

WALKING POSTER PRESENTATION



# Accuracy of self-navigated free-breathing isotropic 3D whole heart inversion recovery magnetic resonance for detection of myocardial infarction

Tobias Rutz<sup>2\*</sup>, Davide Piccini<sup>1</sup>, Jerome Chaptinel<sup>1,3</sup>, Simone Coppo<sup>1,3</sup>, Gabriella Vincenti<sup>2</sup>, Matthias Stuber<sup>3,1</sup>, Juerg Schwitter<sup>2</sup>

*From* 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

## Background

Cardiac magnetic resonance (CMR) allows detection of myocardial scar after myocardial infarction. Usually 2D image planes in short-axis and three long axis orientations are obtained. However to plan in patients with scar e.g. complex electrophysiological intervention for reentry arrhythmias, high-resolution 3D information of the scar is highly desirable. This study therefore evaluates the accuracy of self-navigated isotropic 3D-freebreathing CMR with inversion recovery (3D-SNIR) to detect myocardial scar tissue.

### Methods

Patients after myocardial infarction detected by late gadolinium enhancement on standard 2D inversion recovery sequences (2D LGE) underwent a CMR exam with 3D-SNIR on a 1.5T clinical CMR scanner (Aera, Siemens, Germany). Data acquisition was performed during the most quiescent systolic phase with a prototype segmented 3D radial trajectory with self-navigation after administration of 0.2mmol/kg of Gadobutrol. A non-selective IR pulse was added prior to each acquired k-space segment to the segmented, ECG-triggered, fatsaturated radial SSFP imaging sequence. Parameters: TR/TE 3.1/1.56ms, FOV (220mm)<sup>3</sup>, matrix 192<sup>3</sup>, isotropic voxel size (1.15mm)<sup>3</sup>, RF excitation angle 115°, and receiver bandwidth 898Hz/Px. TI (= 250-300ms) was assessed with a 2D radial scout scan prior to 3D-SNIR.

<sup>2</sup>Division of Cardiology, Cardiac MR Center, University Hospital Lausanne (CHUV), Lausanne, Switzerland

Full list of author information is available at the end of the article



#### Results

Thirteen patients (5 females, age  $58\pm10$ y) were included. Time between 2D LGE and 3D LGE was  $59\pm64$  days. 3D-SNIR successfully corrected for respiratory motion in all acquisitions. All scars visualized by 2D LGE could be identified by 3D-SNIR (example see figure 1). Bland Altman-analyses and correlations showed a good agreement of quantification of scar volume obtained by 3D-SNIR compared to standard 2D LGE: -6.3±4.1ml, linear regression: r=0.977, p<0.001 (figure 2). 3D scar volume was 24.3±15ml vs. 2D 30.6±17ml, p<0.001. Intraobserver variability was 0.3±4.9ml, r=0.985, p<0.001; interobserver 1.5±9.9ml, r=0.74, p=0.014.

#### Conclusions

Detection of myocardial scar by 3D-SNIR is feasible and shows a good agreement with standard 2D LGE. The mean difference of -6.3ml might be explained by the higher spatial resolution of the 3D sequence. Integration of a phase sensitive inversion recovery pulse warrants testing to further improve 3D quantification of scar.



© 2015 Rutz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.







#### Funding

N/A.

#### Authors' details

<sup>1</sup>Center for Biomedical Imaging (CIBM) & Center for Cardiovascular Magnetic Resonance Research, University of Lausanne, Lausanne, Switzerland. <sup>2</sup>Division of Cardiology, Cardiac MR Center, University Hospital Lausanne (CHUV), Lausanne, Switzerland. <sup>3</sup>Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.

#### Published: 3 February 2015

#### doi:10.1186/1532-429X-17-S1-Q121

**Cite this article as:** Rutz *et al.*: Accuracy of self-navigated free-breathing isotropic 3D whole heart inversion recovery magnetic resonance for detection of myocardial infarction. *Journal of Cardiovascular Magnetic Resonance* 2015 **17**(Suppl 1):Q121.

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

**BioMed** Central

Submit your manuscript at www.biomedcentral.com/submit