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Abstract

The single mitochondrial nucleoid (kinetoplast) of Trypanosoma brucei is found proximal to

a basal body (mature (mBB)/probasal body (pBB) pair). Kinetoplast inheritance requires

synthesis of, and scission of kinetoplast DNA (kDNA) generating two kinetoplasts that seg-

regate with basal bodies into daughter cells. Molecular details of kinetoplast scission and

the extent to which basal body separation influences the process are unavailable. To

address this topic, we followed basal body movements in bloodstream trypanosomes follow-

ing depletion of protein kinase TbCK1.2 which promotes kinetoplast division. In control cells

we found that pBBs are positioned 0.4 um from mBBs in G1, and they mature after separat-

ing from mBBs by at least 0.8 um: mBB separation reaches ~2.2 um. These data indicate

that current models of basal body biogenesis in which pBBs mature in close proximity to

mBBs may need to be revisited. Knockdown of TbCK1.2 produced trypanosomes contain-

ing one kinetoplast and two nuclei (1K2N), increased the percentage of cells with uncleaved

kDNA 400%, decreased mBB spacing by 15%, and inhibited cytokinesis 300%. We con-

clude that (a) separation of mBBs beyond a threshold of 1.8 um correlates with division of

kDNA, and (b) TbCK1.2 regulates kDNA scission. We propose a Kinetoplast Division Factor

hypothesis that integrates these data into a pathway for biogenesis of two daughter mito-

chondrial nucleoids.

Introduction

The single-cell eukaryote Trypanosoma brucei causes human African trypanosomiasis (HAT)

in some regions of sub-Saharan Africa. The trypanosome mitochondrial genome, comprised

of catenated double-stranded DNAs, is organized as a single nucleoid termed “kinetoplast” [1–

3]. Loss of kinetoplast DNA (kDNA) disrupts mitochondrial membrane potential in stumpy

form bloodstream trypanosomes [4,5] and interferes with development of the parasite in the
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tsetse fly vector, breaking the vector-to-mammal transmission cycle that is needed to spread

the disease [6].

Kinetoplast DNA (kDNA) is unique in biology because it is comprised of two classes of cir-

cular double-stranded DNAs, minicircles and maxicircles, that are catenated into a network

(reviewed in [2,7,8]). Each minicircle is interlocked with three neighbors [9], and the maxicir-

cles are threaded into the honeycomb arrangement of minicircles to form kDNA. A kDNA

network is divided in two [10] by unknown enzymes (reviewed in [11]) so that progeny net-

works can be sorted into two daughter trypanosomes at cytokinesis (reviewed in [12]).

The cycle of kinetoplast biogenesis has five steps, minimally. To assist a reader in following our

narrative, we define terminology used in this manuscript since the same words are used to describe

different events throughout the literature. “Synthesis” of kDNA is the incorporation of nucleotides

into a kinetoplast. “Selection of Scission Site” describes the positioning of the cleavage site on

kDNA. “Scission/Cleavage” involves resolution of a kDNA into two networks. “Separation” refers

to initial movement apart of cleaved kinetoplasts. “Sorting” is the distribution of kinetoplasts into

daughter trypanosomes at cytokinesis. “Division” combines “scission” and “initial separation” of

kinetoplasts. “Segregation” of kinetoplasts has no precise molecular definition in the field [10–12]:

We define it as “post-division movements” leading to inheritance of kDNA (reviewed in [12]).

Division of kDNA precedes, and is essential for, segregation of kinetoplasts (reviewed in

[11]). Little is known about how replicated kDNA is equally divided in two kinetoplasts,

although excellent progress has been made in understanding how kDNA is synthesized

(reviewed in [2]). It is envisioned to require several molecular activities: identification of pre-

cise scission sites on kDNA, directed (vectorial) scission of kDNA without decatenation of the

minicircle and maxicircle constituents, and coordination with the cell cycle [11]. Proteins that

mediate any of the molecular events required for division of kinetoplasts have yet to be identi-

fied (reviewed in [11]).

Basal bodies (centrioles) are localized near kinetoplasts; they facilitate assembly of flagellar axo-

nemes [13] and interact with the cytoskeleton as well as membranous structures [14]. A mature

basal body has three sections: (i) a proximal region organized by nine triplet microtubules, (ii) a

distally positioned transition zone characterized by nine doublet microtubules, and (iii) and a dis-

tal basal plate which caps the end of the basal body linking it the central microtubule pair of the

flagellar axoneme [14]. In G1 a mature basal body and pro-basal body are present in T. brucei. A

pro-basal body has triplet microtubules, but it lacks a transition zone and an axoneme. Molecular

markers of different segments of basal bodies are known. Cartwheel protein TbSas6p is detected

at the base of the triplet microtubules of pro-basal bodies and mature basal bodies [15,16] and

several transition zone proteins, including TbRP2 [17], have been identified [18].

Maturation of pro-basal bodies involves extension of the transition zone, similar to the

growth of pro-centrioles during their conversion to basal bodies in human cells [19]. Morpho-

logical studies indicate that a new mature basal body rotates around the old basal body in T.

brucei [20]. However, proteins required for maturation of basal bodies have not been identified

in T. brucei. Consequently, unlike pro-centriole maturation in human cells (reviewed in [21]),

the proteins that regulate pro-basal body disengagement and maturation are yet to be deter-

mined in T. brucei.
Duplication of basal bodies and kinetoplasts is coordinated with the trypanosome division

cycle. In G1 bloodstream trypanosomes have one kinetoplast (K), one nucleus (N) (1K1N),

and one basal body. kDNA is synthesized, and the basal body duplicates in S-phase. Kineto-

plast division is detected in G2. Mitosis in 2K1N trypanosomes produces 2K2N cells that after

cytokinesis yield two 1K1N cells [22,23].

Protein kinase regulation of mitochondrial nucleoid division or separation has not been

described in any biological system. In T. brucei, knockdown of a casein kinase TbCK1.2
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inhibits kinetoplast division [24,25], while mitosis progresses normally. Consequently, a popu-

lation of “mutant” trypanosomes with a single kinetoplast and two nuclei (1K2N) arises [24].

We hypothesized that loss of TbCK1.2 disrupted kinetoplast division by preventing one or

more of six processes; (a) synthesis of kDNA, (b) scission of kinetoplasts, (c) separation of

cleaved kDNAs, (d) basal body duplication, (e) movement of basal bodies, or (f) flagellum

nucleation.

We find that kDNA synthesis occurs in 1K2N trypanosomes. Compared to control cells,

1K2N cells separate basal bodies to normal overall extents, although the distribution of inter-

basal body distances contracted in them. There was a 4-fold increase in the fraction of

uncleaved kDNA in the population, indicating that TbCK1.2 facilitates kDNA scission. These

data document failure of kDNA scission even after separation of basal bodies, providing

genetic evidence that separation of basal bodies is not sufficient to divide kinetoplasts.

TbCK1.2 is a founding member of a group of proteins that are required for division of kineto-

plasts (i.e., kinetoplast division factors) (discussed in [11]). We propose a “kinetoplast division

factor” (KDF) hypothesis to (i) explain the uncoupling of basal body separation from division

of kDNA, and (ii) integrate all available new data into a working hypothesis for division and

inheritance of the mitochondrial genome in a trypanosome.

Results

TbCK1.2 regulates division of kDNA in T. brucei
The mitochondrial genome of the African trypanosome is organized as one nucleoid (kineto-

plast) [2]. To ensure inheritance of this genome during cell division, kinetoplast DNA (kDNA)

synthesis, division (i.e., scission and initial separation), and inheritance are coordinated with

the cell cycle (S1 Fig). Division of kDNA is a poorly understood process, although many genes

involved in post-division segregation have been identified (reviewed in [3,11]).

Division of kDNA is hampered after knockdown of a casein kinase TbCK1.2 [24] (Fig 1A).

To pinpoint the step where TbCK1.2 contributes to division of the kinetoplast, we produced a

tetracycline-inducible TbCK1.2 RNAi line [25] in which one allele of the protein was tagged

endogenously with a V5 epitope at the N-terminus (V5-TbCK1 RNAi line). Knockdown of

TbCK1.2 reduced the level of V5-TbCK1.2 protein by 60% (S2A, S2B, S2D and S2E Fig), and

arrested proliferation of trypanosomes within 16 h (S2C Fig). During a normal division cycle,

the kinetoplast (K) is divided before mitosis producing cells with two kinetoplasts and one

nucleus (2K1N trypanosomes). After knockdown of TbCK1.2 for 24 h a new population of

cells with one kinetoplast and two nuclei (1K2N) emerged (Fig 1A). Thus, TbCK1.2 is impor-

tant for division of the kinetoplast but is not required for mitosis.

The percentage of 1K1N cells was reduced after knockdown of TbCK1.2 (Fig 1A). Com-

pared to the uninduced control, the difference in distribution of kinetoplasts and nuclei per

trypanosome was statistically significant (p = 3.96 x 10−7; χ2) after knockdown of TbCK1.2.

Trypanosomes classified as “Other” were present in the population (Fig 1A). In a time-

course study, “other cells” are not detected in significant proportions at 12 h (above that in a

regular population) after knockdown of TbCK1.2 (Fig 1C). At 18 h, “other” are comprised of

0K1N (1.1%), 1K>2N (0.2%), >2K1N (0.4%), 2K3N (0.2%), 3K2N (0.6%), and>4K>2N

(0.4%). None of these subgroups constitutes 5% of the total population, so we do not advertise

them as a significant “phenotype” worthy of tracking independently.

TbCK1.2 is important for cytokinesis

Typically, about 10% of a bloodstream trypanosome population has two nuclei and two kineto-

plasts (2K2N), the pre-cytokinesis stage in cell division. After knockdown of TbCK1.2
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approximately 30% of cells have two nuclei (counting 1K2N and 2K2N trypanosomes) at 18 h

(Fig 1D), and that fraction holds steady at 24 h post-RNAi (Fig 1A). We infer that knockdown

of TbCK1.2 for 18 h and beyond leads to failure of cytokinesis (Fig 1A).

kDNA is replicated after knockdown of TbCK1.2

We examined a hypothesis that inability to duplicate the kinetoplast was the result of failure of

kDNA synthesis, i.e., there was not sufficient mitochondrial DNA to partition between two

kinetoplasts. Towards this goal, kDNA content of 1K2N trypanosomes was compared to that

of kinetoplasts in uninduced (i.e., for TbCK1.2 knockdown) control cells. Since kDNA synthe-

sis normally occurs in 1K1N trypanosomes before division of the kinetoplast [23,26], 1K1N

trypanosomes contain between one-to-two equivalents of kDNA. Division of replicated kDNA

yields trypanosomes with two kinetoplasts (2K1N and 2K2N), in which each kinetoplast con-

tains one equivalent of kDNA.

We observed an increase in kDNA content in 1K1N and 1K2N trypanosomes after knock-

down of TbCK1.2 for 24 h (Fig 1B). In control cells, the median DAPI fluorescence intensity

of kDNA in 1K1N cells (1 x 104 arbitrary units (A.U.)) is approximately twice that in 2K1N try-

panosomes (6.5 x 103 A.U.) (Fig 1B). This data is expected since 2K1N are not synthesizing

kDNA whereas a fraction of the 1K1N cells is in S-phase. For comparison, kDNA intensity

above the 95th percentile of control 1K1N cells (see horizontal dotted line in Fig 1B) is consid-

ered “over-replicated”.

After knockdown of TbCK1.2, the median DAPI fluorescence of kDNA (2.6 x 104 A.U.) of

1K2N cells was twice that of control 1K1N cells (p =< 10−15; Mann-Whitney U Test (Fig 1B).

Fifty-five percent of 1K2N kinetoplasts have over-replicated kDNA (as defined above). In

1K1N cells, which comprise 50% of the total population after knockdown of TbCK1.2 (Fig

1A), 33.6% (i.e., 17% of total population) contain over-replicated kDNA (Fig 1B) (p = 5.6x10-5;

Mann-Whitney U Test). Therefore, 28% of the total population of trypanosomes have over-

replicated kDNA; this fraction is obtained by adding two groups of kinetoplasts with over-rep-

licated kDNA: 11% from 1K2N (20% of the total population of which 55% have over-replicated

kDNA) (Fig 1A) and 17% from 1K1N (Fig 1B). We conclude that failure of kinetoplast division

after knockdown of TbCK1.2 is not a result of failed synthesis of kDNA.

After a 12-h knockdown of TbCK1.2 there was no difference in the kinetoplast/nucleus pro-

files of control and experimental trypanosomes; neither group contained 1K2N cells (Fig 1C).

Fig 1. Knockdown of TbCK1.2 blocks division of kinetoplasts: Time-course of the effect of RNAi against TbCK1.2 on kinetoplasts and nuclei. (A) Effects

on kinetoplast duplication were assessed by enumeration of the number of kinetoplasts (K) and nuclei (N) per trypanosome in cells cultured in the absence or

presence of tetracycline (1 µg/mL, 24 h) (“Other” indicates cells with>2 or<1 K/N). Error bars represent standard deviation of four independent biological

experiments (n = 110-268/experimental sample). A χ2 test was used to determine whether the difference in distribution of kinetoplasts and nuclei was statistically

significant after knockdown of TbCK1.2 (p = 3.96 x 10−7). Inset: SR-SIM example image of a 1K2N trypanosome following 24 h of RNAi against TbCK1.2. Cell

membranes were labeled with mCLING and DNA was detected with DAPI. (B) Effect of knockdown of TbCK1.2 on kinetoplast DNA (kDNA) content. ImageJ

was used to measure the fluorescence intensity of individual DAPI-stained kDNA in trypanosomes with one or two kinetoplasts in control (- Tet) or one

kinetoplast in TbCK1.2 RNAi (+ Tet) cells. Scatter dot plot relates kDNA fluorescence intensities measured in different trypanosome cell types. The Mann-

Whitney U test was used to compare the distribution of fluorescence intensity of DAPI-stained kDNA between -Tet 1K1N and +Tet 1K1N or 1K2N

trypanosomes (p = 5.6 x 10−5, and p =< 10−15, respectively). The 95th percentile of the -Tet 1K1N kDNA content is indicated by the horizontal dotted line.

Descriptive statistics corresponding to each sample are aligned beneath the graphs. The effect of TbCK1.2 RNAi on kinetoplast duplication was assessed by

enumeration of the number of kinetoplasts (K) and nuclei (N) per trypanosome in cells cultured in the absence or presence of tetracycline (1 µg/mL) for 12 h (C)

or 18 h (D). (“Other” indicates cells with>2 or<1 K/N). Error bars represent standard deviation of three independent biological experiments (n =>100/

experiment). A χ2 test was used to determine whether the difference in distribution of kinetoplasts and nuclei was statistically significant after knockdown of

TbCK1.2 for 12 h (p = 0.647) or 18 h (p = 7.94 x 10−5). (E) ImageJ was used to measure DAPI intensity of kDNA fluorescence in trypanosomes with one

kinetoplast following 12 h RNAi in control (-Tet) or TbCK1.2 RNAi (+Tet) cells. Violin plot shows the distribution of kDNA fluorescence intensities. A Mann-

Whitney U test was used to compare the median fluorescence intensity of DAPI-stained kinetoplasts between -Tet 1K1N (n = 183) and +Tet 1K1N (n = 198)

trypanosomes (p = 0.0023). (F) Cartoon explaining the likely origin of 1K2N trypanosomes from 1K1N cells. Kinetoplast DNA is synthesized in S-phase, forming

a cell with an undivided kinetoplast and one nucleus (1KU1N) at 12 h. At 18 h of TbCK1.2 knockdown, cells containing two nuclei and one undivided

kinetoplast (1KU2N) are detected in the population.

https://doi.org/10.1371/journal.pone.0249908.g001
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This observation presented an opportunity to determine whether over-replication of kDNA

occurred in 1K1N cells or was restricted to 1K2N trypanosomes, given that kinetoplasts nor-

mally divide in 1K1N trypanosomes prior to mitosis [23,27]. We hypothesized that cells with

over-replicated kDNA were present in the 1K1N population prior to emergence of 1K2N. To

test this concept, we analyzed kDNA content of 1K1N cells at 12-h in control and knockdown

cells. Kinetoplasts in 1K1N cells after 12-h RNAi contained more kDNA than control cells (Fig

1E); median fluorescence increased from 8,618 to 10,470 (A.U.), and the difference in distribu-

tion of kDNA content was statistically significant (p = 0.0023, Mann-Whitney U-test). Fur-

thermore, fourteen percent of the kinetoplasts in knockdown cells contained more kDNA

than the 95th percentile of the control population (Fig 1B). Thus, over-replication of kDNA

was detectable in 1K1N trypanosomes before nuclear division. These data are consistent with a

model in which 1K1N trypanosomes with over-replicated kDNA (detected at 12-h) convert,

after nuclear division, to 1K2N cells observed 18 h after knockdown of TbCK1.2 (Fig 1F).

At the 18-h timepoint there was a decrease in the proportion of 1K1N cells, and 1K2N try-

panosomes appeared in the population. Differences in the distribution of cell types was statisti-

cally significant (p = 7.94 x 10−5) (Fig 1D). We conclude that it takes more than 12 h of

TbCK1.2 knockdown to produce 1K2N cells.

Scission of kDNA is inhibited after knockdown of TbCK1.2

Since DNA synthesis occurred in kinetoplasts of 1K2N trypanosomes (Fig 1B), we reasoned

that kDNA was either uncleaved or had divided but failed to separate by more than 250 nm

after scission, resulting in their detection as one kinetoplast by fluorescence microscopy,

because of the resolution limit of light [28]. To determine which of these theories was correct

we used transmission electron microscopy (TEM) to measure lengths of 632 randomly selected

kinetoplasts in multiple fields from 20 ultrathin sections in three independent TEM experi-

ments, a representative of which is presented in Fig 2A (see S3A Fig for electron microscopy

images of kinetoplasts at different stages of division and separation).

For control trypanosomes (i.e., uninduced RNAi line for TbCK1.2), the median length of

kinetoplasts was 405 nm (and the 5th-to-95th percentile range was 250–630 nm) (Fig 2A). After

knockdown of TbCK1.2, the median kinetoplast length increased to 467 nm (the 5th-to-95th

percentile range was 240–930 nm) (Fig 2A) (p = 3.1 x 10−4, Mann Whitney U test). Using the

95th percentile length of controls as the limit of normal length (630 nm), we found that 19% of

kDNA exceeded this length after knockdown of TbCK1.2 (Fig 2B), representing a four-fold

increase in the proportion of uncleaved kDNA (p = 5 x 10−3, Unpaired Student’s t test). Widths

of kinetoplasts were unchanged after knockdown of TbCK1.2 (S3B Fig). These data indicate

that knockdown of TbCK1.2 prevents scission of kDNA.

An alternative explanation for these data is that knockdown of TbCK1.2 causes elongation

of all kinetoplasts. This possibility is not supported by our data, because the entire distribution

of kinetoplast lengths did not shift up after knockdown of TbCK1.2 (Fig 2A).

Duplication of pro-basal bodies, and kinetics of their separation from

mature basal bodies

Basal body (centriole) separation is proposed as a mechanism for segregation of kinetoplasts

[1,23,29]. As employed in the literature, “segregation” of kDNA includes the process of divid-

ing kDNA in two (S1 Fig), as well as the post-division movements of kinetoplasts [10,12,30].

For this reason, we investigated a possibility that failed kinetoplast division in 1K2N trypano-

somes was caused by inability to duplicate or separate basal bodies.
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Control 1K1N trypanosomes had one or two basal bodies (Fig 3A) [22,23]. After knock-

down of TbCK1.2, most 1K1N and 1K2N trypanosomes had two (or more) basal bodies (Fig

3A and 3C). Hence, impaired kinetoplast division is not the result of failed duplication of basal

bodies.

Interestingly, 30% of 1K1N cells (15% of the total cell population) (Fig 3B), and 50% of

1K2N trypanosomes (10% of the total population of trypanosomes) (Fig 3C) had more than

two basal bodies. Thus TbCK1.2 regulates copy number of basal bodies, in addition to separa-

tion of the organelle (see next section, and also Discussion).

Centrioles (basal bodies) are typically found as a mother and daughter pair, each of which

has a mature centriole (basal body) and a procentriole (pro-basal body) [31,32]. During cell

proliferation, procentrioles disengage, separate from mature centrioles, and mature by acquir-

ing other proteins and structures (e.g. appendages) [33,34]. In T. brucei, separation of pro-

basal bodies (pBBs) from mature basal bodies (mBBs) has not been studied. Addressing this

topic experimentally in T. brucei calls for a system in which duplication and maturation of

pro-basal bodies may be controlled experimentally.

Fig 2. TbCK1.2 knockdown prevents scission of kDNA. Knockdown of TbCK1.2 was induced with tetracycline (1 µg/mL for 24 h). (A) Scatter dot

plot of kinetoplast length in uninduced (-Tet) and induced (+Tet) RNAi TbCK1.2 population. TEM images show kinetoplasts of different lengths (x

� 400 nm, y� 800 and z� 1000 nm) in uninduced and induced TbCK1.2 RNAi cells. The 95th percentile of kinetoplast length in control cells

(uninduced) is indicated by horizontal dotted line (n = 216 (108, -Tet; 108, +Tet)). K, Kinetoplast; MtM, Mitochondrial membrane; TEM,

Transmission Electron Microscopy. P-value was calculated using the Mann-Whitney U test. (B) Percentage of kinetoplasts longer than 630 nm in

uninduced and induced populations of TbCK1.2 RNAi cells. Data was analyzed from three replicates, n = 632 (200, first replicate; 216, second and

third replicates), P-value was calculated using an Unpaired Student’s t-test.

https://doi.org/10.1371/journal.pone.0249908.g002
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The small-molecule AEE788 [35] may be used to block biogenesis of mature basal bodies in

bloodstream T. brucei [23]. Washing off AEE788 allows maturation and duplication of pBBs after

a lag of 2 h [23]. Mature basal bodies (mBBs) were stained with YL1/2 antibody (that recognizes

TbRP2 protein in the transition zone) [17]. Both mBBs and pBBs were detected with anti-SAS6

antibody [15], since they both possess cartwheel protein SAS6 [36,37] (Fig 4A and 4B).

In cells with 1 mBB and 1 pBB (Fig 4C), the median distance between mBBs and pBBs was

421 nm (the 5th-to-95th percentile range was 321-to-597 nm) in control (i.e., DMSO-treated)

trypanosomes (Fig 4C, S2A Table), and 401 nm (with a 5th-to-95th percentile range of 277-to-

535 nm) for AEE788-treated cells (Fig 4C). Differences between the distribution of distances

was statistically significant (p = 0.024, Mann-Whitney U test). We tracked changes in separa-

tion of basal bodies from 1.5–3 h after AEE788 was rinsed off, because S-phase entry begins 1

h after washing off the drug and probasal body maturation is detected between 2–3 h thereafter

[23]. The median separation between mBBs and pBBs decreased to 377 nm at 1.5 h, and then

increased to 443 nm at the 2-h point (Fig 4C, S2A Table). The difference in the median dis-

tances at 1.5 h and 2 h was statistically significant (p = 9.1�10−12, Mann-Whitney U test).

Despite these statistically significant differences in medians, we are reluctant to make major

biological inferences from the data, because of extensive overlap of distances in the 5th-to-95th

percentile (S2A Table).

We next determined distances between pro-basal bodies in cells with two mature basal bod-

ies (Fig 4D, S2B Table). At the end of the AEE788 incubation, pBBs were separated by 895 nm

(median) (5th-to-95th percentile range = 388-to-1706 nm), whereas in DMSO-treated controls

Fig 3. Basal bodies are duplicated after knockdown of TbCK1.2. Knockdown of TbCK1.2 was induced with tetracycline (1 μg/mL for 24 h) and the effect on basal

body duplication was determined using antibodies against TbRP2 (YL1/2, mature basal bodies) or TbSAS6 (detects mature and probasal bodies). DAPI was used to

stain DNA. (A) Images represent 1K1N trypanosomes from control cells (-Tet) or 1K2N cells from TbCK1.2-depleted cells (+Tet) with two (2BB) or more (>2BB)

basal bodies. Boxed regions are enlarged in the final panel. The average percentage of cell types with the indicated number of mature basal bodies (mBB, YL1/2+) is

shown for 1K1N (B) or 1K2N trypanosomes (C) from three independent experiments (n = 108-128/experiment). Blue and red symbols indicate control and RNAi

treated samples, respectively. Error bars denote standard deviation. The distribution of mBBs in 1K1N trypanosomes after knockdown of TbCK1.2 was compared to

control cells (-Tet) using a χ2 test (1K1N p = 9.1 x 10−26). (A χ2 test could not performed for the 1K2N population because those cells were undetectable (< 1%) in the

uninduced population).

https://doi.org/10.1371/journal.pone.0249908.g003
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pBBs were separated by 905 nm (5th-to-95th percentile range was 428-to-1425 nm); this differ-

ence was not significant statistically (p = 0.93, Mann-Whitney U test) compared to the

AEE788-treated cells. After 1.5 h of recovery from AEE788 treatment, the median distance

between two pro-basal bodies rose to 1122 nm, an increase that was statistically significant

(p = 0.021, Mann-Whitney test) compared to the distance at 0 h. At two hours post-drug

release, the median distance between pro-basal bodies was 1015 nm (5th-to-95th percentile

range = 312 nm-to-1524 nm). The difference in the distances between 1.5 and 2 h recovery

time points was not statistically significant. At 3 h, the median pBB distance was 844 nm (5th-

to-95th percentile range 445-to-1169 nm). The decrease in distances between pro-basal bodies

at 1.5 h and 3 h was statistically significant (p = 2.4�10−5; Mann-Whitney U test) (S2B Table).

Finally, we determined distances between pairs of mBBs associated with single (undivided)

kDNAs (Fig 4D, numbers in red, S2C Table). Following AEE788 treatment, mBBs were separated

by 1336 nm (5th-to-95th percentile range 611–1922 nm). In trypanosomes incubated with DMSO,

mBBs were separated by 1375 nm (median; 5th-to-95th percentile range was 783-to-1949 nm).

The difference in mBB separation between these two populations was not significant statistically

(Mann-Whitney U test). After 1.5 h of release from AEE788 treatment, the median separation

increased to 1535 nm (5th-to-95th percentile range = 683–2306 nm), a nonsignificant change

compared to data from trypanosomes at the end of exposure to AEE788 (S2C Table). Between 1.5

and 2 h of cell recovery from AEE788 exposure, the median separation of mBBs was 1511 nm

(5th-to-95th percentile range was 794–2033 nm). At 3 h post -AEE788 withdrawal, median separa-

tion between mBBs was 1304 nm (5th-to-95th percentile range = 864–1700 nm), which was statis-

tically significant when compared to distances measured at both 1.5 h recovery (p = 0.013, Mann-

Whitney U test) and 2 h recovery (p = 0.0074, Mann-Whitney U test) (S2C Table).

In summary, we documented separation of pBBs from mBBs (Fig 4C), as well as their dis-

tance-dependent maturation (Fig 4D). The surprising results are; (i) nascent pBBs are

found > 400 nm from mBBs (S2A Table), and (ii) maturation normally occurs after pBBs

separate > 895 nm from mBBs (S2B Table). These data indicate that current models of basal

body biogenesis in which pBBs mature in close proximity to mBBs may need to be revisited.

Distances between mBBs is reduced after knockdown of TbCK1.2

Separation of basal bodies has been proposed as a mechanism for segregation (which encom-

passes division as well as partitioning of kDNA into daughter cells [10,30]) of kinetoplasts

Fig 4. Evidence of probasal body movement in T. brucei. (A) Schematic of protocol used in the study. Trypanosomes were treated with AEE788 (5 µM) or DMSO

(control) for 4 hours, released from drug pressure, and allowed to recover for 1.5, 2, or 3 hours. Antibodies against TbRP2 (YL1/2) and TbSAS6 were used to identify basal

bodies via immunofluorescence microscopy. ImageJ was used to measure inter-basal body distances by tracking separation between centers of TbSAS6 puncta. (B)
Representative images of cells from AEE788-treated group, and cells allowed to recover from drug for 1.5 h. Separation between basal bodies is highlighted in yellow. Scale

bar = 5 µm. (C) Plot shows distances between pro-basal bodies (TbSAS6 positive) and mature basal bodies (TbRP2/TbSAS6 positive) in cells with one mature basal body

(mBB). Bars on graph indicate median and inter-quartile range. Numbers to the right indicate median inter-basal body distances for each group. Trypanosomes were

drawn from a single experiment. Cells analyzed = 41 (DMSO), 131 (AEE788), 99 (1.5 h recovery), 106 (2 h recovery), 62 (3 h recovery). Inter-basal body distances were

compared between groups with a Mann-Whitney U test. The difference in distribution of inter-basal body distances between DMSO treated group and AEE788 treated

group was statistically significant (p = 2.4�10−2). The difference in inter-basal body distances between the group harvested immediately after AEE788 treatment and the

population given 1.5 h to recover was statistically significant (p = 4.8�10−2). The difference between the 1.5 h recovery and 2 h recovery groups was highly statistically

significant (p = 9.1�10−12). The difference in inter-basal body distance between the 2 h and 3 h group was statistically significant (p = 4.1�10−5). (D) Distances between pro-

basal bodies (pairs of TbSAS6-positive foci) in cells with two mature basal bodies (mBB) are plotted. Bars on graph show median and inter-quartile range. Numbers to the

right in black indicate median distances between a mature basal body and a pro-basal body for each group. Numbers in red denote distances (median) between pairs of

mature basal bodies for each group. Cells analyzed = 59 (DMSO), 29 (AEE788), 16 (1.5 h recovery), 32 (2 h recovery), 92 (3 h recovery). Inter-basal body distances were

compared between groups with a Mann-Whitney U test. The difference in distribution of inter-basal body distances between DMSO treated group and AEE788 treated

group was not statistically significant. The difference in distribution of inter-basal body distances between the AEE788 treatment group and the group at 1.5 h recovery was

statistically significant (p = 2.1�10−2). The difference in inter-basal body distances in 1.5 h recovery and 2 h recovery groups was not statistically significant. The difference

in inter-basal body distance between the 2 h and 3 h group was statistically significant (p = 2.4�10−5). Distances between mature basal bodies (pairs of TbRP2-positive foci)

in the same cells are listed to the right in red.

https://doi.org/10.1371/journal.pone.0249908.g004
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[1,13,20]. For this reason, we determined whether separation of mature basal bodies (mBBs)

was compromised in 1K2N trypanosomes, by measuring inter-basal body distances using anti-

body YL1/2 [17]. This analysis was restricted to 1K2N cells with two mBBs.

In control 1K1N (-Tet) trypanosomes inter-basal body distances ranged from 0.3 µm to 2.7

µm with a median of 1.2 µm (Fig 5). That distance increased by 1 µm in both 2K1N (2.1 µm)

and 2K2N (2.2 µm) trypanosomes (Fig 5). After TbCK1.2 knockdown, the median distance

between basal bodies in 1K1N trypanosomes was 1.0 µm, instead of 1.2 µm (p = 5.7x10-5,

Mann-Whitney U test) (Fig 5). In 1K2N trypanosomes the median inter-basal body distance

(1.0 µm) was indistinguishable from that of knockdown 1K1N cells but was less than control

1K1N cells (p = 0.0133, Mann-Whitney U test) (Fig 5). Comparison of cells with one or two

kinetoplasts following knockdown of TbCK1.2 showed that mBBs in trypanosomes with two

kinetoplasts (2K1N) were separated by twice the distance found in trypanosomes with one

kinetoplast (1K1N). The median inter-basal body distances were 1.8 µm (2K1N) and 1.9 µm

(2K2N). By comparison those distances were 2.1 µm and 2.2 µm, respectively in control cells

(Fig 5). The difference in separation of basal bodies between control and knockdown 2K1N

trypanosomes was statistically significant (p = 0.0426, Mann-Whitney U test) but the differ-

ence between control and knockdown 2K2N cells was not (p = 0.0967, Mann-Whitney U test).

Overall, these data are consistent with successful separation of mBBs in T. brucei after

knockdown of TbCK1.2, despite the decreased median inter-basal body distances, since the

range of inter-basal body distances (5th-to-95th percentile) are practically identical before and

after knockdown of TbCK1.2. We conclude that separation of mBBs per se is not sufficient for

division of kinetoplasts, since 1K2N cells fail at scission of kinetoplasts although they contain

clearly-separated mBBs. Nevertheless, the distance between separated mBBs decreased by 0.2

µm (median) after knockdown of TbCK1.2, suggesting that mBBs may need to separate

beyond 1.2 µm before division of kDNA takes place in a trypanosome. Two hypotheses are

proposed to reconcile these data (see Discussion).

Fig 5. Basal body separation after knockdown of TbCK1.2. Knockdown of TbCK1.2 was induced with tetracycline

(1 µg/mL for 24 h), and the distance between mature basal body pairs was measured. Antibody against TbRP2 (YL1/2)

was used to identify basal bodies. ImageJ was used to measure inter-basal body distances (distance between two YL1/2+

mBBs) in TbCK1.2 RNAi cells cultured in the absence (-Tet) or presence of tetracycline (+Tet). A Mann-Whitney U

test was used to determine whether differences in inter-basal body distances in control and TbCK1.2 RNAi cells were

statistically significant; p values are noted on the graph. Data presented is an aggregate from six biological replicates

(n = 302 (-Tet 1K1N), 183 (+Tet 1K1N), 96 (+Tet 1K2N), 111 (-Tet 2K1N), 61 (+Tet 2K1N), 88 (-Tet 2K2N), 51 (+Tet

2K2N)). Descriptive statistics are provided beneath the corresponding data on each graph.

https://doi.org/10.1371/journal.pone.0249908.g005
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Our data also show that, unlike basal bodies in insect stage (procyclic) T. brucei [14,29],

mBBs in bloodstream trypanosomes do not migrate further apart in 2K2N (compared to

2K1N) cells (Fig 5).

Basal bodies nucleate axonemal microtubules of flagella/cilia [20]. For that reason, we eval-

uated competence of basal bodies in 1K2N trypanosomes to form flagella (S4A Fig). The

majority (75%) of 1K2N cells had two flagella (S4B Fig) indicating that the basal bodies retain

competence for microtubule nucleation. A small percentage of trypanosomes had more than

two flagella, indicating that some supernumerary basal bodies (Fig 3) produce flagella.

TbCK1.2 is detected in the cytoplasm

We considered a possibility that TbCK1.2’s effect on kinetoplast division could be explained,

at least in part, by its intracellular location. Using a V5-epitope tagged TbCK1.2 RNAi line

(S2A Fig) we localized TbCK1.2 to cytoplasmic puncta (S2E Fig and Fig 6). TbCK1.2 protein

sequence lacks a mitochondrial targeting signal at its N-terminus that could have been dis-

rupted by a V5-tag. In control experiments, similar data were obtained when a C-terminal

HA-tagged version of TbCK1.2 was used in immunofluorescence studies (S2F Fig).

Since TbCK1.2 was not detected predominantly in mitochondria (Fig 6A), these data sug-

gest that the effect of the enzyme on kDNA scission is most likely transmitted by other factors

(i.e., effectors) (see next section).

TbCK1.2-pathway proteins

To identify effector proteins in TbCK1.2-signaling pathways, we sought polypeptides whose

phosphorylation changed after knockdown of TbCK1.2. We performed three independent

phospho-proteomics studies, two label-free shotgun experiments [38,39] and one SILAC “tar-

get list” study [40,41].

Following knockdown of TbCK1.2 the abundance of 65 phospho-peptides (corresponding to

53 unique gene IDs [42]) decreased at least two-fold in each phospho-proteomic study, and 144

phospho-peptides (corresponding to 109 unique gene IDs) increased at least two-fold in each

phospho-proteomic study, as compared to the uninduced controls (Fig 6B, S3 and S4 Tables).

Phospho-peptides that changed in abundance after knockdown are considered “TbCK1.2-path-

way proteins”; those that decreased in abundance are potential substrates of the enzyme.

Some TbCK1.2-pathway proteins might localize to the mitochondrion

TbCK1.2 regulates division of kinetoplasts, which are inside mitochondria (Fig 1). However,

the enzyme is found predominantly in the cytoplasm (Fig 6A). Since the vast majority of mito-

chondrial proteins are produced in the cytoplasm before their import into the organelle

[43,44], we hypothesized that TbCK1.2’s modulation of kinetoplast division might involve

“effector proteins” that are phosphorylated in the cytoplasm prior to their movement into the

mitochondrion. This hypothesis has precedence: Three cytoplasmic protein kinases in Saccha-
romyces cerevisiae have substrates that are imported into mitochondria [45–47]. Consequently,

we inquired whether any TbCK1.2-pathway proteins were potentially mitochondrial.

“TbCK1.2-Pathway Proteins” (i.e., 65 de-phosphorylated peptides (S3 Table) (correspond-

ing to 53 gene IDs) and 144 hyper-phosphorylated peptides (S4 Table) (corresponding to 109

gene IDs) were combined into one data set, and were analyzed for possible mitochondrial

association as follows. Gene identities (IDs) were compared to proteins that localize to mito-

chondria in trypanosomes (as reported by TrypTag, an in vivo protein-tagging and localization

database [48]). Two bona fide mitochondrial proteins were found among TbCK1.2-Pathway

proteins (S5A Table). In a second approach, TbCK1.2 pathway proteins were compared to two
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Fig 6. Intracellular location of TbCK1.2: Identification of candidate TbCK1.2-pathway proteins. (A) Trypanosomes expressing TbCK1.2 tagged at its N-terminus with

V5 epitope were fixed with methanol and probed with anti-V5 antibody. Anti-centrin antibody 20H5 was used to stain basal bodies and bilobes, and DAPI was used to

stain DNA. Control images show a V5-TbCK1.2 tagged line without addition of primary antibodies. Arrowheads indicate flagellum (F), basal bodies (BB), bilobes (BL),

nuclei, (N), and kinetoplasts (K). Scale bar = 5 µm. (B) Following knockdown (24 h) of TbCK1.2, SILAC phosphoproteomics was used to identify candidate

TbCK1.2-pathway proteins. The abundance ratio (H/L) of identified phosphopeptides is plotted as a function of their posterior error probability (PEP) value. Only

peptides with a PEP score of 5 x 10−2 (5% chance of error), or lower, are presented. Grey area represents phosphopeptides with a 2-fold or greater increase in abundance.

Blue shading indicates phosphopeptides that decreased in abundance 2-fold or greater.

https://doi.org/10.1371/journal.pone.0249908.g006
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mitochondrial proteomes containing 1730 proteins [49,50] in TryTripDB (release 49 beta)

[51]. Polypeptides found in both data sets were filtered by eliminating glycosomal or nuclear

proteins [52,53], resulting in 13 proteins (S5B Table). (Proteins are imported post-translation-

ally into nuclei and glycosomes [54,55]). Thus, there is a total of 15 mitochondrial proteins,

two of which have been verified at the cellular level, among TbCK1.2-pathway proteins. Future

work will address possible contributions of these proteins to kDNA division.

Discussion

Casein kinase TbCK1.2 has multiple functions in the African trypanosome

Protein kinases are considered “biological switches” that regulate physiological pathways

instead of metabolic enzymes optimized to act on single substrates (reviewed in [56]). Typi-

cally, a single protein kinase affects multiple pathways in a cell. For example, JAK kinase is

involved in IL2 synthesis [57], thyrotropin signaling [58], and centrosomal protein phosphory-

lation [59]. Similarly, vertebrate casein kinase 1δ stabilizes mature axons, [60], governs period-

icity of mammalian circadian rhythms [61], and regulates cognitive-affective behavior in mice

[62]. Protein kinases exhibit this myriad of functions because they have multiple substrates,

some of which are effectors for pathways regulated by the enzymes [56]. Efforts to understand

the contributions of protein kinases to biology have been most fruitful when single pathways

are studied in detail to identify participants that are eventually ordered into signaling cascades,

as shown for [57,58,63], EGFR [64–66], and CDKs [67–69].

In T. brucei, we find that TbCK1.2 affects cytokinesis (Fig 1), separation of mBBs (Fig 5),

and scission of kDNA (Fig 2). Following the lead of investigators in other biological systems

[57,58,63,70–72] (discussed above), we focus this manuscript on a single pathway affected by

TbCK1.2, kinetoplast division (Figs 1 and 2). This decision is not meant to minimize the

importance of other pathways affected by TbCK1.2. Neither is it a suggestion that failure of

kinetoplast scission after knockdown of TbCK1.2 causes the other effects mentioned above.

Instead, the decision is an acknowledgement of the futility of attempting to provide a compre-

hensive account of all three physiological pathways affected by the enzyme in one publication.

Our working hypothesis is that all pathways affected by TbCK1.2 are impacted concurrently,

because the enzyme is found in multiple regions of the cell (Figs 6, S2E and S2F) where it

engages different effector proteins (S3 Table) for each of the pathways affected by the enzyme.

Kinetoplast division factor hypothesis

A kinetoplast biogenesis cycle has five steps, minimally; kDNA synthesis, selection of scission

sites, cleavage/scission, separation of kinetoplasts, and sorting of cleaved kDNAs (S1 Fig) (see

Introduction for definition of terms). Division (i.e., scission/cleavage and initial separation) of

kDNA is poorly characterized; no protein that mediates the process has been identified to date

(reviewed in [12]).

In this report we show that mutant 1K2N trypanosomes obtained after knockdown of

TbCK1.2 (Fig 1) have two well-separated basal bodies (Figs 3 and 5 and S5) and yet fail to

divide kDNA (Fig 1). Hence knockdown of TbCK1.2 de-couples basal body separation from

division of kinetoplasts, so that basal bodies move apart without scission of kDNA. Separation

of basal bodies is not sufficient to divide a kinetoplast, although that event precedes segregation

of kinetoplasts [1,13,14,20]. (The original use of the word “segregation” in kinetoplastid biol-

ogy [10] referred to the process that we term “scission” (S1 Fig) [11]. However, “segregation”

is now used for all events associated with kDNA inheritance [10–12].

Based on our data (summarized above) we propose that trypanosomes with one kinetoplast

and one nucleus can have a post-basal body separation “kDNA intermediate” containing
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uncleaved kDNA (KU). The intermediate (KU) is short-lived under normal circumstances.

Conversion of KU into two cleaved kDNA networks (in 2K1N trypanosomes) is arrested after

knockdown of TbCK1.2, making it possible to detect the normally elusive 1KU1N intermediate

(Fig 1E and 1F). In DAPI staining of kDNA, the intermediate may be detected as a 1K1N try-

panosome with “over-replicated” kDNA (Fig 1E); quantitative electron microscopy studies

document scission failure of KU (Fig 2A). With time, a 1KU1N produces 1KU2N trypanosomes

after mitosis, (Fig 1D and 1F).

We incorporate these concepts (above) into a kinetoplast division factor (KDF) hypothesis

(Fig 7). Previous hypotheses addressed “segregation” of kinetoplasts [1,10,12,30]. The term

“segregation” is applied to multiple stages of kinetoplast inheritance; it is not equivalent to

“division”, which is a specific step in biogenesis of kinetoplasts (Fig 7). Data justifying our

Fig 7. Kinetoplast division factor hypothesis. In G1, trypanosomes have one basal body and a single kinetoplast. During S-phase, kDNA synthesis occurs and the

probasal body migrates away from the mature basal body (Step 1 and 2). After separating by a distance>895 nm, the probasal body completes maturation (step 3)

producing 1K1N trypanosomes with 2 mature basal bodies that are found near opposite ends of a kinetoplast containing uncleaved double-length kDNA [23]. We propose

that presence of two basal bodies each at a pole of kinetoplast “licences” kDNA division. Subsequently, kinetoplast division factors (KDFs) are recruited close to, or into,

the mitochondrion (Step 4). KDFs may recruit or activate a “kDNA cleavage/scission complex” to divide the kinetoplast (Step 5). In G2, separation of kinetoplasts is visible

(Step 6), providing microscopic evidence of kDNA scission. Sorting of kinetoplasts into daughter trypanosomes occurs at cytokinesis (Step 7). Depiction of a “kDNA

cleavage/scission complex” is hypothetical. Knockdown of TbCK1.2, or other KDFs, prevents scission of kDNA (see Fig 2). Molecular functions of other KDFs remain to

be discovered. TAC-protein sub-complexes are projected to might mediate scission site selection and/or sorting of kinetoplasts (reviewed in [11]).

https://doi.org/10.1371/journal.pone.0249908.g007
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hypothesis include the following; (i) separation of mature basal bodies is not sufficient to

divide kinetoplasts (Figs 2 and 5); and (ii) kDNA synthesis was completed in 1K2N trypano-

somes (Fig 1E). Lastly, we highlight candidate KDFs, twelve proteins whose knockdown yields

1K2N cells, namely KMP-11 [73], TbCEP57 [15], GCP2 (γ-tubulin) [74], PK53 [24], CRK9

[24], ULK [24], RDK2 [24], PF16 [75], HslVU [76], AP1-γ subunit [11], UMSBP1, and

UMSBP2 [77]. These facts are accommodated in a KDF hypothesis (below).

In G1, trypanosomes have one mature basal body and one pro-basal body (Fig 7). During

S-phase, kDNA synthesis (Step 1) is accompanied by separation of the pro-basal body from

the mature basal body (Step 2), and maturation of pro-basal bodies (Step 3) [23,78] producing

trypanosomes with two basal bodies and a double-length kDNA (Figs 1E and 2A). Mature

basal bodies are separated between 0.55-to-2.11 microns (Fig 5). KDFs [11] are recruited (or

activated) when mBBs are separated greater than 1.2 microns (Step 4), leading to scission of

kDNA (Step 5). Basal body separation beyond a threshold of 1.2 microns may be a “licensing

step” for scission of kDNA when KDFs are either activated or recruited to kinetoplasts. In G2,

cleaved and separated kDNAs are visible microscopically (Step 6), and are sorted into daughter

trypanosomes during cytokinesis (Step 7).

Phenotypes accompanying knockdown of genes for KDFs or Tripartite

Associated Complex (TAC)-associated proteins are distinguishable

Some properties of kinetoplasts in cells where TbCK1.2 (a KDF) was knocked down (Figs 1, 1E

and 2) appeared to resemble those obtained after knockdown of TAC-associated proteins

(TACAPs) [12]. A closer examination shows that mutants of KDFs and TAC-associated proteins

have different properties. First, early phenotypes of kDNAs (i.e., observed within 24-h after

knockdown of a gene in bloodstream T. brucei) are distinguishable between KDFs and TAC-asso-

ciated proteins (discussed in [11]). KDF loss prevents scission of kDNA (Figs 1 and 2) whereas

knockdown of TACAPs, best illustrated by RNAi of p166, the first reported TACAP [79], does

not prevent cleavage of kDNA [11]. Second, we observed an increase in 2K2N (post-mitotic) try-

panosomes after knockdown of TbCK1.2 (Fig 1, and see first paragraph of Discussion), pointing

to defective cytokinesis, whereas knockdown of TACAPs does not inhibit cytokinesis [12]. Third,

KDF knockdown reduces separation of mBBs whereas RNAi of TAC genes does not shorten dis-

tances between basal bodies. Finally, TAC gene mutations lead to loss of kDNA from proliferating

trypanosomes whereas KDF knockdown is not associated with loss of kinetoplasts from T. brucei.

Candidate effector proteins for TbCK1.2 regulation of kinetoplast scission

Although TbCK1.2 is a KDF (Fig 1), the protein is not detected selectively at the kinetoplast

(Fig 6A). Therefore, TbCK1.2’s modulation of kinetoplast scission is likely to be mediated by

“effector proteins” that localize to mitochondria.

In T. brucei we found fifteen putative mitochondrial proteins among TbCK1.2-pathway

proteins (S5 Table). This observation is not unlike that in Saccharomyces cerevisiae where

three cytoplasmic protein kinases have substrates that are imported into mitochondria [45–

47], and a CK1 regulates activity of the protein import pore of mitochondria [80]. In future

studies, will test whether or not the trypanosome proteins localize to mitochondria, and

whether their knockdown (or overexpression) affects scission of kDNA.

Experimental procedures

Parasite cultures. Bloodstream T. brucei CA427, single marker (SM) [81] RUMP528

[Leal et al 2001] or TbCK1.2 RNAi cell lines (see Supplemental Materials) were cultured as

described [78].
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Enumeration of kinetoplasts and nuclei after DAPI staining. Following genetic knock-

down of TbCK1.2, cells (~1.5 x 106) were stained with DAPI [78]. To induce knockdown, the

TbCK1.2 RNAi line was incubated in the presence or absence of tetracycline (1 µg/ml) for 12,

18, or 24 hours. For the 12 and 18 h time points, three independent experiments were con-

ducted (n = 116–160 trypanosomes/experimental sample). For the 24 h time point, four inde-

pendent experiments were performed (125–150 trypanosomes analyzed/experiment).

Quantitation of fluorescence intensity from DAPI-stained kinetoplasts. After knock-

down of TbCK1.2, images of DAPI-stained control and RNAi-treated trypanosomes were

acquired using under the same conditions using a DeltaVision II microscope system. Addi-

tionally, the brightness and contrast settings of display images during post-processing were

kept identical. Using ImageJ [82], a box was drawn over each kinetoplast and the sum of the

pixels in the selection was measured (raw integrated density). To control for background fluo-

rescence, a box with the same dimensions used for each kinetoplast was drawn at two areas

near the organelle of interest, and the raw integrated density determined. The average of the

two background fluorescence measurements was then subtracted from the integrated density

of the respective kinetoplast. Cells were pooled from three independent experiments. For the

12 hour time point, 1K1N minus Tet n = 183, 1K1N plus Tet n = 198.

Transmission electron microscopy (TEM). TEM of kinetoplast network was performed

as described previously [83] with modifications. TbCK1.2 RNAi cells were induced for 24 h

with tetracycline (1μg/ml). Trypanosomes (1x108) were harvested from induced and unin-

duced cultures, and washed once with 15 ml of chilled PBS-G (glucose 10 mM). Cells were

resuspended in 5 ml of fixative solution; 0.07 M cacodylate buffer (pH 7.4) containing 2%

paraformaldehyde (EM grade) and 0.5% glutaraldehyde (EM grade), and incubated at 4˚C for

1 h. Cells were washed twice with cacodylate buffer (0.07 M, pH 7.4), and were encapsulated in

100 μl of 4% low-melting-point agarose at 4˚C for 2 h. The agarose enrobed trypanosomes

were post-fixed with 4% aqueous OsO4 for 1 h, followed by dehydration in an ascending series

of ethanol (25, 50, 75, 85, 95 and 100%, 15 mins at each step), and anhydrous acetone (10

mins, two times). After the dehydration, trypanosomes were incubated with an ascending

series of Eponate 12 resin solution (Ted Pella Inc.) in acetone (25, 50, 75%) at room tempera-

ture for 2 h at each step. Finally, cells were embedded in Eponate 12 resin and polymerized at

60˚C for 24 h. Ultrathin sections (60 to 70 nm) were cut, transferred onto copper grids, and

stained with 2% aqueous uranyl acetate for 5 min. Sections were visualized with a JEOL JEM-

1011 transmission electron microscope at 80 kV and 10,000 X magnification.

Quantitation of kinetoplast network length from TEM images. For both uninduced

and induced trypanosomes (i.e., TbCK1.2 RNAi), 632 kinetoplast images were captured from

three independent experiments (200 from first experiment, and 216 from second and third

experiments) for quantitation. The length and width of each kinetoplast network was obtained

using a measurement line tool in Fiji software [84].

Immunofluorescence assays. For detection of TbCK1.2, basal bodies, and flagella, trypano-

somes (8 x 105) were fixed with methanol or paraformaldehyde and labeled [78] with the appro-

priate antibodies (see Supplemental Material for antibody details). Double-staining with YL1/2

and anti-TbSAS6 was used to determine basal body number. Three biological replicates were per-

formed (n = 108-128/sample). Anti-PFR2 was used to enumerate flagella number in three inde-

pendent experiments (n = 96-130/sample). Anti-V5 antibody was used to detect V5-TbCK1.2.

The YL1/2 antibody was used to detect basal bodies, and the 20H5 antibody to detect basal bodies

and bilobes when localizing TbCK1.2. For visualization by fluorescence microscopy, mCLING

was added to a final concentration of 1 µM, and cells were incubated on ice in the dark for 60 s

and then fixed with 100 µL 4% PFA/0.05% glutaraldehyde and 0.01% saponin [6]. Twenty µL of

the solution was transferred to a coverslip coated with poly-L-lysine, and dried on a bead bath
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heated to 50 oC. The cover slips were immersed in PBS for 5 min for re-hydration, briefly rinsed

with deionized H2O, gently dried with a Kim-Wipe, and mounted on a slide with VectaShield

mounting medium (Vector Laboratories, Burlingame, CA) containing 5 µM 4’,6-diamidino-

2-phenylindole (DAPI). Images were captured on an EVOS-FL microscope (ThermoFisher), and

numbers of kinetoplasts and nuclei per cell (n = 150 per experiment) were counted. Three inde-

pendent experiments were performed. Statistical analysis was performed as described below.

Measurement of inter-basal body distances. The distance between basal bodies in try-

panosomes with two mature basal bodies was determined by drawing a line between the center

of YL1/2-positive basal bodies and measuring the distance using ImageJ. Trypanosomes from

five independent experiments were analyzed (97 uninduced 1K1N cells, 94 induced 1K1N

cells, 95 induced 1K2N cells, 81 uninduced 2K1N cells, 61 induced 2K1N cells, 84 uninduced

2K2N cells, 51 induced 2K2N cells).

The distance between pro-basal body and mature basal body in trypanosomes with one

mature basal body, and distance between two pro-basal bodies in cells that had two mature

basal bodies was determined by drawing a line between centers of anti-SAS6-positive objects,

and measuring the distance using ImageJ. All cells analyzed had one kinetoplast.

For AEE788 experiments, the numbers of cells with one mature basal body were as follows:

41 from DMSO treated group, 131 from AEE788 treated group, 99 cells from population

treated with AEE788 and allowed to recover from drug pressure for 1.5 h, 106 cells from 2 h

recovery, and 62 cells from 3 h recovery. For cells with two mature basal bodies, numbers ana-

lyzed were respectively: 58 cells from DMSO treatment, 29 from AEE788 treatment, 16 from

1.5 h recovery, 32 from 2 h recovery, and 92 from 3 h recovery group.

Western blotting. Total cell lysate from trypanosomes (8 x 105 per sample) was used for

western blotting [85]. A Stain-Free labeled gel was activated [86,87] before transfer of proteins

to a PVDF membrane for normalization of total protein (see Supplemental Material).

SILAC and label-free preparation of trypanosome peptides for LC-MS/MS. Three mass

spectrometry experiments were performed. Label-free phosphopeptides were isolated and ana-

lyzed in two biological replicates as described in Supplemental Materials. An inclusion list [88]

was used during analysis of the second label-free experiment (see Supplemental Material).

Additionally, a tetracycline-inducible TbCK1.2 RNAi line was cultured in HMI-9 medium

modified for SILAC [89,90]. Induced (light medium) and uninduced (heavy medium) try-

panosomes (3 x 107 cells per sample) were combined and processed as described [91]. Phos-

pho-peptide enrichment and LC-MS/MS analysis is described in Supplemental Material.
Spectral counts from the two label-free experiments were combined, and phospho-peptides

that showed at least a 2-fold decrease (or increase) in SILAC and the label-free strategies were

considered putative TbCK1.2-pathway proteins.

Statistical analysis

Unless otherwise stated, Excel (Microsoft) and Graphpad Prism were used for Student’s t test.

Chi-squared (x2), Mann-Whitney, and one-way ANOVA tests were executed using GraphPad

Prism. For all statistical analysis, α = 0.05. Exact p-values for most statistical tests are calculated

in Prism to 15 significant digits. In some cases, exact p-values were unavailable due to being

smaller than 1x10-15. Exact p-values for Dunnett’s multiple comparisons test are calculated to

4 significant digits. Exact p-values smaller than 1x10-3 are not calculated.

Supporting information

S1 Fig. The kinetoplast duplication cycle. Basal bodies and subcomplexes of tripartite attach-

ment complex (TAC) proteins are found near kinetoplasts. In G1, trypanosomes have one
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basal body and a single kinetoplast. During S-phase, kDNA synthesis occurs (Step 1), and a

second mature basal body is produced via maturation of the probasal body (Step 2). Both

mature basal bodies gain a new probasal body companion. Division of the kDNA network

(Step 3) takes place before separation of the kinetoplasts is visible (Step 4). During cytokinesis

kinetoplasts are sorted into daughter trypanosomes (Step 5). Sub-complexes of TAC proteins

[1] might mediate kDNA scission site selection and/or sorting of kinetoplasts (reviewed in

[2]).

(TIF)

S2 Fig. Reduction in protein level of TbCK1.2 by RNA interference. One allele of TbCK1.2

was tagged with a V5 epitope (N-terminal) in a cell line harboring a tetracycline-inducible

TbCK1.2 RNAi construct. Trypanosomes were incubated in the absence (-Tet) or presence

(+Tet) of tetracycline (1 µg/ml) for 24 h. (A) Western blot using an anti-V5 antibody to probe

lysate from uninduced (-Tet) and induced trypanosomes (+Tet). Total protein was monitored

with a Stain-Free protocol [3, 4]. (B) Plot presents the average normalized band intensity (see

Materials and Methods) of V5-TbCK1.2 (39 kDA) in three biological replicates. A Student’s t-

test was used to test the statistical significance of the difference in relative V5 band intensity in

uninduced and induced TbCK1.2 RNAi cell populations. (C) Trypanosome density was deter-

mined 12 h, 16 h, or 24 h after the addition of tetracycline, starting from 5 x 104 cells/ml. Aver-

age cell density and standard deviation of three independent biological experiments are

shown. (D) V5-TbCK1.2 RNAi cell line was incubated in the absence (-Tet) or presence (+Tet)

of tetracycline for 24 h. Cells were fixed in paraformaldehyde, and tagged V5-TbCK1.2 was

detected with anti-V5 antibody. Scatter/violin plot indicates fluorescence intensity in whole

cells with or without tetracycline. Intensity of V5-TbCK1.2 signal in cells was measured in

three biological replicates using Fiji (33–58 cells per group in individual replicates). Distribu-

tions of fluorescence values were compared via a Mann-Whitney test. Bars indicate median

and inter-quartile range. Dotted line represents mean V5-TbCK12 fluorescence in -Tet group.

(E) Representative images from immunofluorescence assays performed with anti-V5 antibody.

TbRP2, a basal body transition zone protein, was visualized using YL1/2 antibody. Bottom row

shows tagged cells not exposed to primary antibodies. Scale bar = 5 µm. (F) One allele of

TbCK1.2 was tagged with an HA epitope (C-terminal), and used for immunofluorescence

assays with anti-HA antibody following paraformaldehyde fixation. TbRP2 protein was visual-

ized using YL1/2 antibody. Scale bar = 5 µm.

(TIF)

S3 Fig. Kinetoplast division monitored by electron microscopy. (A) Transmission electron

microscopy images showing kinetoplast network duplication cycle in T. brucei. Panel a depicts

a kinetoplast (K) of median length (~ 400 nm). Panel b is a representative image for elongated

kinetoplast (Ke), whereas c and d show kinetoplasts at the scission and separation steps of divi-

sion, respectively. Panel e shows two cleaved and separated kinetoplasts (K-1 and K-2), each

surrounded by mitochondrial membranes (MtM). (B) Widths of kinetoplasts are not affected
by knockdown of TbCK1.2. (a) A scatter plot showing the width of kinetoplast network in unin-

duced and induced population (24 h) of TbCK1.2 RNAi cell line. TEM images of kinetoplast

were used for measurement of width, n = 100 for uninduced and induced population, ns; non-

significant, Mann Whitney U test was used for statistical analysis. (b) Representative TEM

images of kinetoplasts from uninduced and induced population of TbCK1.2 RNAi cell line. K;

kinetoplast, MtM; mitochondrial membrane. Scale bar; 200 nm.

(TIF)
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S4 Fig. Flagella are formed by basal bodies in 1K2N trypanosomes. Knockdown of TbCK1.2

was induced with tetracycline. Cells were fixed with methanol and an antibody against TbRP2

(YL1/2) used to identify mature basal bodies. Flagella were detected with anti-PFR2 (against a

paraflagellar rod protein). Kinetoplasts and nuclei were stained with DAPI. For all images the

scale bar is 6 µm. (A) Representative staining of the TbRP2 (mature basal bodies) and PFR2

(flagellum) in TbCK1.2 RNAi cells cultured in the presence (+Tet) or absence of tetracycline

(-Tet). Arrows indicate flagella, arrowheads indicate mature basal bodies. (B) The average per-

centage of 1K2N cells with the indicated number of flagella is shown, from three independent

experiments (n = 96-130/experiment).

(TIF)

S5 Fig. Basal body, flagella, and kDNA observed with superresolution microscopy in a

1K2N trypanosome. Membranes were stained with mCLING [5], basal bodies were labeled

with YL1/2 antibody, and DNA was stained with DAPI. Maximum intensity projections of z-

stack of images were acquired with an SR-SIM microscope.

(TIF)

S1 Table. Descriptive statistics for kDNA intensity measurements before and after knock-

down of TbCK1.2. Experimental details are presented in the legend to Fig 1B.

(DOCX)

S2 Table. Inter-basal body distances following cell cycle synchronization. RUMP528 cells

were treated with 5 µM of AEE788 or 0.1% (v/v) DMSO. After this, cells were released from

drug treatment. Median distances and 95% confidence intervals of median between mature

basal body and probasal body (for cells with a single mature basal body), and between two pro-

basal bodies (for cells in which development of a second mature basal body has occurred) are

displayed.

(DOCX)

S3 Table. TbCK1.2 pathway proteins with decreased phospho-peptide abundance after

knockdown of TbCK1.2. Following a 24-h knockdown of TbCK1.2, phospho-peptides were

harvested from uninduced and induced cells and phospho-peptides enriched over an IMAC

column (see materials and methods). Phospho-peptide abundance was calculated in each sam-

ple using a labeled proteomics (SILAC) (n = 1) and label-free approach (spectral counting

(SC)) (n = 2). Phospho-peptides identified with decreased abundance (at least 2-fold) in each

phosphoproteomics strategy are listed. Phosphorylation sites are indicated in red (PhosphoRS

[6] value >79%). � indicates the number of phospho-sites which could not be accurately

assigned. The fold change in phospho-peptide abundance, as compared to the uninduced con-

trol, is shown. ~99 indicates that the phospho-peptide was only present in the control or

induced population, preventing calculation of an abundance ratio. All listed peptides had a

PEP value (probability that spectra-peptide match was incorrect) of 6% or less. N/A indicates

that the exact phospho-isoform of the indicated peptide was not identified. A control experi-

ment comparing the abundance ratio of phospho-peptides from uninduced cells grown in

heavy or light SILAC medium was performed. Peptides that showed a 2-fold change in abun-

dance in both the control and experimental group are not reported as TbCK1.2 pathway pro-

teins.

(DOCX)

S4 Table. Putative TbCK1.2 effectors with increased phospho-peptide abundance after

knockdown of TbCK1.2. Following a 24-h knockdown of TbCK1.2, phospho-peptides were

harvested from uninduced and induced cells and phospho-peptides enriched over an IMAC
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column (see materials and methods). Phospho-peptide abundance was calculated in each sam-

ple using a labeled proteomics (SILAC) (n = 1) and label-free approach (spectral counting

(SC)) (n = 2). Phospho-peptides identified with increased abundance (at least 2-fold) in each

phosphoproteomics strategy are listed. Phosphorylation sites are indicated in red (PhosphoRS

[6] value >79%). � indicates the number of phospho-sites which could not be accurately

assigned. The fold change in phospho-peptide abundance, as compared to the uninduced con-

trol, is shown. ~99 indicates that the phospho-peptide was only present in the control or

induced population, preventing calculation of an abundance ratio. All listed peptides had a

PEP value (probability that spectra-peptide match was incorrect) of 6% or less. N/A indicates

that the exact phospho-isoform of the indicated peptide was not identified. A control experi-

ment comparing the abundance ratio of phospho-peptides from uninduced cells grown in

heavy or light SILAC medium was performed. Peptides that showed a 2-fold change in abun-

dance in both the control and experimental group are not reported as putative TbCK1.2 effec-

tors.

(DOCX)

S5 Table. Putative mitochondrial TbCK1.2 pathway proteins. “TbCK1.2-Pathway Proteins”

(S4 and S5 Tables) were re-analyzed in search for mitochondrial proteins as follows. (A) Gene

IDs for TbCK1.2-pathway proteins were compared to proteins that localize to the mitochon-

drion in the TrypTag database. (B) Gene IDs for TbCK1.2-pathway proteins were compared to

two mitochondrial proteomes (combined) containing 1730 proteins [7, 8] available in Try-

TripDB (release 41) [9]. Polypeptides found in both data sets were filtered by eliminating pro-

teins in glycosome or nucleus proteomes [10, 11], resulting in 21 proteins. (Proteins are

imported post-translationally into both nuclei and glycosomes [12, 13]).

(DOCX)

S1 File. Supplemental experimental procedures.

(DOCX)

Acknowledgments

KM-W dedicates this study to his graduate school mentor, the late Professor Roger L.

McMacken (Department of Biochemistry and Molecular Biology, Johns Hopkins School of

Public Health, Baltimore, Maryland).

At the University of Georgia, we acknowledge help from Muthugapatti Kandasamy (Bio-

medical Microscopy Core).

Author Contributions

Conceptualization: Catherine Sullenberger, Kojo Mensa-Wilmot.

Data curation: Catherine Sullenberger, Benjamin Hoffman, Justin Wiedeman, Gaurav

Kumar.

Formal analysis: Catherine Sullenberger, Benjamin Hoffman, Gaurav Kumar, Kojo Mensa-

Wilmot.

Funding acquisition: Kojo Mensa-Wilmot.

Investigation: Benjamin Hoffman, Justin Wiedeman, Kojo Mensa-Wilmot.

Methodology: Gaurav Kumar.

Software: Gaurav Kumar.

PLOS ONE Kinetoplast division factor hypothesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0249908 April 16, 2021 21 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249908.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249908.s011
https://doi.org/10.1371/journal.pone.0249908


Supervision: Kojo Mensa-Wilmot.

Validation: Gaurav Kumar, Kojo Mensa-Wilmot.

Visualization: Benjamin Hoffman, Gaurav Kumar.

Writing – original draft: Catherine Sullenberger, Justin Wiedeman, Kojo Mensa-Wilmot.

Writing – review & editing: Catherine Sullenberger, Benjamin Hoffman, Justin Wiedeman,

Gaurav Kumar, Kojo Mensa-Wilmot.

References
1. Robinson DR, Gull K. Basal body movements as a mechanism for mitochondrial genome segregation

in the trypanosome cell cycle. Nature. 1991; 352:731–3. https://doi.org/10.1038/352731a0 PMID:

1876188

2. Jensen RE, Englund PT. Network news: the replication of kinetoplast DNA. Annual review of microbiol-

ogy. 2012; 66:473–91. https://doi.org/10.1146/annurev-micro-092611-150057 PMID: 22994497.

3. Povelones ML. Beyond replication: Division and segregation of mitochondrial DNA in kinetoplastids.

Mol Biochem Parasitol. 2014. https://doi.org/10.1016/j.molbiopara.2014.03.008 PMID: 24704441.

4. Timms MW, van Deursen FJ, Hendriks EF, Matthews KR. Mitochondrial development during life cycle

differentiation of African trypanosomes: evidence for a kinetoplast-dependent differentiation control

point. Mol Biol Cell. 2002; 13(10):3747–59. Epub 2002/10/22. https://doi.org/10.1091/mbc.e02-05-0266

PMID: 12388771; PubMed Central PMCID: PMC129980.

5. Dewar CE, MacGregor P, Cooper S, Gould MK, Matthews KR, Savill NJ, et al. Mitochondrial DNA is crit-

ical for longevity and metabolism of transmission stage Trypanosoma brucei. PLoS Pathog. 2018; 14

(7):e1007195. Epub 2018/07/19. https://doi.org/10.1371/journal.ppat.1007195 PMID: 30020996;

PubMed Central PMCID: PMC6066258.

6. Schnaufer A, Domingo GJ, Stuart K. Natural and induced dyskinetoplastic trypanosomatids: how to live

without mitochondrial DNA. Int J Parasitol. 2002; 32(9):1071–84. https://doi.org/10.1016/s0020-7519

(02)00020-6 PMID: 12117490.

7. Liu B, Liu Y, Motyka SA, Agbo EE, Englund PT. Fellowship of the rings: the replication of kinetoplast

DNA. Trends Parasitol. 2005; 21(8):363–9. https://doi.org/10.1016/j.pt.2005.06.008 PMID: 15967722.

8. Shapiro TA, Englund PT. The structure and replication of kinetoplast DNA. Annual review of microbiol-

ogy. 1995; 49:117–43. https://doi.org/10.1146/annurev.mi.49.100195.001001 PMID: 8561456.

9. Chen J, Rauch CA, White JH, Englund PT, Cozzarelli NR. The topology of the kinetoplast DNA network.

Cell. 1995; 80:61–9. https://doi.org/10.1016/0092-8674(95)90451-4 PMID: 7813018

10. Hoeijmakers JH, Weijers PJ. The segregation of kinetoplast DNA networks in Trypanosoma brucei.

Plasmid. 1980; 4:97–116. https://doi.org/10.1016/0147-619x(80)90086-4 PMID: 6927767

11. Mensa-Wilmot K, Hoffman B, Wiedeman J, Sullenberger C, Sharma A. Kinetoplast Division Factors in a

Trypanosome. Trends Parasitol. 2019; 35(2):119–28. Epub 2019/01/15. https://doi.org/10.1016/j.pt.

2018.11.002 PMID: 30638954; PubMed Central PMCID: PMC6368890.

12. Schneider A, Ochsenreiter T. Failure is not an option—mitochondrial genome segregation in trypano-

somes. J Cell Sci. 2018; 131(18). Epub 2018/09/19. https://doi.org/10.1242/jcs.221820 PMID:

30224426.

13. Ogbadoyi EO, Robinson DR, Gull K. A high-order trans-membrane structural linkage is responsible for

mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol

Cell. 2003; 14(5):1769–79. Epub 2003/06/13. https://doi.org/10.1091/mbc.e02-08-0525 PMID:

12802053; PubMed Central PMCID: PMC165075.

14. Vaughan S, Gull K. Basal body structure and cell cycle-dependent biogenesis in Trypanosoma brucei.

Cilia. 2015; 5:5. Epub 2016/02/11. https://doi.org/10.1186/s13630-016-0023-7 PMID: 26862392;

PubMed Central PMCID: PMC4746817.

15. Dang HQ, Zhou Q, Rowlett VW, Hu H, Lee KJ, Margolin W, et al. Proximity Interactions among Basal

Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and

Inheritance. MBio. 2017; 8(1). https://doi.org/10.1128/mBio.02120-16 PMID: 28049148; PubMed Cen-

tral PMCID: PMC5210500.

16. Banterle N, Gonczy P. Centriole Biogenesis: From Identifying the Characters to Understanding the Plot.

Annu Rev Cell Dev Biol. 2017; 33:23–49. Epub 2017/08/17. https://doi.org/10.1146/annurev-cellbio-

100616-060454 PMID: 28813178.

PLOS ONE Kinetoplast division factor hypothesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0249908 April 16, 2021 22 / 27

https://doi.org/10.1038/352731a0
http://www.ncbi.nlm.nih.gov/pubmed/1876188
https://doi.org/10.1146/annurev-micro-092611-150057
http://www.ncbi.nlm.nih.gov/pubmed/22994497
https://doi.org/10.1016/j.molbiopara.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24704441
https://doi.org/10.1091/mbc.e02-05-0266
http://www.ncbi.nlm.nih.gov/pubmed/12388771
https://doi.org/10.1371/journal.ppat.1007195
http://www.ncbi.nlm.nih.gov/pubmed/30020996
https://doi.org/10.1016/s0020-7519%2802%2900020-6
https://doi.org/10.1016/s0020-7519%2802%2900020-6
http://www.ncbi.nlm.nih.gov/pubmed/12117490
https://doi.org/10.1016/j.pt.2005.06.008
http://www.ncbi.nlm.nih.gov/pubmed/15967722
https://doi.org/10.1146/annurev.mi.49.100195.001001
http://www.ncbi.nlm.nih.gov/pubmed/8561456
https://doi.org/10.1016/0092-8674%2895%2990451-4
http://www.ncbi.nlm.nih.gov/pubmed/7813018
https://doi.org/10.1016/0147-619x%2880%2990086-4
http://www.ncbi.nlm.nih.gov/pubmed/6927767
https://doi.org/10.1016/j.pt.2018.11.002
https://doi.org/10.1016/j.pt.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30638954
https://doi.org/10.1242/jcs.221820
http://www.ncbi.nlm.nih.gov/pubmed/30224426
https://doi.org/10.1091/mbc.e02-08-0525
http://www.ncbi.nlm.nih.gov/pubmed/12802053
https://doi.org/10.1186/s13630-016-0023-7
http://www.ncbi.nlm.nih.gov/pubmed/26862392
https://doi.org/10.1128/mBio.02120-16
http://www.ncbi.nlm.nih.gov/pubmed/28049148
https://doi.org/10.1146/annurev-cellbio-100616-060454
https://doi.org/10.1146/annurev-cellbio-100616-060454
http://www.ncbi.nlm.nih.gov/pubmed/28813178
https://doi.org/10.1371/journal.pone.0249908


17. Andre J, Kerry L, Qi X, Hawkins E, Drizyte K, Ginger ML, et al. An alternative model for the role of RP2

protein in flagellum assembly in the African trypanosome. J Biol Chem. 2014; 289(1):464–75. Epub

2013/11/22. https://doi.org/10.1074/jbc.M113.509521 PMID: 24257747; PubMed Central PMCID:

PMC3879569.

18. Dean S, Moreira-Leite F, Varga V, Gull K. Cilium transition zone proteome reveals compartmentaliza-

tion and differential dynamics of ciliopathy complexes. Proc Natl Acad Sci U S A. 2016; 113(35):E5135–

43. Epub 2016/08/16. https://doi.org/10.1073/pnas.1604258113 PMID: 27519801; PubMed Central

PMCID: PMC5024643.

19. Vertii A, Hung HF, Hehnly H, Doxsey S. Human basal body basics. Cilia. 2016; 5:13. Epub 2016/03/17.

https://doi.org/10.1186/s13630-016-0030-8 PMID: 26981235; PubMed Central PMCID: PMC4791789.

20. Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, et al. Basal body move-

ments orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. J Cell

Sci. 2010; 123(Pt 17):2884–91. Epub 2010/08/05. https://doi.org/10.1242/jcs.074161 PMID: 20682637;

PubMed Central PMCID: PMC2923567.

21. Fujita H, Yoshino Y, Chiba N. Regulation of the centrosome cycle. Mol Cell Oncol. 2016; 3(2):

e1075643. Epub 2016/06/17. https://doi.org/10.1080/23723556.2015.1075643 PMID: 27308597;

PubMed Central PMCID: PMC4905396.

22. Sherwin T, Gull K. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and

cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci. 1989; 323(1218):573–88. Epub 1989/06/

12. https://doi.org/10.1098/rstb.1989.0037 PMID: 2568647.

23. Sullenberger C, Pique D, Ogata Y, Mensa-Wilmot K. AEE788 Inhibits Basal Body Assembly and Blocks

DNA Replication in the African Trypanosome. Mol Pharmacol. 2017; 91(5):482–98. Epub 2017/03/02.

https://doi.org/10.1124/mol.116.106906 PMID: 28246189; PubMed Central PMCID: PMC5399642.

24. Jones NG, Thomas EB, Brown E, Dickens NJ, Hammarton TC, Mottram JC. Regulators of Trypano-

soma brucei Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen.

PLoS Pathog. 2014; 10(1):e1003886. https://doi.org/10.1371/journal.ppat.1003886 PMID: 24453978;

PubMed Central PMCID: PMC3894213.

25. Urbaniak MD. Casein kinase 1 isoform 2 is essential for bloodstream form Trypanosoma brucei. Mol

Biochem Parasitol. 2009; 166(2):183–5. Epub 2009/05/20. doi: S0166-6851(09)00078-4 [pii]. https://

doi.org/10.1016/j.molbiopara.2009.03.001 PMID: 19450734; PubMed Central PMCID: PMC2697324.

26. Woodward R, Gull K. Timing of nuclear and kinetoplast DNA replication and early morphological events

in the cell cycle of Trypanosoma brucei. JCell Sci. 1990; 95:49–57. PMID: 2190996

27. Benz C, Dondelinger F, McKean PG, Urbaniak MD. Cell cycle synchronisation of Trypanosoma brucei

by centrifugal counter-flow elutriation reveals the timing of nuclear and kinetoplast DNA replication. Sci

Rep. 2017; 7(1):17599. Epub 2017/12/16. https://doi.org/10.1038/s41598-017-17779-z PMID:

29242601; PubMed Central PMCID: PMC5730572.

28. Sanderson MJ, Smith I, Parker I, Bootman MD. Fluorescence microscopy. Cold Spring Harb Protoc.

2014; 2014(10):pdb top071795. Epub 2014/10/03. https://doi.org/10.1101/pdb.top071795 PMID:

25275114; PubMed Central PMCID: PMC4711767.

29. Gluenz E, Povelones ML, Englund PT, Gull K. The kinetoplast duplication cycle in Trypanosoma brucei

is orchestrated by cytoskeleton-mediated cell morphogenesis. Mol Cell Biol. 2011; 31(5):1012–21.

Epub 2010/12/22. https://doi.org/10.1128/MCB.01176-10 PMID: 21173163; PubMed Central PMCID:

PMC3067821.

30. Hoffmann A, Kaser S, Jakob M, Amodeo S, Peitsch C, Tyc J, et al. Molecular model of the mitochondrial

genome segregation machinery in Trypanosoma brucei. Proc Natl Acad Sci U S A. 2018; 115(8):

E1809–E18. Epub 2018/02/13. https://doi.org/10.1073/pnas.1716582115 PMID: 29434039; PubMed

Central PMCID: PMC5828607.

31. Gupta A, Kitagawa D. Ultrastructural diversity between centrioles of eukaryotes. J Biochem. 2018; 164

(1):1–8. Epub 2018/02/21. https://doi.org/10.1093/jb/mvy031 PMID: 29462371.

32. Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K. Reconstructing the evolutionary history

of the centriole from protein components. J Cell Sci. 2010; 123(Pt 9):1407–13. https://doi.org/10.1242/

jcs.064873 PMID: 20388734; PubMed Central PMCID: PMC2858018.

33. Yadav SP, Sharma NK, Liu C, Dong L, Li T, Swaroop A. Centrosomal protein CP110 controls matura-

tion of the mother centriole during cilia biogenesis. Development. 2016; 143(9):1491–501. Epub 2016/

03/12. https://doi.org/10.1242/dev.130120 PMID: 26965371; PubMed Central PMCID: PMC4909859.

34. Shukla A, Kong D, Sharma M, Magidson V, Loncarek J. Plk1 relieves centriole block to reduplication by

promoting daughter centriole maturation. Nat Commun. 2015; 6:8077. Epub 2015/08/22. https://doi.

org/10.1038/ncomms9077 PMID: 26293378; PubMed Central PMCID: PMC4560806.

35. Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D, et al. AEE788: a dual family epider-

mal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase

PLOS ONE Kinetoplast division factor hypothesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0249908 April 16, 2021 23 / 27

https://doi.org/10.1074/jbc.M113.509521
http://www.ncbi.nlm.nih.gov/pubmed/24257747
https://doi.org/10.1073/pnas.1604258113
http://www.ncbi.nlm.nih.gov/pubmed/27519801
https://doi.org/10.1186/s13630-016-0030-8
http://www.ncbi.nlm.nih.gov/pubmed/26981235
https://doi.org/10.1242/jcs.074161
http://www.ncbi.nlm.nih.gov/pubmed/20682637
https://doi.org/10.1080/23723556.2015.1075643
http://www.ncbi.nlm.nih.gov/pubmed/27308597
https://doi.org/10.1098/rstb.1989.0037
http://www.ncbi.nlm.nih.gov/pubmed/2568647
https://doi.org/10.1124/mol.116.106906
http://www.ncbi.nlm.nih.gov/pubmed/28246189
https://doi.org/10.1371/journal.ppat.1003886
http://www.ncbi.nlm.nih.gov/pubmed/24453978
https://doi.org/10.1016/j.molbiopara.2009.03.001
https://doi.org/10.1016/j.molbiopara.2009.03.001
http://www.ncbi.nlm.nih.gov/pubmed/19450734
http://www.ncbi.nlm.nih.gov/pubmed/2190996
https://doi.org/10.1038/s41598-017-17779-z
http://www.ncbi.nlm.nih.gov/pubmed/29242601
https://doi.org/10.1101/pdb.top071795
http://www.ncbi.nlm.nih.gov/pubmed/25275114
https://doi.org/10.1128/MCB.01176-10
http://www.ncbi.nlm.nih.gov/pubmed/21173163
https://doi.org/10.1073/pnas.1716582115
http://www.ncbi.nlm.nih.gov/pubmed/29434039
https://doi.org/10.1093/jb/mvy031
http://www.ncbi.nlm.nih.gov/pubmed/29462371
https://doi.org/10.1242/jcs.064873
https://doi.org/10.1242/jcs.064873
http://www.ncbi.nlm.nih.gov/pubmed/20388734
https://doi.org/10.1242/dev.130120
http://www.ncbi.nlm.nih.gov/pubmed/26965371
https://doi.org/10.1038/ncomms9077
https://doi.org/10.1038/ncomms9077
http://www.ncbi.nlm.nih.gov/pubmed/26293378
https://doi.org/10.1371/journal.pone.0249908


inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2004; 64(14):4931–41. https://doi.org/

10.1158/0008-5472.CAN-03-3681 PMID: 15256466.

36. Nakazawa Y, Hiraki M, Kamiya R, Hirono M. SAS-6 is a cartwheel protein that establishes the 9-fold

symmetry of the centriole. Curr Biol. 2007; 17(24):2169–74. Epub 2007/12/18. https://doi.org/10.1016/j.

cub.2007.11.046 PMID: 18082404.

37. Hu H, Liu Y, Zhou Q, Siegel S, Li Z. The Centriole Cartwheel Protein SAS-6 in Trypanosoma brucei Is

Required for Probasal Body Biogenesis and Flagellum Assembly. Eukaryot Cell. 2015; 14(9):898–907.

https://doi.org/10.1128/EC.00083-15 PMID: 26116214; PubMed Central PMCID: PMC4551587.

38. Lundgren DH, Hwang SI, Wu L, Han DK. Role of spectral counting in quantitative proteomics. Expert

review of proteomics. 2010; 7(1):39–53. Epub 2010/02/04. https://doi.org/10.1586/epr.09.69 PMID:

20121475.

39. Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF. Detecting differ-

ential and correlated protein expression in label-free shotgun proteomics. J Proteome Res. 2006; 5

(11):2909–18. https://doi.org/10.1021/pr0600273 PMID: 17081042.

40. Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD. Multiple reaction monitoring

to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics. 2005; 4(8):1134–

44. Epub 2005/06/01. https://doi.org/10.1074/mcp.M500113-MCP200 PMID: 15923565.

41. Zhang P, Kirk JA, Ji W, dos Remedios CG, Kass DA, Van Eyk JE, et al. Multiple reaction monitoring to

identify site-specific troponin I phosphorylated residues in the failing human heart. Circulation. 2012;

126(15):1828–37. Epub 2012/09/14. https://doi.org/10.1161/CIRCULATIONAHA.112.096388 PMID:

22972900.

42. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The Genome of

the African Trypanosome Trypanosoma brucei. Science. 2005; 309(5733):416–22. https://doi.org/10.

1126/science.1112642 PMID: 16020726.

43. Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein

import machinery. Biol Chem. 2016; 397(11):1097–114. Epub 2016/06/12. https://doi.org/10.1515/hsz-

2016-0145 PMID: 27289000.

44. Wiedemann N, Pfanner N. Mitochondrial Machineries for Protein Import and Assembly. Annu Rev Bio-

chem. 2017; 86:685–714. Epub 2017/03/17. https://doi.org/10.1146/annurev-biochem-060815-014352

PMID: 28301740.

45. Schmidt O, Harbauer AB, Rao S, Eyrich B, Zahedi RP, Stojanovski D, et al. Regulation of mitochondrial

protein import by cytosolic kinases. Cell. 2011; 144(2):227–39. Epub 2011/01/11. https://doi.org/10.

1016/j.cell.2010.12.015 PMID: 21215441.

46. Harbauer AB, Opalinska M, Gerbeth C, Herman JS, Rao S, Schonfisch B, et al. Mitochondria. Cell

cycle-dependent regulation of mitochondrial preprotein translocase. Science. 2014; 346(6213):1109–

13. https://doi.org/10.1126/science.1261253 PMID: 25378463.

47. Rao S, Schmidt O, Harbauer AB, Schonfisch B, Guiard B, Pfanner N, et al. Biogenesis of the preprotein

translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of

Tom40 and impairs its import. Mol Biol Cell. 2012; 23(9):1618–27. Epub 2012/03/16. https://doi.org/10.

1091/mbc.E11-11-0933 PMID: 22419819; PubMed Central PMCID: PMC3338429.

48. Dean S, Sunter JD, Wheeler RJ. TrypTag.org: A Trypanosome Genome-wide Protein Localisation

Resource. Trends Parasitol. 2017; 33(2):80–2. Epub 2016/11/20. https://doi.org/10.1016/j.pt.2016.10.

009 PMID: 27863903; PubMed Central PMCID: PMC5270239.

49. Panigrahi AK, Ogata Y, Zikova A, Anupama A, Dalley RA, Acestor N, et al. A comprehensive analysis

of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009; 9(2):434–50. Epub 2008/12/24.

https://doi.org/10.1002/pmic.200800477 PMID: 19105172.

50. Niemann M, Wiese S, Mani J, Chanfon A, Jackson C, Meisinger C, et al. Mitochondrial outer membrane

proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology.

Mol Cell Proteomics. 2013; 12(2):515–28. https://doi.org/10.1074/mcp.M112.023093 PMID: 23221899;

PubMed Central PMCID: PMC3567870.

51. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a func-

tional genomic resource for the Trypanosomatidae. Nucleic acids research. 2010; 38(Database issue):

D457–62. Epub 2009/10/22. https://doi.org/10.1093/nar/gkp851 PMID: 19843604; PubMed Central

PMCID: PMC2808979.

52. Guther ML, Urbaniak MD, Tavendale A, Prescott A, Ferguson MA. High-confidence glycosome prote-

ome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteo-

mics. J Proteome Res. 2014; 13(6):2796–806. https://doi.org/10.1021/pr401209w PMID: 24792668;

PubMed Central PMCID: PMC4052807.

PLOS ONE Kinetoplast division factor hypothesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0249908 April 16, 2021 24 / 27

https://doi.org/10.1158/0008-5472.CAN-03-3681
https://doi.org/10.1158/0008-5472.CAN-03-3681
http://www.ncbi.nlm.nih.gov/pubmed/15256466
https://doi.org/10.1016/j.cub.2007.11.046
https://doi.org/10.1016/j.cub.2007.11.046
http://www.ncbi.nlm.nih.gov/pubmed/18082404
https://doi.org/10.1128/EC.00083-15
http://www.ncbi.nlm.nih.gov/pubmed/26116214
https://doi.org/10.1586/epr.09.69
http://www.ncbi.nlm.nih.gov/pubmed/20121475
https://doi.org/10.1021/pr0600273
http://www.ncbi.nlm.nih.gov/pubmed/17081042
https://doi.org/10.1074/mcp.M500113-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/15923565
https://doi.org/10.1161/CIRCULATIONAHA.112.096388
http://www.ncbi.nlm.nih.gov/pubmed/22972900
https://doi.org/10.1126/science.1112642
https://doi.org/10.1126/science.1112642
http://www.ncbi.nlm.nih.gov/pubmed/16020726
https://doi.org/10.1515/hsz-2016-0145
https://doi.org/10.1515/hsz-2016-0145
http://www.ncbi.nlm.nih.gov/pubmed/27289000
https://doi.org/10.1146/annurev-biochem-060815-014352
http://www.ncbi.nlm.nih.gov/pubmed/28301740
https://doi.org/10.1016/j.cell.2010.12.015
https://doi.org/10.1016/j.cell.2010.12.015
http://www.ncbi.nlm.nih.gov/pubmed/21215441
https://doi.org/10.1126/science.1261253
http://www.ncbi.nlm.nih.gov/pubmed/25378463
https://doi.org/10.1091/mbc.E11-11-0933
https://doi.org/10.1091/mbc.E11-11-0933
http://www.ncbi.nlm.nih.gov/pubmed/22419819
http://TrypTag.org
https://doi.org/10.1016/j.pt.2016.10.009
https://doi.org/10.1016/j.pt.2016.10.009
http://www.ncbi.nlm.nih.gov/pubmed/27863903
https://doi.org/10.1002/pmic.200800477
http://www.ncbi.nlm.nih.gov/pubmed/19105172
https://doi.org/10.1074/mcp.M112.023093
http://www.ncbi.nlm.nih.gov/pubmed/23221899
https://doi.org/10.1093/nar/gkp851
http://www.ncbi.nlm.nih.gov/pubmed/19843604
https://doi.org/10.1021/pr401209w
http://www.ncbi.nlm.nih.gov/pubmed/24792668
https://doi.org/10.1371/journal.pone.0249908


53. Goos C, Dejung M, Janzen CJ, Butter F, Kramer S. The nuclear proteome of Trypanosoma brucei.

PLoS One. 2017; 12(7):e0181884. Epub 2017/07/21. https://doi.org/10.1371/journal.pone.0181884

PMID: 28727848; PubMed Central PMCID: PMC5519215.

54. Guerra-Giraldez C, Quijada L, Clayton CE. Compartmentation of enzymes in a microbody, the glyco-

some, is essential in Trypanosoma brucei. J Cell Sci. 2002; 115(Pt 13):2651–8. PMID: 12077356.

55. Bauer S, Morris MT. Glycosome biogenesis in trypanosomes and the de novo dilemma. PLoS Negl

Trop Dis. 2017; 11(4):e0005333. Epub 2017/04/21. https://doi.org/10.1371/journal.pntd.0005333

PMID: 28426655; PubMed Central PMCID: PMC5398534.

56. Greer YE, Westlake CJ, Gao B, Bharti K, Shiba Y, Xavier CP, et al. Casein Kinase 1 Delta Functions at

the Centrosome and Golgi to Promote Ciliogenesis. Mol Biol Cell. 2014. https://doi.org/10.1091/mbc.

E13-10-0598 PMID: 24648492.

57. Thomis DC, Aramburu J, Berg LJ. The Jak family tyrosine kinase Jak3 is required for IL-2 synthesis by

naive/resting CD4+ T cells. J Immunol. 1999; 163(10):5411–7. Epub 1999/11/24. PMID: 10553066.

58. Park ES, Kim H, Suh JM, Park SJ, You SH, Chung HK, et al. Involvement of JAK/STAT (Janus kinase/

signal transducer and activator of transcription) in the thyrotropin signaling pathway. Mol Endocrinol.

2000; 14(5):662–70. Epub 2000/05/16. https://doi.org/10.1210/mend.14.5.0458 PMID: 10809230.

59. Jay J, Hammer A, Nestor-Kalinoski A, Diakonova M. Jak2 Tyrosine Kinase Phosphorylates and Is Neg-

atively Regulated by Centrosomal Protein Ninein. Mol Cell Biol. 2014. https://doi.org/10.1128/MCB.

01138-14 PMID: 25332239.

60. LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, et al. Casein Kinase 1delta Stabi-

lizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell. 2020; 52(1):88–103 e6.

Epub 2020/01/08. https://doi.org/10.1016/j.devcel.2019.12.005 PMID: 31910362.

61. Guo G, Wang K, Hu SS, Tian T, Liu P, Mori T, et al. Autokinase Activity of Casein Kinase 1 delta/epsilon

Governs the Period of Mammalian Circadian Rhythms. J Biol Rhythms. 2019:748730419865406. Epub

2019/08/09. https://doi.org/10.1177/0748730419865406 PMID: 31392916.

62. Sundaram S, Nagaraj S, Mahoney H, Portugues A, Li W, Millsaps K, et al. Inhibition of casein kinase

1delta/epsilonimproves cognitive-affective behavior and reduces amyloid load in the APP-PS1 mouse

model of Alzheimer’s disease. Sci Rep. 2019; 9(1):13743. Epub 2019/09/26. https://doi.org/10.1038/

s41598-019-50197-x PMID: 31551449; PubMed Central PMCID: PMC6760153.

63. Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H, et al. CIS, a cytokine induc-

ible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood. 1997;

89(9):3148–54. Epub 1997/05/01. PMID: 9129017.

64. Dittmann K, Mayer C, Czemmel S, Huber SM, Rodemann HP. New roles for nuclear EGFR in regulating

the stability and translation of mRNAs associated with VEGF signaling. PLoS One. 2017; 12(12):

e0189087. Epub 2017/12/19. https://doi.org/10.1371/journal.pone.0189087 PMID: 29253018; PubMed

Central PMCID: PMC5734708.

65. Dayde D, Guerard M, Perron P, Hatat AS, Barrial C, Eymin B, et al. Nuclear trafficking of EGFR by

Vps34 represses Arf expression to promote lung tumor cell survival. Oncogene. 2016; 35(30):3986–94.

Epub 2015/12/22. https://doi.org/10.1038/onc.2015.480 PMID: 26686095.

66. Chou RH, Wang YN, Hsieh YH, Li LY, Xia W, Chang WC, et al. EGFR modulates DNA synthesis and

repair through Tyr phosphorylation of histone H4. Dev Cell. 2014; 30(2):224–37. https://doi.org/10.

1016/j.devcel.2014.06.008 PMID: 25073158; PubMed Central PMCID: PMC4149291.

67. Cho YS, Li S, Wang X, Zhu J, Zhuo S, Han Y, et al. CDK7 regulates organ size and tumor growth by

safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus. Genes Dev. 2020; 34(1–2):53–

71. Epub 2019/12/21. https://doi.org/10.1101/gad.333146.119 PMID: 31857346; PubMed Central

PMCID: PMC6938674.

68. Zitouni S, Francia ME, Leal F, Montenegro Gouveia S, Nabais C, Duarte P, et al. CDK1 Prevents

Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis. Curr Biol. 2016; 26(9):1127–37.

Epub 2016/04/27. https://doi.org/10.1016/j.cub.2016.03.055 PMID: 27112295; PubMed Central

PMCID: PMC4867225.

69. Novak ZA, Wainman A, Gartenmann L, Raff JW. Cdk1 Phosphorylates Drosophila Sas-4 to Recruit

Polo to Daughter Centrioles and Convert Them to Centrosomes. Dev Cell. 2016; 37(6):545–57. Epub

2016/06/22. https://doi.org/10.1016/j.devcel.2016.05.022 PMID: 27326932; PubMed Central PMCID:

PMC4918730.

70. Cheng TS, Hsiao YL, Lin CC, Yu CT, Hsu CM, Chang MS, et al. Glycogen synthase kinase 3beta inter-

acts with and phosphorylates the spindle-associated protein astrin. J Biol Chem. 2008; 283(4):2454–

64. Epub 2007/12/07. https://doi.org/10.1074/jbc.M706794200 PMID: 18055457.

71. Neumann M, Klar S, Wilisch-Neumann A, Hollenbach E, Kavuri S, Leverkus M, et al. Glycogen

synthase kinase-3beta is a crucial mediator of signal-induced RelB degradation. Oncogene. 2011; 30

(21):2485–92. Epub 2011/01/11. https://doi.org/10.1038/onc.2010.580 PMID: 21217772.

PLOS ONE Kinetoplast division factor hypothesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0249908 April 16, 2021 25 / 27

https://doi.org/10.1371/journal.pone.0181884
http://www.ncbi.nlm.nih.gov/pubmed/28727848
http://www.ncbi.nlm.nih.gov/pubmed/12077356
https://doi.org/10.1371/journal.pntd.0005333
http://www.ncbi.nlm.nih.gov/pubmed/28426655
https://doi.org/10.1091/mbc.E13-10-0598
https://doi.org/10.1091/mbc.E13-10-0598
http://www.ncbi.nlm.nih.gov/pubmed/24648492
http://www.ncbi.nlm.nih.gov/pubmed/10553066
https://doi.org/10.1210/mend.14.5.0458
http://www.ncbi.nlm.nih.gov/pubmed/10809230
https://doi.org/10.1128/MCB.01138-14
https://doi.org/10.1128/MCB.01138-14
http://www.ncbi.nlm.nih.gov/pubmed/25332239
https://doi.org/10.1016/j.devcel.2019.12.005
http://www.ncbi.nlm.nih.gov/pubmed/31910362
https://doi.org/10.1177/0748730419865406
http://www.ncbi.nlm.nih.gov/pubmed/31392916
https://doi.org/10.1038/s41598-019-50197-x
https://doi.org/10.1038/s41598-019-50197-x
http://www.ncbi.nlm.nih.gov/pubmed/31551449
http://www.ncbi.nlm.nih.gov/pubmed/9129017
https://doi.org/10.1371/journal.pone.0189087
http://www.ncbi.nlm.nih.gov/pubmed/29253018
https://doi.org/10.1038/onc.2015.480
http://www.ncbi.nlm.nih.gov/pubmed/26686095
https://doi.org/10.1016/j.devcel.2014.06.008
https://doi.org/10.1016/j.devcel.2014.06.008
http://www.ncbi.nlm.nih.gov/pubmed/25073158
https://doi.org/10.1101/gad.333146.119
http://www.ncbi.nlm.nih.gov/pubmed/31857346
https://doi.org/10.1016/j.cub.2016.03.055
http://www.ncbi.nlm.nih.gov/pubmed/27112295
https://doi.org/10.1016/j.devcel.2016.05.022
http://www.ncbi.nlm.nih.gov/pubmed/27326932
https://doi.org/10.1074/jbc.M706794200
http://www.ncbi.nlm.nih.gov/pubmed/18055457
https://doi.org/10.1038/onc.2010.580
http://www.ncbi.nlm.nih.gov/pubmed/21217772
https://doi.org/10.1371/journal.pone.0249908


72. Dionyssiou MG, Ehyai S, Avrutin E, Connor MK, McDermott JC. Glycogen synthase kinase 3beta

represses MYOGENIN function in alveolar rhabdomyosarcoma. Cell Death Dis. 2014; 5:e1094. Epub

2014/03/01. https://doi.org/10.1038/cddis.2014.58 PMID: 24577092; PubMed Central PMCID:

PMC3944270.

73. Li Z, Wang CC. KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma

brucei. Eukaryot Cell. 2008; 7(11):1941–50. Epub 2008/09/30. https://doi.org/10.1128/EC.00249-08

PMID: 18820079; PubMed Central PMCID: PMC2583545.

74. Zhou Q, Li Z. gamma-Tubulin complex in Trypanosoma brucei: molecular composition, subunit interde-

pendence and requirement for axonemal central pair protein assembly. Mol Microbiol. 2015; 98(4):667–

80. Epub 2015/08/01. https://doi.org/10.1111/mmi.13149 PMID: 26224545; PubMed Central PMCID:

PMC4636443.

75. Absalon S, Kohl L, Branche C, Blisnick T, Toutirais G, Rusconi F, et al. Basal body positioning is con-

trolled by flagellum formation in Trypanosoma brucei. PLoS One. 2007; 2(5):e437. Epub 2007/05/10.

https://doi.org/10.1371/journal.pone.0000437 PMID: 17487282; PubMed Central PMCID:

PMC1857822.

76. Schnarwiler F, Niemann M, Doiron N, Harsman A, Kaser S, Mani J, et al. Trypanosomal TAC40 consti-

tutes a novel subclass of mitochondrial beta-barrel proteins specialized in mitochondrial genome inheri-

tance. Proc Natl Acad Sci U S A. 2014; 111(21):7624–9. https://doi.org/10.1073/pnas.1404854111

PMID: 24821793; PubMed Central PMCID: PMC4040615.

77. Milman N, Motyka SA, Englund PT, Robinson D, Shlomai J. Mitochondrial origin-binding protein

UMSBP mediates DNA replication and segregation in trypanosomes. Proc Natl Acad Sci U S A. 2007;

104(49):19250–5. Epub 2007/12/01. https://doi.org/10.1073/pnas.0706858104 PMID: 18048338;

PubMed Central PMCID: PMC2148276.

78. Sullenberger C, Pique D, Ogata Y, Mensa-Wilmot K. AEE788 Inhibits Basal Body Assembly and Blocks

DNA Replication in the African Trypanosome. Mol Pharmacol. 2017; 91(5):17. https://doi.org/10.1124/

mol.116.106906 PMID: 28246189.

79. Zhao Z, Lindsay ME, Roy Chowdhury A, Robinson DR, Englund PT. p166, a link between the trypano-

some mitochondrial DNA and flagellum, mediates genome segregation. EMBO J. 2008; 27(1):143–54.

Epub 2007/12/07. doi: 7601956 [pii] https://doi.org/10.1038/sj.emboj.7601956 PMID: 18059470.

80. Gerbeth C, Schmidt O, Rao S, Harbauer AB, Mikropoulou D, Opalinska M, et al. Glucose-induced regu-

lation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell metabolism.

2013; 18(4):578–87. Epub 2013/10/08. https://doi.org/10.1016/j.cmet.2013.09.006 PMID: 24093680.

81. Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional

gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol.

1999; 99(1):89–101. https://doi.org/10.1016/s0166-6851(99)00002-x PMID: 10215027.

82. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth-

ods. 2012; 9(7):671–5. https://doi.org/10.1038/nmeth.2089 PMID: 22930834.

83. Wang J, Englund PT, Jensen RE. TbPIF8, a Trypanosoma brucei protein related to the yeast Pif1 heli-

case, is essential for cell viability and mitochondrial genome maintenance. Mol Microbiol. 2012; 83

(3):471–85. https://doi.org/10.1111/j.1365-2958.2011.07938.x PMID: 22220754; PubMed Central

PMCID: PMC3262056.

84. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source

platform for biological-image analysis. Nat Methods. 2012; 9(7):676–82. Epub 2012/06/30. https://doi.

org/10.1038/nmeth.2019 PMID: 22743772; PubMed Central PMCID: PMC3855844.

85. Guyett PJ, Xia S, Swinney DC, Pollastri MP, Mensa-Wilmot K. Glycogen Synthase Kinase 3beta Pro-

motes the Endocytosis of Transferrin in the African Trypanosome. ACS Infect Dis. 2016; 2(7):518–28.

Epub 2016/09/15. https://doi.org/10.1021/acsinfecdis.6b00077 PMID: 27626104; PubMed Central

PMCID: PMC5025259.

86. Gilda JE, Gomes AV. Western blotting using in-gel protein labeling as a normalization control: stain-free

technology. Methods Mol Biol. 2015; 1295:381–91. https://doi.org/10.1007/978-1-4939-2550-6_27

PMID: 25820735.

87. Gurtler A, Kunz N, Gomolka M, Hornhardt S, Friedl AA, McDonald K, et al. Stain-Free technology as a

normalization tool in Western blot analysis. Anal Biochem. 2013; 433(2):105–11. https://doi.org/10.

1016/j.ab.2012.10.010 PMID: 23085117.

88. Domon B, Aebersold R. Options and considerations when selecting a quantitative proteomics strategy.

Nat Biotechnol. 2010; 28(7):710–21. Epub 2010/07/14. https://doi.org/10.1038/nbt.1661 PMID:

20622845.

89. Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol. 2006; 7(12):952–

8. https://doi.org/10.1038/nrm2067 PMID: 17139335.

PLOS ONE Kinetoplast division factor hypothesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0249908 April 16, 2021 26 / 27

https://doi.org/10.1038/cddis.2014.58
http://www.ncbi.nlm.nih.gov/pubmed/24577092
https://doi.org/10.1128/EC.00249-08
http://www.ncbi.nlm.nih.gov/pubmed/18820079
https://doi.org/10.1111/mmi.13149
http://www.ncbi.nlm.nih.gov/pubmed/26224545
https://doi.org/10.1371/journal.pone.0000437
http://www.ncbi.nlm.nih.gov/pubmed/17487282
https://doi.org/10.1073/pnas.1404854111
http://www.ncbi.nlm.nih.gov/pubmed/24821793
https://doi.org/10.1073/pnas.0706858104
http://www.ncbi.nlm.nih.gov/pubmed/18048338
https://doi.org/10.1124/mol.116.106906
https://doi.org/10.1124/mol.116.106906
http://www.ncbi.nlm.nih.gov/pubmed/28246189
https://doi.org/10.1038/sj.emboj.7601956
http://www.ncbi.nlm.nih.gov/pubmed/18059470
https://doi.org/10.1016/j.cmet.2013.09.006
http://www.ncbi.nlm.nih.gov/pubmed/24093680
https://doi.org/10.1016/s0166-6851%2899%2900002-x
http://www.ncbi.nlm.nih.gov/pubmed/10215027
https://doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://doi.org/10.1111/j.1365-2958.2011.07938.x
http://www.ncbi.nlm.nih.gov/pubmed/22220754
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1021/acsinfecdis.6b00077
http://www.ncbi.nlm.nih.gov/pubmed/27626104
https://doi.org/10.1007/978-1-4939-2550-6%5F27
http://www.ncbi.nlm.nih.gov/pubmed/25820735
https://doi.org/10.1016/j.ab.2012.10.010
https://doi.org/10.1016/j.ab.2012.10.010
http://www.ncbi.nlm.nih.gov/pubmed/23085117
https://doi.org/10.1038/nbt.1661
http://www.ncbi.nlm.nih.gov/pubmed/20622845
https://doi.org/10.1038/nrm2067
http://www.ncbi.nlm.nih.gov/pubmed/17139335
https://doi.org/10.1371/journal.pone.0249908


90. Butter F, Bucerius F, Michel M, Cicova Z, Mann M, Janzen CJ. Comparative proteomics of two life cycle

stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite’s host

adaptation machinery. Mol Cell Proteomics. 2013; 12(1):172–9. https://doi.org/10.1074/mcp.M112.

019224 PMID: 23090971; PubMed Central PMCID: PMC3536898.

91. Guyett PJ, Behera R, Ogata Y, Pollastri M, Mensa-Wilmot K. Novel Effects of Lapatinib Revealed in the

African Trypanosome by Using Hypothesis-Generating Proteomics and Chemical Biology Strategies.

Antimicrob Agents Chemother. 2017; 61(2). Epub 2016/11/23. https://doi.org/10.1128/AAC.01865-16

PMID: 27872081; PubMed Central PMCID: PMC5278746.

PLOS ONE Kinetoplast division factor hypothesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0249908 April 16, 2021 27 / 27

https://doi.org/10.1074/mcp.M112.019224
https://doi.org/10.1074/mcp.M112.019224
http://www.ncbi.nlm.nih.gov/pubmed/23090971
https://doi.org/10.1128/AAC.01865-16
http://www.ncbi.nlm.nih.gov/pubmed/27872081
https://doi.org/10.1371/journal.pone.0249908

