients into three groups: 12 patients
for training, four patients for validation, and seven patients for
testing. As each patient has 119 slices, the training, validation,
and testing set resulted in 1,428, 476, and 833 images in XY cross-
section (the spatial direction), respectfully. We only maintain
brain regions in the images for the other two cross-sections, XT
and YT, or about 300 pixels for the X and the Y directions.
Therefore for these cross-sections, we estimate that we have 3,600
images for training, 1,200 for validation, and 2,100 for testing.
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FIGURE 2 | STIR-Net Architecture. STIR-Net takes low-dose inputs from three cross-sections: XY, XT, and YT. Each cross-section go through one SRDN, and the

outputs of SRDNs meet in a conjoint layer, which calculates the mean of the three output volumes form SRDNs to provide the final results of STIR-Net.

We use the patch-based method in this paper, so the images are
further cropped into patches of size 41 × 41 with a stride of 21.
This resulted in 822,528 and 274,176 patches in XY cross-section,
75,600 patches in XT cross-section, and 25,200 patches in YT
cross-section, respectively for training and validation.

4.3. Low Radiation Dose Simulation and
Data Preprocessing
To simulate low radiation dose CTP images, we address three
generation approaches: reducing the tube current, shortening X-
ray radiation exposure time, and lowering spatial resolution. We
detail each criterion as below.

• Low Tube Current. We followed the same steps described
in Britten et al. (59) to simulate the low-dose CT images by
adding spatially correlated statistical noise (spectrumGaussian
noise). The generated noise is directly added on the original
high-dose images, where the high-dose volumes are scanned
at tube current I0 = 190mAs. Based on Britten et al. (59),
the noise model is built on the inverse relationship between
the tube current I and the noise standard deviation σ in CT
images. The noise level σ (the standard deviation of Gaussian
noise that we want to add to the original images) is adjusted
based on tube current I that we want to simulate according
to equation

σ = K ×

√

1

I
−

1

I0
(2)

where K = 103.09mA
1
2 is computed based on phantom

studies. We simulate four levels of noisy images in this paper
at different tube currents: 20, 40, 60, and 80 mAs.

• Low Temporal Sampling Rate. To reduce the temporal
sampling rate for shorter X-ray radiation exposure time,
we simulate longer scanning intervals by removing frames
between specific time intervals. For example, we remove every

other frame from the CTP volume to generate the down-
sampled volume that is two times shorter on the temporal
dimension than the original length. In this way, we skip frames
with two scales Si: two times shorter S2 and three times S3
shorter than the original time.We also keep the original length
S1 for comparison. For all down-sampled volumes, we scale
them back to the original size via bicubic interpolation for deep
learning experiments.

• LowSpatial SamplingRate.We lower the CT spatial sampling
rate to mimic the low spatial resolution images that are
produced by a limited amount of beams and receptors. For
instance, we create the down-sampled images by skipping
every other pixel (scaling rate of two) along the X and
Y directions in the original high radiation dose images
respectively (so-called grid-wise). We simulate the LR images
by skipping pixels grid-wise with two scales Si: two times
down-sampled S2, and three times down-sampled S3. We set
S1 as no down-sampling for comparison. Then, we interpolate
the down-sampled images by the bicubic method to scale them
back to the original image size.

Based on different patch representations that are described in
section 3.1, we preprocess the data subsequently. We have
three combinations of directional cross-sections XY, XT, and
YT for STIR-Net. For each individual denoising and super-
resolution case, we add Gaussian noise to the high-dose images
and apply spatio/temporal down-sampling, respectively. For
the combination of super-resolution and de-noising, we add
the noise first and then apply spatial/temporal down-sampling
depending on different scaling factors.

5. EXPERIMENTS AND RESULTS

The experiments of this work are carried out in three steps: image
super-resolution, image denoising, and image super-resolution
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with denoising. In the first two steps, we want to show that
the proposed STIR-Net is capable of different image restoration
tasks independently. Further, in the third step, we want to
demonstrate that our STIR-Net can tackle super-resolution and
denoising simultaneously. We train the STIR-Net structure from
scratch using low-quality images from different cross-sections,
then we test each of the cross-sections as spatial-only, temporal-
only, and spatial and temporal combined. The performance is
computed based on the average result form seven patients’ 119
slices. As cross-sections (XT and YT) are trained and tested in
a 2D circumstance that combined temporal dimension with one
spatial dimension, we concatenate the resulted 2D images into 3D
volumes and recalculate the performance based on XY direction.

5.1. Evaluation Metrics
The experiment performance is evaluated based on two
evaluation metrics: structural similarity (SSIM) index and PSNR.
SSIM is used for measuring the similarity between two images
based on the computation of luminance term l(x, y), the contrast
term c(x, y), and the structural term s(x, y), where x and y are two
images. We calculate SSIM based on the following equations

SSIM(x, y) = [l(x, y) · c(x, y) · s(x, y)] (3)

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
, c(x, y) =

2σxσy + c2

σ 2
x + σ 2

y + c2
,

s(x, y) =
2σxy+ c3

σ 2
x + σ 2

y + c3
(4)

whereµx,µy, σx, σy, σxy are the local means, standard deviations,
and cross-covariance for images x and y. The value of c1, c2, and
c3 are set as 6.5025, 58.5225, and 29.26125, where the values are
calculated based on the dynamic range L of the pixel-values (here
is 255) in function c1 = (0.01∗L)2, c2 = (0.03∗L)2, and c3 = c2/2.
PSNR defines the ratio between the maximum intensity value in
the ground truth image Imax and the power of corrupting noise σ

(root mean square error between the ground truth and enhanced
image) that affects representation fidelity.

PSNR = 20 log10
Imax

σ
(5)

5.2. Image Super-Resolution
The first experiment is image super-resolution, which is
independently conducted on three cross-sections (Y × T, X × T,
and X × Y) at two sampling rates (S2: down-sampling to 1/2,
S3: down-sampling to 1/3). We want to evaluate whether the
proposed STIR-Net is capable of achieving a stable performance
in different cross-sections at different levels of scaling. For the
XY cross-section, we down-sample along the spatial directions
to create low-resolution images. For the XT and YT cross-
sections, we down-sample on the temporal direction only to
simulate scanning in a shorter X-ray radiation exposure time.
The experimental results of STIR-Net are shown in Table 1. We
calculate SSIM and PSNR values for LR inputs, SR outputs, and
the improvements of SR from LR. The greatest improvements

for both SSIM and PSNR are in the XY direction, while the XT
and YT directions have achieved similar improvements. When
the sampling rate is high, the improvements compared to the
lower sampling rate are higher in almost all cross-sections. The
improvements of SSIM and PSNR are highly stable and follow
the same trend in different conditions. A one-tailed paired t-
test was conducted to compare the performance improvements
of PSNR and SSIM values. There was a significant difference in
the scores for PSNR (Mean = 37.623, SD = 10.955) and SSIM
(Mean = 0.950, SD = 0.001) before and after using the proposed
method; where p = 0.0003 for PSNR and p = 0.0004 for SSIM
show that the improvements are significant as p < 0.05. These
results suggest that PSNR and SSIM do improve significantly
after applying our model in this experiment. This experiment
indicates that STIR-Net has the potential to address low spatial
and temporal resolution in CTP image volumes.

5.3. Image Denoising
In this experiment, we explore different levels of low tube current
for training STIR-Net. We added the spectrum Gaussian noise to
simulate four low tube currents: 20, 40, 60, and 80mAs, which are
11, 21, 32, and 42% of the original 190mAs tube current.We train
the proposed STIR-Net by mixing together the different tube
currents - it is more difficult to restore high-dose images at lower
tube current, as shown in Table 2. This table shows that the SSIM
and PSNR performances for the XY direction when STIR-Net is
trained and tested with mixed levels of tube currents, which are at
a fixed spatial/temporal sampling rate of S2. The improvement of
SSIM increases as tube currents decrease, while the improvement
of PSNR remains in a similar range. We show that STIR-Net
is a general solution for different tube currents, as the PSNR
improvements for different test cases are all higher than 5 dB.
In this experiment, we demonstrate that STIR-Net can tackle
denoising problems as well, even for mixed noise levels. The
improvements are very stable for different tube current levels.

5.4. Spatial-Temporal Super-Resolution
and Denoising
In addition to the encouraging individual experiment results for
image super-resolution and denoising, the experiment results
in both spatial and temporal super-resolution with denoising
have also achieved great enhancements. We evaluate the resulted
images based on two aspects in this section: the analysis on
the resulted CTP sequence and the analysis on the generated
perfusion maps.

5.4.1. CTP Sequence Analysis
Table 3 shows the PSNR comparison of the resulted CTP
sequence among Multi-Scale Expected Patch Log Likelihood
(MS-EPLL) (60)method, our previously proposedmethod STAR,
and the current method STIR-Net. The test results are displayed
as an average value over seven test patients’ 833 slices output.
The STAR and STIR-Net methods both contain three scenarios:
spatial SR only, temporal SR only, and joint spatial and temporal
SR. In bothmethods, the temporal SR includes two cross-sections
(the XT and YT directions).
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TABLE 1 | Average SSIM and PSNR (dB) performance of seven patients’ 833 CTP slices between different sampling scales for STIR-Net image super-resolution at

different spatio-temporal cross-sections.

Direction Scale
SSIM PSNR

LR STIR-Net Improvement LR STIR-Net Improvement

XY
S2 0.954 0.987 0.033 32.348 43.195 10.846

S3 0.855 0.929 0.074 26.958 35.317 8.359

YT
S2 0.939 0.971 0.032 33.354 38.961 5.607

S3 0.887 0.929 0.042 29.240 35.167 5.926

XT
S2 0.929 0.967 0.038 32.965 38.580 5.615

S3 0.866 0.915 0.048 28.831 34.513 5.681

TABLE 2 | Average SSIM and PSNR (dB) performance of seven patients’ 833 slices for XY direction when STIR-Net is trained and tested with mix levels of tube currents,

where at a fixed spatial/temporal sampling scale S2.

mAs
SSIM PSNR

LR STIR-Net Improvement LR STIR-Net Improvement

20 0.778 0.859 0.080 25.227 30.445 5.217

40 0.830 0.896 0.065 26.663 32.349 5.686

60 0.860 0.909 0.049 27.323 33.062 5.739

80 0.879 0.915 0.036 27.702 33.409 5.706

We show that STIR-Net is a general solution for different tube currents as the PSNR improvements for different test cases are all higher than 5 dB. mAs is the unit for tube current-time

product.

TABLE 3 | Average PSNR comparison of seven patients’ 833 CTP slices for different conditions.

mAs Scale LR
MS-EPLL STAR STIR-Net

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

20

S1 23.438 28.566 31.734 32.550 33.273 31.856 32.456 33.189

S2 23.032 26.022 28.705 31.006 31.017 28.847 30.774 30.919

S3 21.993 22.517 26.636 29.990 29.682 26.861 30.405 30.096

40

S1 26.764 31.176 33.763 34.511 35.452 33.848 34.685 35.402

S2 24.698 27.357 29.899 31.841 32.214 30.092 32.471 32.659

S3 23.246 23.576 27.289 31.020 30.609 27.555 31.272 30.909

60

S1 29.079 33.030 35.336 36.145 37.254 35.415 36.064 37.195

S2 25.498 28.161 30.705 33.269 33.489 30.956 33.544 33.913

S3 23.801 24.689 27.694 31.673 31.207 27.785 31.867 31.450

80

S1 31.025 34.607 36.769 37.664 38.967 36.854 36.724 38.469

S2 25.971 28.608 31.505 34.123 34.464 31.719 34.324 34.728

S3 24.116 24.658 28.027 32.268 31.706 27.688 32.438 31.687

Avg 25.222 27.748* 30.672*⋆ 33.005*⋆ 33.278*⋆ 30.790*⋆ 33.086*⋆ 33.385*⋆

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. The conditions include four types of tube current (20, 40, 60, and 80 mAs) and three kinds of SR scales

(S1: no down-sampling, S2: down-sampling to 1/2, and S3: down-sampling to 1/3). LR means the PSNR value for the noise image after down-sampling. S1 is image denoising only.

The best values are highlighted for different scenarios. The average value is listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves

significant higher PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the comparison between MS-EPLL method.

Table 3 focuses on the comparison of four levels of tube
current (20, 40, 60, 80 mAs) and three SR scales (S1: no
down-sampling, S2: down-sampling to 1/2, S3: down-sampling
to 1/3). The down-sample rates are applied based on different
methods: spatial-only models are scaled down on the spatial
dimensions, temporal-only models are scaled down on the
temporal dimension, and the conjoint models are scaled down

on both spatial and temporal dimensions (depending on different
cross-sections). In this table, LR refers to the PSNR value for the
noise image after down-sampling. We highlighted the best values
for different scenarios. From this table, we can see STAR achieves
higher PSNR for denoising than STIR-Net, while STIR-Net
performs better for mixed noise and down-sampling scenarios.
Moreover, both STAR and STIR-Net methods outperform the
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MS-EPLL method. For all tube currents, the PSNR value
follows the trend of better image restoration results at higher
tube currents. Similarly, a lower down-sampling rate leads to
better reconstruction performance. The conjoint of spatial and
temporal directions of STAR gives the best results for all four
tube current levels. When the low dose CT images have poor
spatial or temporal resolutions, it is usually more difficult to
tackle both denoising and SR problems; however, our STIR-Net
net is more favorable for these situations. Its conjoint model
gives us an average 32% improvement from the LR inputs. The
experiment results indicate that most mixed low dose and low-
resolution scenarios can achieve the best performances, especially
for the temporal directions. This means that for the temporal
directions, there is more related information that can be used
for reconstructing CT frames that are nearby the down-sampled
slices. The average performance improvement for STIR-Net net
is about 8.08 dB from the LR inputs and around 4 dB compared
to the MS-EPLL method. We perform one-tailed paired t-
tests in Table 3 to compare PSNR values at different mAs and
super-resolution scales using alpha = 0.05. All three types of
STIR-Net perform significantly better than LR and MS-EPLL,
especially the conjoint model achieves the best performance
among all methods.

5.4.2. Perfusion Maps Analysis
We compare the perfusion maps (CBF and CBV) based on which
physicians make the clinical decision, as the perfusion maps
can show the hemodynamic changes of blood flow. Therefore,
achieving higher accuracy in restoration in perfusion maps is
critical for clinical diagnosis.

Visual Comparison: The visual comparisons of the generated
perfusion maps (CBF and CBV) are presented in Figures 3–6
for patient # 18, # 19, and # 21 in the case of scale level S2
and S3 with 40 mAs. We enlarge the region of interest for each
image to check the details, and we highlight the details by using
white arrows. From these figures, the edges in the LR images are
distorted compared to the original images, andMS-EPLL restores
the detail information incorrectly. The resulting images of the
STIR-Net models are much closer to the ground truth images
compare to MS-EPLL and STAR. The boundaries and details
of the features in STIR-Net results are well-preserved, and the
figures are less blurry than other methods. In sum, the proposed
STIR-Net gives us much accurate perfusion maps compare to
MS-EPLL and STAR methods as it restores the edge information
much closer to the ground truth images.

Quantitative Comparison: We calculate the CBF and CBV
values based on the CTP sequences resulted from different
methods. Then, we use PSNR and SSIM as evaluation metrics. As
the proposed method STIR-Net is designed for CTP image super-
resolution and denoising simultaneously, we show the results of
40mAs at the down-sample scale of S2 and S3.Tables 4, 5 provide
the PSNR and SSIM comparisons of CBF and CBV maps in the
case of scale level S2 with 40mAs andTables 6, 7 are for scale level
S3. In general, STIR-Net models achieve the best performance,
and the temporal model is usually the top performer.

We perform one-tailed paired t-tests for each table to
compare PSNR and SSIM of the restored images with LR images

and restored images using MS-EPLL and STAR models. The
hypothesis for all t-tests is: after using the proposed method,
we can achieve significant improvements in PSNR and SSIM
values from the images of LR, MS-EPLL method, or STAR
models. The results show that our proposed STIR-Net models
not only significantly improve the PSNR and SSIM values from
the LR images but also achieves significantly higher PSNR
and SSIM values than the MS-EPLL method, especially for
the temporal models and the conjoint models. For comparison
with STAR model, Table 4 shows that at S2 and 40 mAs,
CBF’s SSIM values using the STIR-Net temporal model is
significantly (p = 0.002067) better than the STAR temporal
model, similar for CBV (p = 0.01554). STIR-Net’s conjoint
model is also significantly better than the STAR conjoint model
(p = 0.00994) in terms of SSIM. In Table 7, for the case
of S3 and 40 mAs, similar observations are made. STIR-Net
temporal model is significantly (p = 0.03521) better than the
STAR temporal model and conjoint model in terms of both
PSNR and SSIM.

Overall, the test results demonstrate the advantage of our
STIR-Net to restore high-quality scans at as low as 11% of
absorbed radiation dose of the current imaging protocol, yielding
an average of 17% improvement in PSNR and SSIM values
for perfusion maps including CBF and CBV compared to LR
images and 10% improvements compared to MS-EPLL method.
For the comparison of STIR-Net and STAR, we calculate the
improvements by averaging out all three models including
the spatial model, temporal model, and the conjoint model.
Our proposed STIR-Net method achieves an average of 0.2%
improvements in PSNR and SSIM values for perfusionmaps than
STAR models.

6. CONCLUSION

This paper presents a novel deep learning-based multi-
directional spatio-temporal framework to recover the low
radiation dose CTP images of acute stroke patients by addressing
both denoising and super-resolution problems simultaneously.
Our proposed framework, called STIR-Net, is an end-to-end
image restoration network that is capable of recovering images
scanned at low tube current, short X-ray radiation exposure
time, and low spatial resolution jointly. We emphasize the
characteristic of our proposed STIR-Net in CTP image super-
resolution and denoising jointly, which directs prior and data
fidelity terms with two insights: First, a well-trained CNN-
based denoiser can be regarded as a sequence of filter-based
denoisers. Second, each component of a CNN-based denoiser
has the capacity of jointly dealing with image denoising and
super-resolution problems. By combining the cross-sectional
features in the spatio-temporal domain, our STIR-Net achieves
to better reconstruction results, especially for mixed low-
resolution and noise cases. After inputting low dose and low-
resolution patches at different cross-sections of the spatio-
temporal data simultaneously, STIR-Net blends the features
from both spatial and temporal domains to reconstruct high-
quality CT volumes. The experimental results indicate that

Frontiers in Neurology | www.frontiersin.org 10 June 2019 | Volume 10 | Article 647

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Xiao et al. STIR-Net

FIGURE 3 | Visual comparison of CBF for three test patients: #18, #19, and #21, when reducing the tube current to 40 mAs with a down-sample ratio of two (two

times low spatial and two time low temporal resolutions). The notation for each column is: GT, Ground truth image; LR, Low-Resolution input; MS-EPLL, MS-EPLL

restoration result; STAR-Spat, STAR reconstruction result (spatial only); STAR-Temp, STAR reconstruction result (temporal only); STAR-Conj, STAR reconstruction

result (spatial + temporal); STIR-Spat, STIR-Net reconstruction result (spatial only); STIR-Temp, STIR-Net reconstruction result (temporal only); STIR-Conj, STIR-Net

reconstruction result (spatial + temporal). All figures are displayed by using the same colormap and the color range for each patient is shown in the colorbar on the

rightmost of each row. We use white arrows to compare the details in the region of interests.

FIGURE 4 | Visual comparison of CBV for three test patients: #18, #19, and #21, when reducing the tube current to 40 mAs with a down-sample ratio of two (two

times low spatial and two time low temporal resolutions). The notation for each column is: GT, Ground truth image; LR, Low-Resolution input; MS-EPLL, MS-EPLL

restoration result; STAR-Spat, STAR reconstruction result (spatial only); STAR-Temp, STAR reconstruction result (temporal only); STAR-Conj, STAR reconstruction

result (spatial + temporal); STIR-Spat, STIR-Net reconstruction result (spatial only); STIR-Temp, STIR-Net reconstruction result (temporal only); STIR-Conj, STIR-Net

reconstruction result (spatial + temporal). All figures are displayed by using the same colormap and the color range for each patient is shown in the colorbar on the

rightmost of each row. We use white arrows to compare the details in the region of interests.
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FIGURE 5 | Visual comparison of CBF for three test patients: #18, #19, and #21, when reducing the tube current to 40 mAs with a down-sample ratio of three (three

times low spatial and two time low temporal resolutions). The notation for each column is: GT, Ground truth image; LR, Low-Resolution input; MS-EPLL, MS-EPLL

restoration result; STAR-Spat, STAR reconstruction result (spatial only); STAR-Temp, STAR reconstruction result (temporal only); STAR-Conj, STAR reconstruction

result (spatial + temporal); STIR-Spat, STIR-Net reconstruction result (spatial only); STIR-Temp, STIR-Net reconstruction result (temporal only); STIR-Conj, STIR-Net

reconstruction result (spatial + temporal). All figures are displayed by using the same colormap and the color range for each patient is shown in the colorbar on the

rightmost of each row. We use white arrows to compare the details in the region of interests.

FIGURE 6 | Visual comparison of CBV for three test patients: #18, #19, and #21, when reducing the tube current to 40 mAs with a down-sample ratio of three (three

times low spatial and two time low temporal resolutions). The notation for each column is: GT, Ground truth image; LR, Low-Resolution input; MS-EPLL, MS-EPLL

restoration result; STAR-Spat, STAR reconstruction result (spatial only); STAR-Temp, STAR reconstruction result (temporal only); STAR-Conj, STAR reconstruction

result (spatial + temporal); STIR-Spat, STIR-Net reconstruction result (spatial only); STIR-Temp, STIR-Net reconstruction result (temporal only); STIR-Conj, STIR-Net

reconstruction result (spatial + temporal). All figures are displayed by using the same colormap and the color range for each patient is shown in the colorbar on the

rightmost of each row. We use white arrows to compare the details in the region of interests.
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TABLE 4 | PSNR and SSIM value comparison of seven patients’ CBF maps calculated at scale S2 with tube current 40 mAs.

CBF Patient LR
MS-EPLL STAR STIR

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

PSNR

#18 24.57 25.74 27.83 30.54 31.30 28.06 29.07 29.79

#19 23.87 25.18 26.31 28.91 28.81 26.25 27.83 27.84

#20 23.07 26.09 29.30 30.94 31.63 24.16 32.02 32.31

#21 25.34 26.64 28.02 31.70 31.59 27.86 31.26 30.70

#22 23.25 26.13 27.90 30.46 30.86 28.26 30.24 31.14

#23 23.84 25.16 27.37 27.26 28.99 27.87 26.24 27.11

#24 18.23 21.59 23.55 26.62 26.61 24.68 25.89 26.30

Avg 23.15 25.21* 27.18*⋆ 29.49*⋆ 29.97*⋆ 26.73*⋆ 28.94*⋆ 29.31*⋆

Var 5.28 2.80 3.34 3.77 3.59 2.95 5.74 5.09

SSIM

#18 0.84 0.85 0.88 0.93 0.93 0.88 0.94 0.93

#19 0.77 0.80 0.82 0.89 0.89 0.81 0.90 0.90

#20 0.75 0.84 0.86 0.91 0.92 0.78 0.94 0.93

#21 0.78 0.82 0.83 0.90 0.91 0.83 0.92 0.91

#22 0.78 0.83 0.86 0.92 0.92 0.86 0.93 0.93

#23 0.82 0.84 0.86 0.89 0.92 0.87 0.89 0.89

#24 0.72 0.77 0.80 0.88 0.89 0.82 0.90 0.89

Avg 0.78 0.82* 0.84*⋆ 0.90*⋆ 0.91*⋆ 0.83* 0.92*⋆ 0.91*⋆

Var 0.0016 0.0008 0.0008 0.0003 0.0002 0.0014 0.0004 0.0004

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. LR means the PSNR value for the noise image after down-sampling. The best values are highlighted for

different patients. The average value and the variance are listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves significant higher

PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the result is significantly higher than MS-EPLL method.

TABLE 5 | PSNR and SSIM value comparison of seven patients’ CBV maps calculated at scale S2 with tube current 40 mAs.

CBV Patient LR
MS-EPLL STAR STIR

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

PSNR

#18 28.00 28.62 31.78 34.24 35.22 31.68 34.66 34.17

#19 32.32 34.05 33.79 37.52 38.11 35.15 38.75 38.63

#20 30.62 32.83 37.53 38.30 39.69 34.80 40.15 39.77

#21 32.20 33.38 34.95 37.67 37.98 35.09 38.07 38.27

#22 31.60 32.76 32.70 37.80 37.57 33.15 38.94 38.50

#23 30.55 31.51 32.03 35.87 36.46 34.76 35.37 35.97

#24 26.42 29.37 31.37 32.53 33.28 30.74 35.37 33.55

Avg 30.22 31.76* 33.44*⋆ 36.26*⋆ 36.89*⋆ 33.60*⋆ 37.08*⋆ 36.97*⋆

Var 4.87 4.16 4.77 4.67 4.47 3.18 6.11 5.82

SSIM

#18 0.86 0.87 0.90 0.94 0.94 0.90 0.95 0.94

#19 0.84 0.87 0.87 0.92 0.93 0.88 0.94 0.94

#20 0.89 0.92 0.93 0.96 0.96 0.93 0.97 0.97

#21 0.84 0.88 0.89 0.92 0.93 0.89 0.94 0.93

#22 0.85 0.88 0.89 0.93 0.94 0.89 0.95 0.95

#23 0.85 0.88 0.89 0.92 0.93 0.90 0.93 0.93

#24 0.77 0.82 0.84 0.88 0.89 0.84 0.90 0.90

Avg 0.84 0.88* 0.89*⋆ 0.93*⋆ 0.93*⋆ 0.89*⋆ 0.94*⋆ 0.94*⋆

Var 0.0015 0.0008 0.0008 0.0005 0.0004 0.0007 0.0004 0.0004

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. LR means the PSNR value for the noise image after down-sampling. The best values are highlighted for

different patients. The average value and the variance are listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves significant higher

PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the result is significantly higher than MS-EPLL method.
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TABLE 6 | PSNR and SSIM comparison of seven patients’ CBF maps calculated at scale S3 with tube current 40 mAs.

CBF Patient LR
MS-EPLL STAR STIR

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

PSNR

#18 21.68 23.89 24.92 27.88 27.30 24.64 28.09 27.92

#19 19.95 20.55 23.39 26.51 26.60 23.71 27.09 26.59

#20 22.41 26.23 25.57 29.84 29.62 26.14 29.51 29.04

#21 23.35 24.85 25.11 28.10 27.54 23.18 29.36 27.77

#22 21.97 23.95 24.23 23.97 28.04 24.83 28.54 28.29

#23 22.50 24.03 23.95 26.05 26.35 23.85 24.85 25.84

#24 17.21 21.45 20.66 24.53 23.91 20.91 24.04 23.49

Avg 21.29 23.56* 23.97* 26.70*⋆ 27.05*⋆ 23.89* 27.35*⋆ 26.99*⋆

Var 4.30 3.77 2.67 4.31 3.07 2.66 4.66 3.51

SSIM

#18 0.74 0.75 0.77 0.88 0.87 0.79 0.88 0.88

#19 0.64 0.69 0.71 0.83 0.83 0.71 0.83 0.82

#20 0.70 0.76 0.73 0.87 0.87 0.77 0.87 0.86

#21 0.68 0.70 0.73 0.82 0.82 0.70 0.85 0.84

#22 0.69 0.75 0.76 0.83 0.87 0.77 0.87 0.87

#23 0.73 0.74 0.76 0.85 0.85 0.76 0.84 0.85

#24 0.63 0.68 0.69 0.82 0.82 0.69 0.82 0.81

Avg 0.69 0.72* 0.74*⋆ 0.85*⋆ 0.85*⋆ 0.74*⋆ 0.85*⋆ 0.85*⋆

Var 0.0016 0.0009 0.0008 0.0006 0.0007 0.0015 0.0005 0.0006

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. LR means the PSNR value for the noise image after down-sampling. The best values are highlighted for

different patients. The average value and the variance are listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves significant higher

PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the result is significantly higher than MS-EPLL method.

TABLE 7 | PSNR and SSIM comparison of seven patients’ CBV maps calculated at scale S3 with tube current 40 mAs.

CBV Patient LR
MS-EPLL STAR STIR

Spatial Spatial Temporal Conjoint Spatial Temporal Conjoint

PSNR

#18 24.94 27.53 29.48 32.33 31.44 27.43 34.13 31.43

#19 30.71 26.58 28.50 36.15 35.01 29.86 36.39 35.48

#20 28.40 34.42 31.90 37.98 38.11 34.22 38.49 38.17

#21 30.45 31.87 32.83 35.86 35.52 31.36 35.97 34.87

#22 29.28 30.51 29.96 36.00 35.83 28.05 36.00 35.77

#23 28.83 31.31 29.08 35.08 33.86 27.33 34.35 34.23

#24 24.96 27.44 28.68 30.22 30.76 28.53 30.87 31.01

Avg 28.21 29.93 30.03 * 34.80*⋆ 34.35*⋆ 29.52 35.16*⋆ 34.42*⋆

Var 5.60 8.15 2.61 6.93 6.59 6.25 5.67 6.30

SSIM

#18 0.77 0.81 0.83 0.90 0.90 0.83 0.91 0.90

#19 0.77 0.76 0.77 0.89 0.89 0.78 0.90 0.89

#20 0.81 0.89 0.85 0.94 0.94 0.89 0.94 0.94

#21 0.77 0.84 0.85 0.90 0.90 0.83 0.90 0.89

#22 0.76 0.82 0.82 0.91 0.91 0.80 0.91 0.91

#23 0.76 0.84 0.83 0.90 0.90 0.82 0.90 0.90

#24 0.69 0.76 0.77 0.84 0.85 0.77 0.85 0.85

Avg 0.76 0.82* 0.82* 0.90*⋆ 0.90*⋆ 0.82* 0.90*⋆ 0.90*⋆

Var 0.0013 0.0022 0.0012 0.0009 0.0008 0.0016 0.0007 0.0008

In this table, three methods are compared: MS-EPLL, STAR, and STIR-Net. LR means the PSNR value for the noise image after down-sampling. The best values are highlighted for

different patients. The average value and the variance are listed at the bottom of the table. The asterisk symbol denotes the result of the current method achieves significant higher

PSNR value than the LR images at α = 0.05 when performing the one-tailed paired t-tests, and the star symbol denotes the result is significantly higher than MS-EPLL method.
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our framework has the potential to maintain the diagnostic
image quality not only for reducing the tube current down
to 11% of the commercial standard but also for 1/3 X-ray
radiation exposure time and 1/3 spatial resolution. Hence,
our approach is an efficient and effective solution for radiation
dose reduction in CTP imaging. In the future, we will extend
the work into multimodal imaging radiation dose reduction
by combining low-dose non-contrast CT, CTA, and CTP
images holistically.
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