
Citation: Hoefnagel, S.J.M.;

Koemans, W.J.; Khan, H.N.; Koster, J.;

Meijer, S.L.; van Dieren, J.M.; Kodach,

L.L.; van Sandick, J.W.; Calpe, S.; del

Sancho-Serra, C.M.; et al.

Identification of Novel Molecular

Subgroups in Esophageal

Adenocarcinoma to Predict Response

to Neo-Adjuvant Therapies. Cancers

2022, 14, 4498. https://doi.org/

10.3390/cancers14184498

Received: 26 July 2022

Accepted: 11 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Identification of Novel Molecular Subgroups in Esophageal
Adenocarcinoma to Predict Response to
Neo-Adjuvant Therapies
Sanne J. M. Hoefnagel 1,2,3, Willem J. Koemans 4, Hina N. Khan 1,3, Jan Koster 1,3, Sybren L. Meijer 3,5,
Jolanda M. van Dieren 6, Liudmila L. Kodach 7, Johanna W. van Sandick 4, Silvia Calpe 1,3,
Carmen M. del Sancho-Serra 1,3, Ana C. P. Correia 1,3, Mark I. Van Berge Henegouwen 3,8 ,
Suzanne S. Gisbertz 3,8 , Maarten C. C. M. Hulshof 3,8, Sandro Mattioli 9, Manon C. W. Spaander 10

and Kausilia K. Krishnadath 10,11,*

1 Center for Experimental and Molecular Medicine, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
2 Department of Gastroenterology and Hepatology, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
3 Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
4 Department of Surgical Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
5 Department of Pathology, Amsterdam UMC, 1066 CX Amsterdam, The Netherlands
6 Department of Gastrointestinal Oncology, The Netherlands Cancer Institute,

1066 CX Amsterdam, The Netherlands
7 Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
8 Esophageal Cancer Workgroup, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
9 Department of Surgery, University of Bologna, 40138 Bologna, Italy
10 Department of Gastroenterology and Hepatology, Erasmus University MC,

3015 GD Rotterdam, The Netherlands
11 Laboratory of Experimental Medicine and Paediatrics, Department of Gastroenterology and Hepatology,

University Hospital Antwerp, University of Antwerp, 2650 Edegem, Belgium
* Correspondence: sheila.krishnadath@uza.be; Tel.: +32-3-265-4111

Simple Summary: Gene expression of esophageal adenocarcinoma is highly heterogeneous. In
general, these cancers have poor prognosis and unpredictable responses to chemo- and radiotherapy.
Investigating expression profiles from RNA from pre-treatment biopsies are highly attractive to inves-
tigate the existence of diverse biological groups and signatures associated with the clinical response
to current treatment strategies. We identified and validated three distinct biological esophageal
adenocarcinoma subgroups and identified immune signatures with association to therapy response
using RNA sequencing. These findings aid in understanding biological mechanisms’ underlying
response to neo-adjuvant treatment.

Abstract: Esophageal adenocarcinoma (EAC) is a highly aggressive cancer and its response to chemo-
and radiotherapy is unpredictable. EACs are highly heterogeneous at the molecular level. The aim of
this study was to perform gene expression analysis of EACs to identify distinct molecular subgroups
and to investigate expression signatures in relation to treatment response. In this prospective
observational study, RNA sequencing was performed on pre-treatment endoscopic EAC biopsies
from a discovery cohort included between 2012 and 2017 in one Dutch Academic Center. Four
additional cohorts were analyzed for validation purposes. Unsupervised clustering was performed on
107 patients to identify biological EAC subgroups. Specific cell signaling profiles were identified and
evaluated with respect to predicting response to neo-adjuvant chemo(radio)therapy. We identified and
validated three distinct biological EAC subgroups, characterized by (1) p38 MAPK/Toll-like receptor
signaling; (2) activated immune system; and (3) impaired cell adhesion. Subgroup 1 was associated
with poor response to chemo-radiotherapy. Moreover, an immune signature with activated T-cell
signaling, and increased number of activated CD4 T memory cells, neutrophils and dendritic cells, and
decreased M1 and M2 macrophages and plasma cells, was associated with complete histopathological
response. This study provides a novel molecular classification for EACs. EAC subgroup 1 proved
to be more therapy-resistant, while immune signaling was increased in patients with complete
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response to chemo-radiotherapy. Our findings give insight into the biology of EACs and in cellular
signaling mechanisms underlying response to neo-adjuvant treatment. Future implementation of this
classification will improve patient stratification and enhance the development of targeted therapies.

Keywords: esophageal adenocarcinoma; RNA sequencing; subgroups; predicting response to therapy

1. Introduction

Esophageal and esophageal junctional adenocarcinomas (EAC) are highly aggressive,
with five-year overall survival rates that rarely exceed 20% [1]. Neoadjuvant chemoradio-
therapy (nCRT) followed by esophagectomy is considered standard of care in many centers
for patients with locally advanced esophageal or junctional cancer [2]. The response of
EAC to nCRT is highly variable and unpredictable. Advances in therapy have achieved
incremental improvements in overall outcome, but over- and under-treatment of undefined
subgroups of patients might undermine these benefits [3]. For these reasons, there are still
centers that advocate only surgical resection with extensive two-field lymph node dissec-
tion of EAC patients [4]. The biological diversity of EACs complicates patient selection
and treatment stratification and impedes the development of new targeted agents. To date,
beneficial evidence of targeted therapies for locally advanced esophageal or junctional
cancer is lacking, despite emerging targeted therapies for many types of cancer. Attempts
to develop prognostic tools for therapy response, including serum [5] and pathological
markers [6] have been made, but suboptimal accuracy and lack of validation in indepen-
dent patient cohorts limit clinical implementation. Further insight in the heterogeneous
molecular pathology of EAC and its relation to response to current treatment strategies
is needed.

Over the years, molecular characterization using genomic, transcriptomic, epige-
nomic and proteomic platforms, has been performed for many types of cancer, including
esophageal and gastric adenocarcinoma and esophageal squamous cell carcinoma.

Whole-genome sequencing highlights the highly diverse mutational landscape of EAC.
Dulak et al. have shown that EAC has a high overall mutation frequency, only exceeded in
lung cancer [7]. By cluster analysis based on mutational signatures obtained by WGS in
another patient cohort, six mutational signatures were seen to some extent in most patient
tumors, underlining heterogeneity in the mutational spectrum. Three distinct molecular
subgroups (1. c>A/T dominant, 2. DNA damage repair (DDR) impaired, 3. increased
mutagenic signature) were identified by assigning patients to a specific subgroup according
to their most dominant mutational signature. Unfortunately, the prognostic value of these
genomic-based clusters is limited, as no correlation with clinical characteristics, such as
response to chemotherapy and overall or recurrence-free survival, was found [8].

Most genomic sequencing approaches consider the malignant epithelial cells, but not
the stromal compartment of the tumor and potential epithelial-mesenchymal crosstalk.
However, the stromal compartment might have intrinsic prognostic value, as shown in
pancreatic cancer with separate tumor- and stroma-specific subgroups with prognostic
relevance [9]. Analyzing gene expression from bulk tumors with contribution from ep-
ithelial cancer cells and stromal cells may overcome this limitation. Another advantage
of gene expression analysis over other platforms is that this single platform is able to
capture the most important features identified by comprehensive multi-platform molec-
ular characterization, as shown for gastric adenocarcinoma [10]. Expression data was
shown to recapitulate the most important features of the final, comprehensive, molecular
characterization, underlining the potential of gene expression-based clustering to lead to
robust subgrouping.

At present, gene expression profiles generated by RNA sequencing on treatment-naïve
material of patients with EAC, which were subsequently treated by chemoradiotherapy
(CRT), are not available. The molecular profiles from large publicly available RNA-seq
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databases, including The Cancer Genome Atlas (TCGA) database, have been mostly es-
tablished from tissues obtained from surgical resection specimens of patients, who were
treated by surgery alone and thus cannot be extrapolated to predict patient response to
neo-adjuvant therapies [11].

Gene expression profile-based classification has the potential to identify tumor- and
stromal-intrinsic subclasses to further elucidate molecular heterogeneity and potential
association with treatment response. More insight into specifically dysregulated signal-
ing pathways in subgroups of EAC patients may facilitate patient stratification for, and
development of therapies targeting, these specific pathways.

In this study, we developed a robust molecular classification for EACs with association
to clinical characteristics. We identified dysregulated pathways and candidate drivers of
distinct subgroups of EACs that could be targeted therapeutically. Moreover, we found a
differentially expressed immune phenotype between patients with different pathological
responses to CRT [12]. Independent cohorts of EAC patients were used for validation of
our findings.

2. Materials and Methods
2.1. Study Population and Tissue Samples

A total of 110 patients with primary EAC from the Amsterdam University Medical
Center (AUMC) in Amsterdam (referred to as discovery cohort) were included. Tissue
samples were collected with approval of the local medical ethics committee and all patients
provided written informed consent (AMC2013_241).

All patients underwent esophago-gastro-duodenoscopy and surgery with or without
neo-adjuvant treatment between 2012 and 2017. During this procedure, biopsies from the
tumor mass were obtained for diagnostic and research purposes. Histological diagnosis
and Mandard classification on resection specimens were performed by specialized gastro-
intestinal pathologists as part of standard clinical care. For the discovery cohort, blinded
examination of biopsies to confirm histological diagnosis was performed by a specialized
gastro-intestinal pathologist (SLM).

Only patients with adenocarcinoma of the esophagus and of the gastro-esophageal
junction were included. Definition of the location was retrieved from the description of the
location in the endoscopy report. Siewert classification was not routinely performed [13].

Pre-treatment tumor staging was performed by esophago-gastro-duodenoscopy, endo-
scopic ultrasound and CT scan. AJCC staging was described according to the 8th edition
of the UICC TNM-classification. Only patients with T2 to T4 stage were included in this
study. In 10 patients, biopsies from adjacent normal esophageal mucosa were taken at
least 3 cm from the tumor mass. The biopsies were immediately immersed in RNAlater
solution and stored at −80 degrees until further processing. Data on clinical, radiolog-
ical and pathological characteristics were retrospectively extracted from the electronic
medical records.

2.2. Cluster Analyses

RNA preparation, expression profiling, normalization and estimation of tumor per-
centage in the discovery cohort was performed as described in “RNA preparation discovery
cohort”, “RNA seq expression profiling discovery cohort”, and “Bioinformatics analyses”
in the Supplementary File S1 methods. Unsupervised clustering analysis of 107 gene ex-
pression profiles from EAC was performed using the ConsensusClusterPlus function with
hierarchical cluster algorithm with Euclidean distance function, based on gene median-
centered expression values of 16,045 genes [14]. Details from this analysis are described in
“ConsensusClusterPlus” in the Supplementary File S1 methods.

All samples were plotted on Principal Component Analysis plots.
Differential expression analyses and gene set enrichment analyses for subgroups from

the discovery cohort was performed as described in “Differential expression analyses and
Ingenuity Pathway Analysis” in the Supplementary File S1 methods.
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Using the discovery dataset, a random forest model was trained as described in
“Random forest model” in the Supplementary File S1 methods.

The random forest model that was trained in the discovery cohort was applied to
predict EAC subgroups in the EAC samples from the TCGA database after normalization
similar as described for the discovery cohort and batch effect correction. ISOpureR analysis
was performed on TCGA expression profiles of protein-coding genes from 80 EAC samples
and 11 corresponding healthy tissue samples, and only TCGA samples with an estimated
tumor percentage of 50% or higher (n = 77) were used in analyses.

Differential expression analysis and IPA were performed for the TCGA dataset simi-
larly as described for the discovery cohort.

Heatmaps were used for visualization of differentially expressed genes and signifi-
cantly enriched pathways, as described in “Visualization of differentially expressed genes
and significantly enriched pathways” in the Supplementary File S1 methods.

For the TCGA dataset, mutation data was retrieved and analyzed as described in
“mutation data from the TCGA dataset” in the Supplementary File S1 methods.

2.3. CIBERSORTx

We used CIBERSORTx to estimate the absolute quantities of specific cell types from the
bulk tissue gene expression profiles from the discovery and the RNA sequencing validation
cohorts [15]. In short, CIBERSORTx estimates absolute immune fraction score by dividing
the median expression level of all genes in the signature expression matrix by the median
expression of all genes in the bulk tissue expression matrix. CIBERSORTx is a machine-
learning method for digital cytometry, which enables inferring cell-type-specific gene
expression profiles from bulk tissue transcriptomes [16]. The CIBERSORTx analysis was
run using LM22 (22 immune cell types) as the signature gene file, with 100 permutations
and quantile normalization disabled as recommended for RNA-Seq data.

2.4. Validation of the three Biological Subgroups of EAC Patients Treated by Surgery Only Using
Nanostring Technology

For validation of the clusters, expression profiles produced by Nanostring technology
were obtained from an independent cohort of patients treated by surgery only. MRNA
was isolated from macro-dissected formalin-fixed paraffin-embedded (FFPE) chemo- and
radiotherapy naïve surgical resection specimens using the RNeasy FFPE kit (Qiagen, Ger-
mantown, MD, USA, Cat. No. 73504). Samples with good RNA quality, defined by
Bioanalyzer (Agilent, Santa Clara, CA, USA), were used for expression profiling by the
Nanostring PanCancer Progression panel (nanoString, Seattle, WA, USA, XT-CSO-PROG1-
12). The obtained expression profiles were presented to the random forest model to assign
cluster membership.

2.5. Supervised “Response to Chemoradiotherapy According to CROSS” Analyses in the
Discovery Cohort

After unsupervised cluster analysis, we performed two supervised analyses by divid-
ing patients from the discovery cohort treated with nCRT and neo-adjuvant chemotherapy
(nCT) in 4 subgroups according to, respectively, tumor regression grade as defined by
Mandard [12] and pathological T-stage (pT) as seen in the resection specimen.

In the first analysis, we compared (A) patients with Mandard 1 versus patients with
Mandard 2, 3, 4 and 5, (B) patients with Mandard 1 and 2 versus Mandard 3, 4 and 5, and C)
patients with Mandard 1, 2, and 3 versus patients with Mandard 4 and 5 using differential
expression analysis genes by DESeq2.

In the second analysis, we compared (I) patients with pTx versus patients with pT1,
pT2, pT3, (II) patients with pTx and pT1 versus patients with pT2 and pT3, and III) patients
with pTx, pT1 and pT2 versus patients with pT4. Differentially expressed genes (p < 0.05)
were visualized in MA plots after log fold change shrinkage.

Gene set enrichment analyses (GSEA) was performed to investigate if there was
significant enrichment (nominal p-value < 0.05) of KEGG pathways [17,18] between patients
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grouped by Mandard score. Normalized enrichment scores of significantly enriched
pathways were visualized in heatmaps.

The same analysis was performed for patients treated with nCRT according to CROSS
and surgical resection, with or without adjuvant therapy, and available pT and Mandard
score data and results are shown in the Supplementary Figures.

Validation cohorts containing 51 samples from patients with EAC treated with nCRT
according to the CROSS regimen, followed by surgery from the NKI and Erasmus MC, were
sequenced as described in “NKI/Erasmus MC RNA seq validation cohort for response to
neo-adjuvant treatment signature” in the Supplementary File S1 methods. CIBERSORTx
data was compared between patients with different Mandard scores in the discovery cohort
and in the two validation cohorts from the NKI and Erasmus MC.

2.6. Statistics Patients Characteristics

Patient characteristics from the discovery cohort, the TCGA cohort, the Bologna/AUMC
surgery-only cohort and the NKI/Erasmus MC cohort were compared using the Fisher-
Freeman-Halton Exact test (2-sided), the One-Way ANOVA test, and the Chi-square test,
to test for clinical differences between subgroups for, respectively, binary variables, not
normally distributed continuous variables, and categorical variables. Statistical significance
was set at a p value of <0.05.

Kaplan-Meier survival analyses were performed to compare survival. River plots
were used for visualization of cT and pT before and after nCRT [19].

3. Results
3.1. EAC Patients from One Dutch Academic Center Were Included as the Discovery Cohort and
Patients with EAC from the TCGA Dataset Served as the Validation Cohort for Cluster Analysis

The RNA-seq discovery cohort consisted of 107 Dutch patients from the AUMC with
histologically proven primary EAC (median age 66.7 years, IQR 15.7) (Table 1). 77 patients
with EAC from the TCGA dataset were used as an independent cluster validation dataset
(median age 68.0 years, IQR 19.0) (Table 1).

Table 1. Baseline characteristics of AUMC (discovery cohort) and TCGA database.

Characteristics AUMC (n = 107) TCGA (n = 77) p Value

Sex
Male/female (no.) 95/12 66/11
Male/female (%) 89/11 86/14 0.65 †

Age

Median (IQR) years 66.7 (15.7) years 68.0 (19.0) years 0.65 ˆ

Year of diagnosis
-’98/’99/’00/’01/’04/’05/’06/’07/’08/’09/’10/ 0/0/0/0/0/0/0/0/0/0/0/ 1/2/8/11/5/3/5/2/1/3/8/

’11/‘12/’13/’14/’15/’16/’17/NA (no.) 0/16/20/16/27/22/6/0 5/12/6/0/0/0/0/5

AJCC Stage
0.00 **I/II/III/IV/NA (no.) 0/27/65/12/3 10/22/32/10/3

I/II/III/IV (%) 0/26/63/12 14/30/43/14

Clinical T stage at baseline
-Tx/T0/T1/T2/T3/T4/NA (no.) 4/0/2/19/78/4/0 2/0/1/2/13/59

Tx/T0/T1/T2/T3/T4 (%) 4/0/2/18/73/4 -

Clinical T stage at baseline in patients treated
with nC(R)T/surgery with or without
adjuvant therapy NA NA
Tx/T0/T1/T2/T3/T4/NA (no.) 3/0/1/11/51/2/0
Tx/T0/T1/T2/T3/T4 (%) 4/0/1/16/75/3
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Table 1. Cont.

Characteristics AUMC (n = 107) TCGA (n = 77) p Value

Histologic grade
0.00 *G1/G2/G3/NA (no.) 23/33/46/5 1/27/24/25

G1/G2/G3 (%) 23/32/45 2/52/46

Lauren classification
NA NAIntestinal/Diffuse/Mixed/NA (no.) 70/14/22/1

Intestinal/Diffuse/Mixed (%) 66/13/21

Signet ring cells
NA NApresent/absent/NA (no.) 25/56/26

present/absent (%) 31/69

Patients per initial treatment strategy n(%)If
applicable also Mandard (m)
scorem1/m2/m3/m4/m5/NA (no.)

nCRT CROSS/surgery 46(43%) 6/9/17/12/0/2 0 -

nCRT CROSS/surgery/adjuvant SOX 10 (9%) 3/5/2/0/0/0 0 -

nCRT CROSS+TRAP/surgery 4 (4%) 1/1/2/0/0/0 0 -

nCRT CROSS/no surgery 7 (7%) 0 -

nCT EOX/surgery/adjuvant EOX 4 (4%) 2/0/0/0/1/1 0 -

nCT EOX/surgery 3 (3%) 0/1/0/2/0/0 0 -

nCT ECC/surgery/adjuvant ECC 1 (1%) 0/0/0/1/0/0 0 -

only surgery 1 (1%) 0 -

dCRT carboplatin/paclitaxel/no surgery 16 (15%) 0 -

palliative therapy 13 (12%) 0 -

No treatment 2 (2%) 0 -

Surgery, priorly treated with radiation and
chemotherapy (but no neo-adjuvant therapy) 0 2 (3%) -

No neo-adjuvant therapy, surgery 0 65 (84%) -

No neo-adjuvant therapy, no surgery 0 10 (13%) -

Mandard score in all patients treated with
nC(R)T/surgery with or without adjuvant
therapy (n = 70) NA NA
1/2/3/4/5/NA (no.) 12/16/21/15/1/3
1/2/3/4/5 (%) 18/25/32/23/2

T stage resection specimen in all patients
treated with nC(R)T/surgery with or without
adjuvant therapy (n = 70) NA NA
Tx/T1/T2/T3/T4/NA (no.) 12/14/12/26/2/2
Tx/T1/T2/T3/T4 (%) 18/21/18/39/3

† Fisher’s exact test two-sided; ˆ Mann-Whitney-Wilcoxon test (Age is not normally distributed according
to QQ-plot and histogram); * Chi square test; ** Chi square test with simulated p-value (2000 replicates);
Number (no.); InterQuartile Range (IQR); Not Available (NA); neo-adjuvant Chemo(Radio)Therapy (nC(R)T);
neo-adjuvant ChemoRadioTherapy with carboplatin and paclitaxel + 41.4 Gy according to the CROSS trial
(nCRT CROSS); adjuvant therapy with S-1 and oxaliplatin (adjuvant SOX); neo-adjuvant trastuzumab and
pertuzumab in HER2 positive EAC (TRAP); neo-adjuvant chemotherapy with epirubicin, oxaliplatin and
capecitabin (nCT EOX); adjuvant chemotherapy with epirubicin, oxaliplatin and capecitabin (adjuvant EOX);
adjuvant chemotherapy with epirubicin, cisplatin and capecitabin (adjuvant ECC); definitive ChemoRadio-
Therapy with carboplatin and paclitaxel + 41.4 Gy (dCRT carbo/pac). TCGA AJCC Stage derived from Neo-
plasm.Disease.Stage.American.Joint.Committee.on.Cancer.Code (equal to clinical stage in biolinks file) and
Neoplasm.Disease.Stage.American.Joint.Committee.on.Cancer.Code.1 (equal to pathological stage in biolinks
file) from Cbioportal file. TCGA Clinical T stage at baseline derived from stage_event_tnm_categories and
stage_event_clinical_stage in biolinks file.
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There were no differences between the discovery and TCGA cohorts regarding male/female
ratio (p = 0.65) and age (p = 0.56) (Supplementary Table S1). The histological grade was
significantly different between patients in the discovery and the TCGA database (p = 0.00)
(Supplementary Table S1).

Patients from the discovery cohort were diagnosed between 2011 and 2017.
68 out of 107 patients received nCT or nCRT before surgery, and of these 46 were

treated with CROSS followed by surgery (Table 1). 23 out of 107 patients underwent nCRT
without surgery or definitive chemoradiotherapy (dCRT). Patients from the TCGA cohort
were diagnosed between 1998 and 2013, and none of the patients in the TCGA cohort were
treated with nCRT prior to surgery.

AJCC stage at baseline and clinical T stage (cT) at baseline were missing for >50% of
cases from the TCGA, therefore statistical comparison was not performed for these variables.

Finally, a total of 107 patients from one academic center, mostly treated with neo-
adjuvant therapy and surgery, were included as the discovery cohort, and patients with
EAC from the TCGA dataset, mostly treated with surgery only, were used for the valida-
tion analyses.

3.2. Unsupervised Cluster Analysis by Consensus Cluster Plus in the Discovery Cohort and
Validation in the TCGA Cohort

Data-driven, unsupervised consensus clustering analysis was performed to identify
subgroups. This analysis identified three stable subgroups in the discovery cohort. The Con-
sensus matrix for k = 3 showed that most patient samples could be assigned uniquely to the
same subgroup (Supplementary Figure S1A). The optimal separation in three groups was
corroborated by the cumulative distribution function (CDF) (Supplementary Figure S1B),
and by delta area plot visualization (Supplementary Figure S1C) [14]. The Principal Com-
ponent Analysis (PCA) plot (Supplementary Figure S1D) underscored that also after data
reduction, the three distinct subgroups could still be recognized. Silhouette width plots for
the discovery dataset confirmed that most samples assigned to a specific subgroup were
far away from the decision boundary between neighbouring clusters (Figure 1).

By applying random forest modelling, similar subgroups could be identified in the
TCGA cohort. Principal component analysis confirmed the existence of these subgroups
(Supplementary Figure S2). Silhouette width plots for the TCGA dataset confirmed that
most samples assigned to a specific subgroup were far away from the decision boundary
between neighbouring clusters (Figure 1).

In conclusion, three distinct stable subgroups could be identified in the discovery
cohort by cluster analysis, and could be validated in the TCGA cohort by random for-
est modelling.

3.3. Genomic Data from the TCGA Dataset Indicates Similar Mutational Loads between the
Subgroups as Defined by the RNA Expression Profiles

To investigate the genomic composition of the three subgroups, we used public data
from the TCGA cohort. The patients from the different subgroups of the TCGA cohort
proved to have a similar amount of mutations (p = 0.13 according to Kruskal-Wallis rank
sum test) and copy number variations (p = 0.25 according to one-way ANOVA for amplifi-
cations, p = 0.88 according to Kruskal-Wallis rank sum test for deletions, p = 0.218 according
to one-way ANOVA for amplifications and deletions) (Figure 1). There were no specific
genes with significantly different frequencies of SNV mutations or copy number variations
between the subgroups.
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Figure 1. Heatmaps indicating expression levels of the AUMC and TCGA cohorts. Rows with
differentially expressed genes ordered by unsupervised clustering in AUMC cohort are shown by the
dendrogram at the left of the AUMC heatmap. Columns with EAC RNA-seq profile for each patient
are ordered by silhouette width and cluster membership.

Analysis of genomic data indicates that the subgroups based on gene expression
profiles were not associated with microsatellite instability or other baseline genomic abnor-
malities, including p53 gene mutations.
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3.4. Clinical and Histo-Pathological Characteristics of the Subgroups

We examined whether there were differences in clinical and pathological characteristics
among the three subgroups. In the discovery cohort, there was no significant difference
in age, male/female ratio or AJCC stage between the three groups (age p = 0.47, sex
p = 1.00, AJCC stage p = 0.80) (Table 2). In the TCGA cohort, there were also no significant
differences in age nor in male/female ratio between the subgroups (age p= 0.28, sex p = 1.00)
(Supplementary Table S1).

Table 2. Differences between subgroups in AUMC database.

Characteristics AUMC1 (n = 30) AUMC2 (n = 40) AUMC3 (n = 37) p Value

Sex
1.00 †Male/female (no.) 27/3 35/5 33/4

Male/female (%) 90/9 88/13 89/11

Age
0.47 ‡

Median (IQR) years 69 (18.1) 66 (14.6) 64(14.0)

AJCC Stage
0.80 ˆˆI/II/III/IV/NA (no.) 0/8/17/5/0 0/8/27/3/2 0/11/21/4/1

I/II/III/IV (%) 0/27/57/17 0/21/71/8 0/31/58/11

Clinical T stage at baseline
0.15 ˆˆTx/T1/T2/T3/T4/NA (no.) 0/0/0/4/24/2/0 3/0/0/6/31/0/0 1/0/2/9/23/2/0

Tx/T1/T2/T3/T4 (%) 0/0/0/13/80/7 8/0/0/15/78/0 3/0/5/24/62/5

Clinical T stage at baseline in all
patients treated with nC(R)T/surgery
with or without adjuvant therapy 0.25 *
Tx/T1/T2/T3/T4/NA (no.) 0/0/0/0/16/1/0 2/0/0/5/21/0/0 1/0/1/6/14/1/0
Tx/T1/T2/T3/T4 (%) 0/0/0/0/94/6 7/0/0/18/75/0 4/0/4/26/61/4

Histologic grade
0.046 *G1/G2/G3/NA (no.) 4/11/13/2 5/13/21/1 14/9/12/2

G1/G2/G3 (%) 14/39/46 13/33/54 40/26/34

Lauren classification
0.79 *Intestinal/Diffuse/Mixed/NA (no.) 17/5/8/0 28/5/7/0 25/4/7/1

Intestinal/Diffuse/Mixed (%) 57/17/27 70/13/18 69/11/19

Signet ring cells
0.08 †present/absent/NA (no.) 11/11/8 8/22/10 6/23/8

present/absent (%) 50/50 27/73 21/79

Mandard score in all patients treated
with nC(R)T/surgery with or without
adjuvant 0.18 *
1/2/3/4/5/NA (no.) 3/4/3/5/1/1 8/7/7/5/0/1 1/5/11/5/0/1
1/2/3/4/5 (%) 19/25/19/31/6 30/26/26/19/0 5/23/50/23/0

T resection specimen in all patients
treated with nC(R)T/surgery with or
without adjuvant 0.01 *
Tx/T1/T2/T3/T4/NA (no.) 3/1/0/11/2/0 7/5/7/7/0/1 1/8/5/8/0/1
Tx/T1/T2/T3/T4 (%) 18/6/0/65/12 30/19/26/26/0 5/36/23/36/0

† Fisher’s exact test, two-sided; ‡ Kruskal Wallis test (Age is not normally distributed according to QQ-plot and
histogram); * Chi-square test; ˆˆ Asymptotic Generalized Pearson Chi-Squared Test (ordered nominal variable by
one non-ordered nominal variable); Number (no.); InterQuartile Range (IQR); Not Available (NA); neo-adjuvant
Chemo (Radio)Therapy (nC(R)T).

There were significant differences between histologic grade between the discovery
cohort and the TCGA dataset (Table 1), and also between subgroups in the discovery cohort
and in the TCGA cohort (Table 2, Supplementary Table S1).
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For both cohorts there was a similar tendency for better overall survival for subgroup
three (Supplementary Figure S3A,B).

In conclusion, histological grades were different between the subgroups in both the
discovery cohort and in the TCGA cohort. There were no significant differences in age,
male/female ratio or survival.

3.5. Differential Gene Expression and Pathway Enrichment Analyses Identifies Specific (Aberrant)
Signaling Pathways within Each Subgroup

To identify specific signaling pathways within the subgroups, differential gene ex-
pression and pathway enrichment analyses were performed. 5720 genes were differential
expressed when comparing subgroup one versus subgroups two and three, and, respec-
tively, 5522 genes and 4325 genes when comparing subgroup two versus subgroups one
and three, and subgroup three versus subgroups one and two in the discovery dataset.

In both the discovery and TCGA cohorts, differential-expression analysis and In-
genuity Pathway Analyses revealed specific expression signatures for each of the three
subgroups (Figure 2). The groups could be classified as: 1. the p38 MAPK/Toll-like receptor
signaling subgroup, 2. the activated immune system subgroup, and 3. the impaired cell
adhesion subgroup.

Subgroup one was characterized by activation of the p38 MAPK signaling pathway,
Toll-like Receptor signaling and remodelling of epithelial adherens junctions.

Subgroup two can be distinguished from the other subgroups because of the activation
of immune pathways, including the Th1 pathway, dendritic cell maturation, leukocyte-
extravasation signaling, and the production of nitric oxide and reactive oxygen species in
macrophages. In addition, the colorectal cancer metastasis signaling pathway was activated
in this subgroup, confirming altered expression of genes important for enhanced cancer
cell migration, which potentially leads to metastatic cancer sites.

Subgroup three contained samples characterized by the deactivation of pathways
involved in cell adhesion, such as integrin signaling, actin cytoskeleton signaling, and
chondroitin and dermatan biosynthesis. Of great interest, several immune pathways were
deactivated, including Th2 signaling, dendritic cell maturation, leukocyte extravasation
signaling and CD28 signaling in T-helper cells. The only activated pathway in this subgroup
was the RhoGDI signaling pathway.

In short, the activation of p38 MAPK and Toll-like receptor signaling in subgroup one,
and of the pathways important for the immune system in subgroup two, were seen, whereas
the impaired activation of pathways implied in cell adhesion was seen in subgroup three.

3.6. Validation of the Subgroups by Nanostring Technology on RNA from FFPE Samples

To validate the clustering results on FFPE samples by using a smaller panel of genes,
the Nanostring PanCancer Progression panel (nanoString, XT-CSO-PROG1-12) was applied.
This pre-defined 770-gene set, consisting of genes covering various steps in the oncogenesis
process, proved to overlap with the significantly differentially expressed genes between the
groups as identified in the discovery and validation cohorts (Supplementary Figure S4).
FFPE samples from surgical resection specimens of an independent cohort of 56 patients,
who did not receive adjuvant or neo-adjuvant therapy, but were treated by surgery only,
were obtained from the AUMC (n = 26) and from the university hospital of Bologna
(n = 30) (Supplementary Table S2). Patients had a median age of 71.0 years, IQR 12.0,
and most patients were male (79%) (Supplementary Table S2). Around half of the pa-
tients had AJCC stage III disease at baseline (46%) (Supplementary Table S2). Gene ex-
pression profiles using the Nanostring technology on FFPE samples to assess the Pan-
Cancer progression panel gene set proved to be sufficient to distinguish between three
subgroups in the mixed Bologna/AUMC cohort when applying the random forest model
(Supplementary Figure S5A,B, Table S3).
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In conclusion, these results indicate that the subset of genes as present in the Nanos-
tring PanCancer panel applied on FFPE tissue is sufficient to identify EAC patients belong-
ing to one of the subgroups.

3.7. CIBERSORTx to Investigate Differences in Immune Cells within the Three Subgroups

We found that subgroup two could be distinguished from the other subgroups because
of the activation of immune pathways and activation of different types of immune cells.
To further estimate the absolute quantities of specific immune cell types, we performed
CIBERSORTx. This analysis confirmed that samples from subgroup two in both cohorts
had a more active immune system compared to the other samples, with more activated
CD4 memory T-cells (discovery p = 0.003 TCGA p = 0.026 according to MWU-test) and
more resting mast cells (discovery p = 0.004 TCGA p = 0.009). CIBERSORTx analyses
also confirmed impaired immune expression in subgroup three. Subgroups one and
two together had more M1 (pro-inflammatory) macrophages (discovery p = 0.028 TCGA
p = 0.010) than subgroup three (Supplementary Figure S6).

In conclusion, in both cohorts, increased numbers of immune cells were seen in
subgroup two, and a decreased number of macrophages in subgroup three.

3.8. Response Prediction by Unsupervised Clustering of Patients Treated with Neoadjuvant
Chemoradiotherapy Combined with Surgery

Since a subset of cases from the discovery cohort received neo-adjuvant chemo- or
chemoradiotherapy before surgery, we next set out to investigate if we could identify
an RNA signature associated with response to neo-adjuvant (chemo- with or without
radiotherapy) treatment. For this sub-analysis, data was available for 65 patients from the
discovery cohort.

Two different response classifications to neo-adjuvant therapy were evaluated. Patients
were classified according to the Mandard score and according to the pT (Figure 3A).

Analysis of therapy response between the different subgroups indicated that there was
no difference for cT before treatment (p = 0.25, Table 2). The response to therapy depicted by
Mandard score did not significantly differ between the subgroups (chi-square test p = 0.18,
Table 2). However, for the pT there was a significant difference between subgroups (chi-
square test p = 0.01, Table 2). Individually matched cT and pT scores for each subgroup
shows that a large proportion of patients from subgroup one does not show pT downstaging
upon treatment, compared to subgroups two and three (Figure 3B). This indicates that
subgroup one is more resistant to neo-adjuvant therapy. For the subgroup of patients
treated by nCRT according to CROSS (followed by surgical resection with and without
adjuvant S-1 plus oxalipatin (SOX)) (pT and Mandard score available for n = 54 out of 56) a
similar trend was seen for pT-staging (chi-square test p = 0.07, Supplementary Figure S7).

According to these results, the subgroups identified by unsupervised cluster analysis
can potentially serve as an aid for predicting response to neo-adjuvant therapy. This
classification shows less pT downstaging upon neo-adjuvant therapy in patients from
subgroup one in the discovery cohort.

3.9. KEGG Pathway Analysis to Identify Specific Pathways in Responders versus Non-Responders
to Neo-Adjuvant Therapy

At the gene expression level, the highest number of differentially expressed genes
were between patients with complete response (Mandard 1 or pTx) versus patients with
incomplete response (Mandard 2/3/4/5 or pT1-pT3) (Figure 4A). Analysis for Enriched
KEGG pathways indicated that complete responders to neo-adjuvant therapy had in-
creased signaling of several immune signaling pathways, including the T-cell receptor
signaling pathway, leukocyte trans-endothelial migration and natural killer cell mediated
cytotoxicity (Figure 4B). In addition, for patients treated by nCRT according to CROSS
(followed by esophagectomy with and without adjuvant SOX), these immune pathways
were significantly enriched in complete responders (Supplementary Figure S8).
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In sum, patients with a complete response to neo-adjuvant therapy showed more
activation of several immune signaling pathways compared to incomplete responders in
the discovery cohort.

3.10. CIBERSORTx Shows a Specific Immune Phenotype in Complete Responders Compared to
Incomplete Responders

In the discovery cohort, both differential gene expression analysis and CIBERSORTx
indicated that the response to neo-adjuvant CRT was associated with a specific immune
signature, expressed by the stromal and infiltrating immune cells. To confirm these findings,
EAC patients with differential response to CRT obtained from the NKI (n = 29) and the
Erasmus MC (n = 22) were analyzed and compared to the discovery cohort.
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CIBERSORTx analysis was used to compare patients with complete response (Man-
dard 1) to patients with incomplete response (Mandard 2, 3, 4, 5) with regard to their
absolute quantities of specific immune cell types. Patients from the discovery cohort treated
with nCT/nCRT and complete response had a significantly higher number of activated CD4
T memory cells (p = 0.004 according to MWU-test), and neutrophils (p = 0.036) (Figure 5A),
while the number of plasma cells was estimated to be lower (p = 0.036) in the discovery
cohort (Figure 5A). The number of plasma cells was also lower in complete responders
(p = 0.019) from the Erasmus MC cohort (Figure 5B), while M1 and M2 Macrophages were
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lower in the complete responders from the NKI cohort (p = 0.043, p = 0.043) (Figure 5C). In
the NKI cohort, patients with Mandard 1 had a higher number of both resting and activated
dendritic cells (p = 0.036, p = 0.046) in comparison with incomplete responders (Figure 5C).
From these results, it seems that distinguishing the number and types of infiltrating im-
mune cells is associated with histopathological response to therapy. Good response to CRT
seems to be associated with high numbers of activated CD4 T memory cells, neutrophils,
and resting and activated dendritic cells, and low numbers of plasma cells and M1 and
M2 macrophages.
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Thus, increased numbers of several immune cells were found in patients with complete
response to neo-adjuvant therapy, compared to incomplete responders in the discovery
cohort and in two independent validation cohorts.

On top of the heatmap for the AUMC cohort silhouette width score, isopureR score,
cluster membership and for the TCGA cohort silhouette width score, isopureR score,
number of SNP mutations, cluster membership are indicated.
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4. Discussion

Based on the unpredictable response to therapy and the large inter-patient variation
in survival outcomes, clearly EAC is a heterogeneous disease [12]. Here, for the first time
via unsupervised hierarchical clustering on RNA-seq profiles, we describe the existence
of three well-defined subgroups in EACs. The results are primarily based on the analysis
of >100 transcriptomic profiles from high quality RNA obtained from treatment-naïve
patient biopsies. The robustness of these three subgroups was confirmed in a set of
EAC profiles from the TCGA database. Moreover, by using a smaller set of differentially
expressed genes and identifying a smaller number of key signaling pathways by using the
Nanostring PanCancer progression panel, we demonstrated that these subgroups can be
efficiently identified in FFPE samples. We feel that Nanostring technology on FFPE should
be considered as a basic tool to subclassify EACs in order to gain insight into tumor type,
which can aid in tailoring therapy and clinical decision-making. Indeed, these subgroups
were associated with distinct transcriptomic, histopathological and clinical characteristics
and response to neo-adjuvant therapy.

In this study, we have chosen to use bulk tumor samples containing both the epithelial
tumor cell compartment next to the stromal and infiltrating cells. Therefore, the quantified
transcriptomes reflect a complexity of profiles rather than purified epithelial cancer cell
signatures. It has been demonstrated that both the expression signatures by stromal and
immunologic/infiltrating cells are important for tumor behavior and have prognostic
value [9]. The crosstalk between cancer cells and their microenvironment is crucial for
oncogenic processes such as metastatic progression [20].

In the current study, patients from subgroup two were characterized by activated
immune pathways, and in contrast, EAC subgroup three had a tendency for better survival
compared to subgroups one and two, and showed de-activation of cell adhesion and
immune pathways. This is in line with other cancer types of the gastro-intestinal tract
in which prognostic “stromal” subgroups have been identified. For colorectal cancer, the
mesenchymal-activated subgroup had poorer outcomes than the three other subgroups [21].
In pancreatic cancer, a “normal” versus a more aggressive “activated stromal” subgroup
was identified [9]. Whether the deactivation of stromal cells in subgroup three is the
result of a less active stromal tumor environment with lower gene expression levels, or
due to a lower number of epithelial cells undergoing Epithelial Mesenchymal Transition,
remains uncertain.

The second objective of this study was to evaluate the gene expression signatures for
potential associations with response to neo-adjuvant therapy. Mandard score and pT are
classifications which previously have been associated with survival of EAC (treated with
cisplatin-based chemotherapy) [12,22]. Our results showed that the highest number of
differentially expressed genes was seen between complete versus incomplete responders,
indicating biological differences between these two groups. Moreover, cases from subgroup
one, who were treated with neo-adjuvant therapies, proved to be more therapy-resistant
as indicated by the higher pT in the resection specimens, which may indicate that under
certain circumstances these patients could benefit more from alternative (neo-) adjuvant
strategies or from surgery without (current) neo-adjuvant treatment. This subgroup is
characterized by activated p38 MAPK and activated Toll-like receptor signaling [23,24].
In general, p38 MAPK pathways are activated by cellular stress and are associated with
growth regulating signaling [25]. It has been demonstrated that activation of p38 MAPK
pathways in EAC is associated with less apoptosis and increased cell proliferation [26].

Because of poor survival rates, the potential of adding immunotherapy to improve
EAC outcomes is a topic of great interest. In several trials, resistant and metastatic cases
were selected based on the immune infiltrates of the cancers. In our analysis, patients
treated with neo-adjuvant therapies from our discovery cohort showed differences in
the immune phenotypes. Therefore, we used CIBERSORTx cell sorting technology to
analyze the RNA sequencing data to compare the cellular composition of the tissues of
complete responders to that of poor responders. In another study, CIBERSORTx showed
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that a subset of patients with advanced solid cancers, characterized by early-on increase
of T follicular helper cells after treatment with pembrolizumab immunotherapy, had a
favorable progression-free survival [27]. The main differences that we found were more
activated CD4 memory T-cells and neutrophils in responders. When we compared our
results to similar material of two smaller independent cohorts of patients treated with nCRT,
we found that one of these cohorts had a higher number of both activated and resting
dendritic cells in the complete responders. Activated dendritic cells are of importance for
the regulation of the innate and adaptive immune system [28]. Immature dendritic cells
are able to recognize foreign cytosolic DNA, for example by the cytosolic DNA sensing
pathway [29]. The cytosolic DNA sensing pathway was also upregulated in the complete
responders. Additionally, the activation of the chemokine and cytokine–cytokine receptor
interaction pathway, as seen in complete responders in the discovery cohort, potentially
reflects pro-inflammatory cytokine release, for instance, by dendritic cells [30].

One of the most important functions of dendritic cells is to raise anti-tumor cytotoxic
T cell responses by cross-presentation of antigens [31]. In our previous work, we have
shown that higher expression of MHC class I molecules, which are involved in antigen
presentation to cytotoxic T cells, correlated with higher expression of genes that regulate
adaptive immune responses (PD-L1, PD-L2, IDO1) and are associated with poor response
to nCRT and poor survival in EAC [32]. Besides cytotoxic T-cells, B-cells are also involved
in the adaptive immune response. The complete responders in the discovery cohort had
a low number of activated antibody-producing B-cells (plasma cells). The low number
of B-cells was also observed in the responders of one of the smaller (n = 22) independent
validation cohorts. The presence of the different types of immune cells in EACs is of interest
with respect to response to the current immunotherapies which are offered to EAC patients
as adjuvant therapy, or, in the case of metastatic disease, within several trials [33–35].

5. Conclusions

Our study was exploratory in nature, with relatively small cohorts for investigating
response to CRT signatures and independent validation, but importantly contributes to the
current knowledge regarding molecular heterogeneity and therapy responsiveness in EACs.
In summary, we report on the existence of three distinct molecular subgroups in EAC based
on gene expression. This classification contributes to our knowledge on the specific molecu-
lar backgrounds of EACs. Moreover, the differences in gene expression between responders
and non-responders support a biological foundation underlying response to chemo-and
chemoradiotherapy. Differential expression and pathway analysis indicate promising tar-
gets for immune therapy in specific subgroups. Moreover, we believe that based on our
findings, gene expression profiling of EACs, for instance by using Nanostring technology
(Pan-Cancer progression panel) on FFPE samples, should be applied to subclassify EAC
cases in order to select the most appropriate therapy for the individual patient.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14184498/s1, Table S1 Differences between subgroups
TCGA cohort. Table S2 Baseline characteristics Nanostring cohort. Table S3 Differences between
subgroups nanostring cohort. Figure S1. Cluster algorithm in 107 patients with EAC leads to 3
distinct subgroups. Figure S1A. Heatmaps of consensus matrix for k = 3. The consensus matrix
have RNA sequencing profiles as both rows and columns. The consensus values range from 0 to1
(respectively never clustered together and always clustered together) marked by white to dark blue.
The dendrogram at the top of the heatmap shows the membership of samples to cluster 1, 2 or 3, as
a result of consensus clustering. Figure S1B. Consensus Cumulative Distribution Function (CDF)
Plot indicating the cumulative distribution functions of the consensus matrix for each k, estimated
by a histogram of 100 bins. Figure S1C. Delta Area plot indicating relative change in area under the
CDF curve. Figure S1D. PCA plot The subgroups can be recognized on the PCA plot. Figure S2.
PCA plot Random forest model leads to identification of similar distinct subgroups in 77 patient
EAC profiles from the TCGA cohort. These subgroups can be recognized on the PCA plot. Figure S3.
Kaplan Meier analyse. Figure S3A. Overall survival in AUMC cohort. Figure S3B. Overall survival
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in TCGA cohort. Figure S4. Heatmap of genes from Nanostring PanCancer Progression panel in
RNA seq AUMC discovery cohort. Figure S5. Validation of clusters in nanostring cohort. Figure
S5A. Heatmap indicating gene expression as quantified by nanostring profiling. Figure S5B. PCA
plot. The subgroups can be recognized on the PCA plot. Figure S6: immune cells CIBERSORTx in
subgroups AMC and TCGA. Figure S7: clinical T stage and pathological T stage after neoadjuvant
treatment according to CROSS in 3 clusters in AUMC cohort. Figure S8A: MA plots indicating results
of supervised investigation by differential expression analyses in 54 patients treated with nCRT
according to CROSS regimen (followed by surgical resection and treated with/without adjuvant
therapy) from the AUMC discovery cohort. Differentially expressed genes in red between patients
with Mandard 1 versus higher Mandard scores (left upper plot) and pTx versus higher pT stadia
(left lower plot). Figure S8B: Heatmap indicating GSEA results for 54 patients treated with nCRT
according to the CROSS regimen (followed by surgical resection and treated with/without adjuvant
therapy) from the AUMC cohort. In red enriched KEGG pathways in patients with Mandard 1 and
in blue activated KEGG pathways in patients with higher Mandard scores.; File S1 materials and
methods. References [36–39] are cited in the Supplementary Materials.
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